2015教师招聘考试数学备考之集合与简易逻辑五
- 格式:doc
- 大小:444.50 KB
- 文档页数:2
第1讲集合与简易逻辑本讲分两小节,分别为集合、简易逻辑,建议用时2.5课时.由于在二轮复习和三轮复习中都不会单独对集合进行系统复习,因此本讲侧重于集合部分,难度也略大.而对于简易逻辑,由于高考中对这部分知识的考查都是以其他数学知识为载体的,因此在本讲中不作为重点,只需要对基本概念与方法进行梳理即可.第一小节为集合,共4道例题.其中例1主要讲解集合的各个知识点;例2是对集合的概念部分的加深与巩固;例3是对集合关于运算封闭性的题型,主要是对集合的性质特征描述法的加深与巩固;例4是对集合与集合关系部分的加深与巩固.第二小节为简易逻辑,共2道例题.其中例5主要讲解命题的四种形式的转化;例6主要讲解充分性与必要性的判断.1.1集合知识结构图知识梳理一、集合的概念 1、元素与集合我们所感知的各种事物或符号,都可以称为对象.如果一些对象(可能是一个也可能是多个,亦有可能是无数个或零个)满足确定性、互异性及无序性,那么将这些对象组成的整体称为集合,每个对象都称为集合的元素.我们一般用大写字母(如A )来表示集合,用小写字母表示集合中的元素(如a ).对象x 是集合P 中的元素记为x P ∈(“∈”读作“属于”),对象y 不是集合P 中的元素记为y P ∉(“∉”读作“不属于”).不含有任何元素的集合称为空集,记作∅.在中学数学阶段研究的集合以数集为主,常用数集有对应的符号表示:N (自然数集)、*N (正整数集)、Z (整数集)、Q (有理数集)、R (实数集)、C (复数集).另外,我们经常使用区间表示法来表示实数集的子集.【备注】注意角标“*”表示“非零”,如()(),00,*=-∞+∞R ;角标“2”表示“笛卡尔积”,如(){}2,|,x y x y =∈∈R R R .2、集合的分类如果集合中的元素个数是有限的,则称之为有限集合;对应的,如果集合中的元素个数是无限的,则称之为无限集合.二、集合的表示法 1、列举法形如{},,,a b c d 的表示法.在使用列举法表示集合的时候需要注意集合元素的无序性及互异性.【备注】已知集合{,,M x xy =,{}0,,N x y =,若M N =,则x =1-;y =1-.2、特征性质描述法形如(){}|x p x 的表示法,其中x 称为代表元素,()p x 为集合的特征性质. 在使用特征性质描述法时要特别注意代表元素的形式.【备注】注意集合{}[)|,1,x y x y =∈=+∞R ;{}[)|,0,y y x y =∈=+∞R ;(){},|,x y y x y =∈R 表示函数y三、集合与集合的关系 1、包含关系① 注意区分符号“∈”和“⊆”的含义; ② 空集∅是任何集合的子集;③ A B ⊆的等价形式:()(),,,,UUUUA B A A B B B A AB A B ==⊆=∅=R ;④ 注意子集、真子集、非空子集、非空真子集的概念及计数.n (n ∈N )元集合(我们把空集看作0元集合)的子集数为2n ,真子集和非空子集数均为21n -, 非空真子集数为22n -.【备注】集合本身作为明确的数学对象,也可以作为元素出现.如集合{}{},1,1∅中,集合∅、{}1都是该集合的元素,因此{}{},1,1∅∈∅同时{}{},1,1∅⊆∅.2、集合与集合的运算① 交、并、补运算都是两个集合间的运算;② 当出现多次运算时注意用括号保证运算顺序.【备注】事实上,我们还经常用到差集{}\|,A B x x A x B =∈∉,与对称差集()()\A B A B A B ∆=. 3、数轴法与韦恩图示法用数轴法可以清晰的描述集合与集合的包含关系,也可以快捷的进行集合与集合的运算.【备注】一般我们将数轴法与韦恩图示法看作研究集合与集合关系的工具,而不作为集合的表示法.(2012年北京)已知集合{}|320A x x =∈+>R ,()(){}|130B x x x =∈+->R ,则A B =( )A .(),1-∞-B .21,3⎛⎫-- ⎪⎝⎭C .2,33⎛⎫- ⎪⎝⎭D .()3,+∞ 【解析】 D1、已知()0,U =+∞,10,2P ⎛⎫= ⎪⎝⎭,则UP =( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .10,2⎛⎫ ⎪⎝⎭ C .()0,+∞ D .(]1,0,2⎡⎫-∞+∞⎪⎢⎣⎭2、 (2011年辽宁)已知M 、N 为集合I 的非空真子集,且M 、N 不相等,若IN M =∅,则MN =( )A .MB .NC .ID .∅3、(2009年广东)已知全集U =R ,集合{}|212M x x =--≤≤和{}|21,1,2,N x x k k ==-=的关系的韦恩图如图所示,则区域I 所示的集合的元素共有( )INMUA .2个B .3个C .1个D .无穷多个4、集合{}|1281,,M u u m n m n ==++∈Z ,{}|20163,,N u u p q p q ==+-∈Z 的关系为( )A .M N ⊆且M N ≠B .N M ⊆且M N ≠C .M N =D .以上都不对5、 已知{}|1M y y x ==+,(){}22,|1N x y x y =+=,则集合MN 的子集个数是( )A .0B .1C .2D .46、已知集合{}2|3100A x x x =--≤,集合{}|121B x p x p =+-≤≤,若AB B =,则实数小题热身真题再现p 的取值范围是( )A .(],3-∞B .[]2,3C .(),3-∞D .()2,3 1 2 3 4 5 6 AABCBA考点:集合的概念与基本运算【例1】 ⑴(2010年丰台一模文)若集合{}0,1,2P =,()10,|,,20x y Q x y x y P x y ⎧⎫-+>⎧⎪⎪=∈⎨⎨⎬--<⎪⎪⎩⎩⎭,则Q 中的元素的个数是( )A .3B .5C .7D .9 ⑵(2009年山东)集合{}0,2,A a =,{}21,B a =.若{}0,1,2,4,16AB =,则a 的值是( )A .0B .1C .2D .4 ⑶(2010年天津理)设集合{}|1,A x x a x =-<∈R ,{}|2,B x x b x =->∈R ,若A B ⊆,则实数,a b 必满足( )A .3a b +≤B .3a b +≥C .3a b -≤D .3a b -≥ ⑷对任意两个集合M 、N ,定义{}|,M N x x M x N -=∈∉且,()()M N M N N M ∆=--,设{}2|,M y y x x ==∈R ,{}|3sin ,N y y x x ==∈R ,则M N ∆= .⑸(2011年安徽)设集合{}1,2,3,4,5,6A =,{}4,5,6,7,8B =,则满足S A ⊆且SB ≠∅的集合S 的个数是( )A .57B .56C .49D .48【解析】 ⑴B .⑵D .⑶D .⑷[)()3,03,-+∞.⑸B .考点:新定义集合【例2】 ⑴设,,x y z 都是非零实数,试用列举法将x y z xy xyzx y z xy xyz++++的所有可能值构成的集合表示出来. ⑵定义集合运算:(){}|,,AB z z xy x y x A y B ==+∈∈.设集合{}0,1A =,{}2,3B =,则集合A B 的所有元素之和为( )A .0B .6C .12D .18 ⑶(2012年西城二模文)已知集合{}1220,,,A a a a =,0i a >(1,2,,20i =).集合(){},|,,B a b a b a b A =-∈,则集合B 中的元素个数的最大值为( ) A .210 B .200 C .190 D .180 【追问】若将条件“0i a >”改为“0i a ≥”,应当如何考虑?【解析】 ⑴{}3,1,1,5--.⑵D .⑶C .经典精讲【追问】选A .将集合A 改为{}0,1,,19即在原来的基础上增加对角线上的20个有序数对.【拓1】 设1S 、2S 、3S 是三个由实数组成的非空集合.对于1,2,3的任意一个排列,,i j k ,均有对任意i x S ∈,j y S ∈,均有k x y S -∈.求证:()1230S S S ∈.【解析】 只需要证明某个集合中含有元素0.设1x S ∈,2y S ∈,则1°若x y =,则30x y S -=∈,命题成立; 2°若x y ≠,则列表如下: 123S S S x y x y x yy x---- 从表中知每个集合中均有非负数. 若某个集合中有0,则命题得证;否则,考虑1S 、2S 、3S 中的最小正数1x 、2x 、3x .若1x 、2x 、3x 中没有相等的数,不妨设123x x x <<,则考虑3S 中的元素21x x -,而2130x x x <-<,与3x 是3S 中的最小正数矛盾.因此1x 、2x 、3x 一定有相等的数,进而命题得证.【备注】列表分析是处理由若干已知集合得到新集合问题时的重要方法.考点:集合对运算的封闭性【例3】 设符号“”是数集A 中的一种运算,如果对于任意的,x y A ∈,都有x y A ∈,则称集合A 是封闭的. ⑴判断集合{}|2,,A x x m n m n ==+∈Z 对实数的乘法是否封闭?⑵若集合{}22|,,,0B x x m n m n x ==+∈≠Q ,求证:集合B 对实数的乘法和除法均封闭.【解析】 ⑴设112x m n A =∈,222y m n A =∈,1122,,,m n m n ∈Z .则())1212122122xy m m n n m n m n A =++∈,因此命题得证. ⑵设2211x m n =+,2222y m n =+,,0x y ≠,1122,,,m n m n ∈Q ,则()()22222222221212121212121212xy m m m n n m n n m m n n n m m n =+++=++-且0xy ≠,于是xy B ∈; 2212121212222222222m m n n n m m n x xy y y m n m n ⎛⎫⎛⎫+-==+ ⎪ ⎪++⎝⎭⎝⎭且0x y ≠,于是x B y ∈; 因此原命题得证.【拓2】 (2007年北京)已知集合{}12,,,k A a a a =(2k ≥),其中i a ∈Z (1,2,,i k =),由A中的元素构成两个相应的集合:(){},|,,S a b a A b A a b A =∈∈+∈,(){},|,,T a b a A b A a b A =∈∈-∈. 其中(),a b 是有序数对,集合S 和T 中的元素个数分别为m 和n . 若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .⑴ 检验集合{}0,1,2,3与{}1,2,3-是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;⑵ 对任何具有性质P 的集合A ,证明:()12k k n -≤;⑶ 判断m 和n 的大小关系,并证明你的结论.【解析】 ⑴ 集合{}0,1,2,3不具有性质P .集合{}1,2,3-具有性质P ,其相应的集合()(){}1,3,3,1S =--和()(){}2,1,2,3T =-. ⑵ 首先,由A 中元素构成的有序数对(),i j a a 共有2k 个. 因为0A ∉,所以(),i j a a T ∉(1,2,,i k =);又因为当a A ∈时,a A -∉,所以当(),i j a a T ∈时,(),j i a a T ∉(1,2,,i k =).从而,集合T 中元素的个数最多为()()21122k k k k --=,即()12k k n -≤. ⑶ m n =,证明如下:1°对于(),a b S ∈,根据定义,a A ∈,b A ∈,且a b A +∈,从而(),a b b T +∈.如果(),a b 与(),c d 是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故(),a b b +与(),c d d +也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,2°对于(),a b T ∈,根据定义,a A ∈,b A ∈,且a b A -∈,从而(),a b b S -∈.如果(),a b 与(),c d 是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也至少有一个不成立,故(),a b b -与(),c d d -也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤, 综合1°2°,m n =.考点:集合与集合的关系【例4】 设,a b ∈R ,函数()2f x x ax b =++,集合(){}|,A x x f x x ==∈R ,()(){}|,B x x f f x x ==∈R . ⑴证明:A 是B 的子集; ⑵当{}1,3A =-时,求集合B .【解析】 ⑴()()()()x f x f x f f x =⇒=,于是A 是B 的子集.⑵{}1,3,3,3B =--.【备注】教师可以借本题讲一下代数式的因式定理,该定理在解高次不等式时有重要作用.知识结构图1.2简易逻辑一、命题的概念⑴命题:可以判断真假的语句叫做命题.⑵逻辑联结词:“或(∨)”、“且(∧)”、“非(⌝)”. ⑶复合命题的真值表命题p ⌝与命题p 一真一假;命题p q ∧只有当命题p 和命题q 同时为真时才为真,其他时候均为假; 命题p q ∨只有当命题p 和命题q 同时为假时才为假,其他时候均为真. ⑶含有逻辑联结词“或”、“且”的命题的否定⑷含有全称量词、存在性量词的命题的否定二、“若则”型命题的四种形式及其关系对于条件p 和结论q ,“若p 成立,则q 成立”是一个命题,这个命题的真假反映着这一推理过程的正确与否.我们在判断这类命题的真假时,只关心推理过程是否严谨正确,而不关心条件和结论的真假.【备注】人教B 版课本(选修2-1)的例子:原命题:,x y ∀∈R ,如果0xy =,则0x =.逆命题:,x y ∀∈R ,如果0x =,则0xy =. 否命题:,x y ∀∈R ,如果0xy ≠,则0x ≠. 逆否命题:,x y ∀∈R ,如果0x ≠,则0xy ≠.一般情况下,我们可以将“,x y ∀∈R ,”省略,而不会对命题的表述以及相关命题的书写造成困扰.但如果我们要写该命题的否定,则一定不能省略“,x y ∀∈R ,”,例如此命题的否定为“,x y ∃∈R ,满足0xy =,但0x ≠.” 下面再给一例:命题p :若0a <,则关于x 的方程2210ax x ++=至少有一个负数根.该命题的否定为“a ∃∈R ,满足0a <,但关于x 的方程2210ax x ++=没有负数根.” 而并非“若0a <,则关于x 的方程2210ax x ++=没有负数根.”知识梳理原命题:若p 则q ;逆命题:若q 则p ;否命题:若p ⌝则q ⌝;逆否命题:若q ⌝则p ⌝.原命题与逆否命题同真假;逆命题与否命题同真假. 【备注】例如以下两个命题等价:大前提:已知平面上不同的n 个点(3n ≥)组成的点集命题p :若过点集中任意两点的直线上均存在点集中的另外一个点,则点集中的n 个点共线.命题q :若点集中的n 个点不同时在某条直线上,则存在仅通过点集中的两个点的直线.三、充分条件与必要条件如果推理过程“p q ⇒”(读作p 可以推出q )是正确的,那么称p 是q 的充分条件,q 是p 的必要条件;反之,如果推理过程“p q ⇒”是错误的,那么称p 是q 的不充分条件,q 是p 的不必要条件.特别的,如果推理过程“p q ⇔”是正确的,那么称p 是q 的充分必要条件,同时q 也是p 的充分必要条件,此时也称p 与q 是等价的.(2012年北京)设,a b ∈R .“0a =”是“复数i a b +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 B1、(2011年福建)若a ∈R ,则“2a =” 是“()()120a a --=”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2、(2009年安徽)下列选项中,p 是q 的必要不充分条件的是( ) A .p :a c b d +>+ q :a b >且c d >B .p :1a >,1b > q :()x f x a b =-(0a >,且1a ≠)的图象不过第二象限C .p :1x = q :2x x =D .p :1a > q :()log a f x x =(0a >,且1a ≠)在()0,+∞上为增函数3、(2011年山东)对于函数()y f x =,x ∈R ,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数的”( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4、“0ab >且a b ≠”是“方程221x y a b+=表示椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5、(2011年江西)已知1α、2α、3α是三个相互平行的平面,平面1α、2α之间的距离为1d ,平面2α、3α之间的距离为2d .直线l 与1α、2α、3α分别交于1P 、2P 、3P ,那么“1223PP P P =”是“12d d =”的( )小题热身真题再现A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件1 2 3 4 5 AABCC考点:命题的否定与四种命题【例5】 ⑴(2009年天津)命题“0x ∃∈R ,020x ≤”的否定是; ⑵条件命题“2x =或3x =”的否定是; ⑶(2010年天津)命题“若()f x 是奇函数,则()f x -是奇函数”的否命题是 ;⑶(2011年陕西改)设a ,b 是向量,命题“若a b =-,则a b =”的逆否命题是 .【解析】 ⑴“0x ∀∈R ,020x >”;⑵“2x ≠且3x ≠”;⑶“若()f x 不是奇函数,则()f x -不是奇函数”. ⑷“若a b ≠,则a b ≠-”;考点:命题的充分性与必要性 【例6】 判断下面每个小题中命题p 是命题q 的什么条件?用“充要条件”,“充分不必要条件”,“必要不充分条件”,“既不充分也不必要条件”回答. ⑴前提:集合|01x A x x ⎧⎫=<⎨⎬-⎩⎭,{}|03B x x =<<. 命题p :“x A ∈”;命题q :“x B ∈”.⑵命题p :“tan 1x =”;命题q :“π2π4x k =+(k ∈Z )”. ⑶前提:已知α、β为两个不同的平面,a 、b 为α内两条不同的直线. 命题p :“a β∥且b β∥”;命题q :“αβ∥”. ⑷前提:,a b 为两个非零实数.命题p :“1a b <”;命题q :“1ba>”. 【解析】 ⑴ 充分不必要条件;⑵ 必要不充分条件; ⑶ 必要不充分条件;⑷ 必要不充分条件.【拓3】 ⑴前提:a 、b 为非零向量.命题p :“a b ⊥”;命题q :“()()()f x xa b xb a =+⋅-为一次函数”.经典精讲⑵前提:{}n a 为数列.命题p :“n *∀∈N ,1n n a a +>”;命题q :“数列{}n a 为递增数列”. ⑶前提:,a b 为实数.命题p :“220a b a b +--=”;命题q :“0a ≥,0b ≥且0ab =”. ⑷前提:记实数12,,,n x x x 中的最大数为()12max ,,,n x x x ,最小数为()12min ,,,n x x x .ABC △的三边长为a 、b 、c (a b c ≤≤),定义倾斜度为max ,,min ,,a b c a b c l b c a b c a ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭.命题p :“1l =”;命题q :“ABC △为等边三角形”.【解析】 ⑴ 必要不充分条件;⑵ 充分不必要条件; ⑶ 充要条件;⑷ 必要不充分条件.一、选择题 1、(2011年广东)已知集合(){}22,|1,,A x y x y x y =+=∈R ,(){},|,,B x y y x x y ==∈R ,则AB 的元素个数为( )A .0B .1C .2D .3【解析】 C . 2、(2010年全国课标)已知集合{}|2,A x x x =∈R ≤,{}|4,B x x x =∈Z ≤,则A B =( )A .()0,2B .[]0,2C .{}0,2D .{}0,1,2【解析】 D 3、(2011年江西)若集合{}|1213A x x =-+≤≤,2|0x B x x -⎧⎫=⎨⎬⎩⎭≤,则A B =( )A .{}|10x x -<≤B .{}|01x x <≤C .{}|02x x ≤≤D .{}|01x x ≤≤【解析】 B4、 集合{}|03,A x x x =<∈N ≤的真子集个数为( ) A .16 B .15 C .8 D .7 【解析】 D5、 若“()p q ⌝∧”为真命题,则( )A .p 、q 均为真命题B .p 、q 均为假命题C .p 、q 中至少有一个为真命题D .p 、q 中至多有一个为真命题【解析】 D6、 命题“0x ∃∈R ,0sin 1x ≤”的否定为( )A .0x ∃∈R ,0sin 1x ≥B .0x ∀∈R ,0sin 1x ≤C .0x ∃∈R ,0sin 1x >D .0x ∀∈R ,0sin 1x >课后习题11【解析】 D7、 设a 、b 都是非零向量,那么命题“a 与b 共线”是命题“a b a b +=+”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 B8、 设0abc ≠,“0ac >”是“方程22ax by c +=表示椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 B二、填空题9、 集合{}4,5,7,9A =,{}3,4,7,8,9B =,U A B =,则()U A B 中的元素共有 个.【解析】3. {}4,7,9A B =,{}3,4,5,7,8,9A B =,(){}3,5,8U A B =.10、已知集合{}2|1M x x ==,集合{}|1N x ax ==,若N M ⊆,那么a 的值是________. 【解析】 0,1±. 11、 (2009年湖南)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .【解析】 12.12、 (2009年北京)设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉,且1k A +∉,那么称k 是A 的一个“孤立元”.给定{}1,2,3,4,5,6,7,8S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.【解析】6.13、 已知函数()ln 4y x =-的定义域为A ,集合{}|B x x a =<,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是 .【解析】 ()4,+∞14、 下列命题中,真命题是 .①n ∀∈R ,2n n ≥; ②2,n n n ∀∈<R ;③2,,n m m n ∀∈∃∈<R R ; ④,,n m mn m ∃∈∀∈=R R .【解析】 ④三、解答题15、已知X 是方程20x px q ++=的实数解集,{}1,3,5,7,9A =,{}1,4,7B =,且X A =∅,X B X =,求,p q 的值.【解析】 8p =-,16q =.16、 已知集合{}2|320,A x ax x x =-+=∈R .12 ⑴若A =∅,求实数a 的取值范围;⑵若A 是单元素集,求a 的值及集合A ;⑶求集合{}|,M a a A =∈≠∅R .【解析】 ⑴98a >. ⑵9|8M a a ⎧⎫=⎨⎬⎩⎭≤. 17、 判断下列命题是全称命题还是特称命题,并判断真假:⑴对数函数都是单调函数;⑵至少有一个整数,它既能被2整除,又能被5整除.【解析】 ⑴全称命题,真命题;⑵ 特称命题,真命题.18、 已知0a >,设命题p :函数x y a =在R 上单调递增;命题q :不等式210ax ax -+>对任意实数x 恒成立.若“p 且q ”为假,“p 或q ”为真,求a 的取值范围.【解析】 (][)0,14,+∞。
【关键字】精品第一节集合1、有关集合的记号:∈,,N,N*,Z,Q,R,Z+,R-,等.2、集合分有限集与无限集.3、集合的表示法:列举法、描述法(公式描述或语言描述)、图示法.4、集合元素的特性:确定性、互异性、无序性.5、子集设集合A、B,如果集合A的所有元素都是集合B的元素,就称集合A是集合B的子集.记为AB(或BA).6、真子集设集合A、B,如果AB,且AB(即B中含有A中不含有的元素),则集合A叫做集合B的真子集,记为AB ;7、子集、真子集的性质:(1)AA(即任何一个集合是它本身的子集);(2)A(其中叫做空集,即空集是任何集合的子集);(3)A(A 不是空集,即空集为任何非空集合的真子集);(4)传递性:若AB,且BC,则 A B(5)集合相等:AB,且BAA=B;(6)集合的子集个数公有个;真子集有–1个;非空子集有–1个;非空的真子集有–2个.8、全集在研究某一问题的过程中,所有集合都包含于某一个集合,这个集合就叫做全集(在不同的问题中,可以有不同的全集;但在确定的问题中,全集只能有一个).9、补集记全集为U,在全集中,由所有不包含于全集U的元素组成的集合叫做全集U中集合A的补集(简称A补),记为CUA .10、全集和补集的性质(1)AU,CUAU;(2)CU(CUA)= A,称A与CUA 互补;(3)CU= U,CUU= (与U互补);(4)在全集U中,若CUA=B,则CUB=A,称集合A与B 互补11、交集由所有A、B中公有的元素组成的集合,叫做集合A与集合B的交集,记为A∩B,即A∩B={x|xA,且xB}.12、并集由所有A、B中的元素组成的集合,叫做集合A与集合B的并集,记为A∪B={x|xA,或xB}.13、交集和并集的性质:(1)A∩A=A,A∪A=A;(2)A∩B=B∩A,A∪B=B∪A;(3)A∩= ;A∪= A ;(4)A∩B A,A∩B B;A A∪B,B A∪B,A∩BA∪B;(5)若A∩B=A,则A B,反之亦然;若A∪B=A,则BA,反之亦然;(6)CU(A∩B)=CU A ∪ CUB,CU(A∪B)= CU A∩ CUB (对偶律);(7)若将集合A的元素的个数记为card(A),则card(A)、card(B)、card(A∩B)、card(A∪B)之间有下列关系(经研究找出结论,即容斥原理):.练习:1.已知A={1,2},B={x|x∈A},则集合A与B的关系为________.2.若∅{x|x2≤a,a∈R},则实数a的取值范围是________.3.已知集合A={y|y=x2-2x-1,x∈R},集合B={x|-2≤x<8},则集合A与B的关系是________.4.(2010年苏、锡、常、镇四市调查)已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.5.设a,b都是非零实数,y=++可能取的值组成的集合是________.6.满足{1}A⊆{1,2,3}的集合A的个数是________个.7.(2010年江苏启东模拟)设集合M={m|m=2n,n∈N,且m<500},则M中所有元素的和为________.8.已知函数f(x)=的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁RB);(2)若A∩B={x|-1<x<4},求实数m的值.9.已知函数f(x)=的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁RB);(2)若A∩B={x|-1<x<4},求实数m的值.10.(2009年高考重庆卷)设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n 是3的倍数},则∁U(A∪B)=______11.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.第二节简易逻辑1、逻辑联结词:或、且、非,引进符号,分别为“∨、∧、﹁”.2、用逻辑联结词将简单命题组成复合命题的三种形式:p∨q、p∧q、﹁p.3原命题互逆逆命题若p则q6(1)提出反设:针对要证结论提出反设(即要证结论的“否”);(2)找到矛盾:从反设出发,经过推理,得出矛盾(与已知矛盾,或与已知定理、公理矛盾,或自相矛盾),由矛盾判定假设不成立,从而肯定欲证结论的正确性.7.充分必要条件的四种形态:(1)若p⇒q,且q⇒p,则称p和q 充要条件,记为p⇔q;(2)若p⇒q,但q⇒p,则称p是q的充分不必要条件;(3)若p ⇒q ,但q ⇒p ,则称p 是q 的必要不充分条件;(4)若p ⇒q ,且q ⇒p ,即p 、q 间无因果关系,那么p(q)既不是q(p)的充分条件,又不是q(p)的必要条件.8、证明充要条件的两种情况:要证p 是q 的充要条件(1)分开证明,两步到位:1o 证充分性(即由p ⇒q);2o 证必要性(即由q ⇒p);由1o 、2o 知,p 是q 的充要条件.(2)等价转化,一步到位:p ⇔s ⇔t ⇔u ⇔v ⇔…r ⇔q ,则p 是q 的充要条件.求充要条件 要求q 成立的充要条件:先由q 推出p ,从而知p 是q 的必要条件;再证充分性,即由p 推出q.综上知q 成立的充要条件是p.习题1.如果命题“p ∧q ”是假命题,“p ∨q ”是真命题,那么p 、q( ) A 都是真命题 B 都是假命题C 中至少有一个假命题D 中必为一真一假2.要用反证法证明“某数是偶数,且不能被6整除”,提出的反设应是假设 ( )(A)某数是偶数,且能被6整除 (B)某数不是偶数,且能被6整除(C)某数不是偶数,且不能被6整除 (D)某数不是偶数,或能被6整除3.设p :031>-+x x ,q :1|1|>-x ,则﹁p 是﹁q 的 ( )(A)充分非必要条件 (B)必要非充分条件(C)充要条件 (D)既非充分又非必要条件4.关于x 的方程0122=++x ax 至少有一个负根的充要条件是( )(A)1≤a (B)10≤<a (C)1<a (D)1≤a ,且0≠a5.用反证法证明“ab ≠0”所提出的反设可以是:①ab=0;②a 、b 都为0;③a 、b 中至多有一个为0;④a 、b 中至少有一个为0,其中错误的是 _____________此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
《集合与简易逻辑》数学教学教案第一章:集合的概念与表示方法1.1 集合的定义与表示方式集合的定义集合的表示方法:列举法、描述法1.2 集合之间的关系子集、真子集、非子集集合的包含关系1.3 集合的基本运算并集、交集、补集集合的运算规律第二章:逻辑推理与命题2.1 逻辑推理的基本概念推理、归纳推理、演绎推理2.2 命题与命题联结词命题的定义与分类命题联结词:且、或、非2.3 命题的真假判断命题的真假性质真值表与逻辑等价式第三章:简易逻辑3.1 简易逻辑的基本概念逻辑常数、逻辑运算符逻辑等价式与蕴含式3.2 简易逻辑的推理规则蕴含式与等价式的转换推理规则:德摩根定律、分配律、结合律3.3 简易逻辑的应用逻辑判断与推理的应用实例简易逻辑在数学证明中的应用第四章:不等式与不等式组4.1 不等式的定义与性质不等式的概念与表示方法不等式的基本性质:传递性、同向可加性4.2 不等式组的解法不等式组的表示方法解一元一次不等式组、二元一次不等式组4.3 不等式的应用不等式在实际问题中的应用不等式在几何问题中的应用第五章:函数的概念与性质5.1 函数的定义与表示方法函数的概念与要素函数的表示方法:解析法、表格法、图象法5.2 函数的性质函数的单调性、奇偶性、周期性函数的图像特点5.3 函数的应用函数在实际问题中的应用函数在几何问题中的应用第六章:集合的幂集与排列组合6.1 幂集的概念与性质幂集的定义幂集的性质与运算6.2 排列组合的基本概念排列、组合的定义排列数、组合数的计算公式6.3 排列组合的应用排列组合在实际问题中的应用排列组合在排列组合问题中的应用第七章:事件的概率与随机变量7.1 概率的基本概念概率的定义与性质古典概率、条件概率、独立事件的概率7.2 随机变量的概念与性质随机变量的定义与分类随机变量的分布函数与期望值7.3 概率分布的应用概率分布解决实际问题概率分布在不确定性决策中的应用第八章:数列的概念与性质8.1 数列的定义与表示方法数列的概念与要素数列的表示方法:通项公式、列表法、图象法8.2 数列的性质数列的单调性、周期性、收敛性数列的极限概念8.3 数列的应用数列在实际问题中的应用数列在数学分析中的应用第九章:函数的极限与连续性9.1 函数极限的概念与性质函数极限的定义与性质无穷小、无穷大的概念9.2 函数的连续性函数连续性的定义与性质连续函数的运算性质9.3 函数极限与连续性的应用函数极限与连续性在实际问题中的应用函数极限与连续性在数学分析中的应用第十章:集合与简易逻辑的综合应用10.1 集合与逻辑在数学问题中的应用集合与逻辑在数学证明中的应用集合与逻辑在数学分析中的应用10.2 集合与逻辑在其他学科中的应用集合与逻辑在物理学中的应用集合与逻辑在计算机科学中的应用10.3 集合与逻辑在生活中的应用集合与逻辑在日常生活中的应用集合与逻辑在思维训练中的应用重点和难点解析重点环节1:集合的表示方法与之间的关系集合的表示方法:列举法、描述法集合之间的关系:子集、真子集、非子集;集合的包含关系重点环节2:逻辑推理的基本概念与命题联结词推理、归纳推理、演绎推理命题联结词:且、或、非重点环节3:命题的真假判断与真值表命题的真假性质真值表与逻辑等价式重点环节4:简易逻辑的基本概念与推理规则逻辑常数、逻辑运算符推理规则:德摩根定律、分配律、结合律重点环节5:不等式与不等式组的解法与应用不等式的性质:传递性、同向可加性不等式组的解法:一元一次不等式组、二元一次不等式组重点环节6:幂集的概念与性质幂集的定义幂集的性质与运算重点环节7:事件的概率与随机变量的概念概率的定义与性质随机变量的定义与分类重点环节8:数列的性质与应用数列的单调性、周期性、收敛性数列的极限概念重点环节9:函数的极限与连续性函数极限的定义与性质函数的连续性重点环节10:集合与逻辑的综合应用集合与逻辑在数学问题中的应用集合与逻辑在其他学科中的应用全文总结和概括:本文主要分析了《集合与简易逻辑》数学教学教案中的重点环节,包括集合的表示方法与之间的关系、逻辑推理的基本概念与命题联结词、命题的真假判断与真值表、简易逻辑的基本概念与推理规则、不等式与不等式组的解法与应用等方面。
《集合与简易逻辑》数学教学教案第一章:集合的概念与表示方法1.1 集合的概念引导学生理解集合的定义,即一组确定的、互不相同的对象的整体。
强调集合中的元素是无序的,不考虑元素的顺序。
1.2 集合的表示方法介绍集合的表示方法,包括列举法、描述法和图像法。
举例说明不同表示方法的运用和转换。
1.3 集合之间的关系引导学生理解集合之间的包含关系、不相交关系和并集等概念。
通过实例演示集合之间的关系的表示方法。
第二章:集合的运算2.1 集合的交集解释集合的交集概念,即两个集合中共有的元素组成的集合。
引导学生运用交集的运算规则,解决实际问题。
2.2 集合的并集讲解集合的并集概念,即两个集合中所有元素组成的集合。
介绍并集的运算规则,并通过实例进行应用。
2.3 集合的补集引导学生理解集合的补集概念,即在全集之外的所有元素组成的集合。
讲解补集的运算规则,并通过实例进行应用。
第三章:简易逻辑3.1 逻辑联结词介绍逻辑联结词“与”、“或”、“非”的概念和符号表示。
解释逻辑表达式的真值表和真值判断。
3.2 逻辑推理引导学生理解逻辑推理的概念,即从已知的前提出发,得出结论的过程。
介绍演绎推理、归纳推理和类比推理等逻辑推理方法。
3.3 命题逻辑讲解命题逻辑的概念,即以命题为基本单位进行逻辑推理。
引导学生运用命题逻辑进行推理和判断,解决实际问题。
第四章:不等式与不等式组4.1 不等式的概念与性质解释不等式的概念,即表示两个表达式大小关系的数学语句。
强调不等式的性质,如传递性、同向可加性等。
4.2 不等式的解法介绍解不等式的方法,包括图像法、符号法和性质法等。
举例说明不同解法的应用和转换。
4.3 不等式组的概念与解法讲解不等式组的概念,即多个不等式组成的数学系统。
引导学生运用不等式的解法解决不等式组的问题。
第五章:函数的概念与性质5.1 函数的概念解释函数的概念,即一个集合到另一个集合的映射关系。
强调函数的三个要素:定义域、值域和映射关系。
第1章 集合与简易逻辑1.1 考点梳理1.掌握集合的基本概念及集合间的基本关系;2.重点掌握集合的运算;3.理解逻辑连接词和命题的基本知识;4.理解命题的条件与结论间的属性。
1.2 核心讲义一、集合(一)集合的基本概念1.集合的定义某些指定的对象集在一起就成为一个集合,其中每一个对象称为元素。
2.集合中的元素的三个特性(1)元素的确定性:某一元素是否属于某个集合是确定的,即任何对象都能明确它是或不是这个集合的元素,二者必居其一。
如:平面直角坐标系第三象限内的点;(2)元素的互异性:同一个集合中的元素是互不相同的。
如:由字母APPLE组成的集合{A,P,L,E};(3)元素的无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。
如:{1,2,3}和{1,3,2}是表示同一个集合。
3.集合的表示用拉丁字母表示集合:A={我校的全体学生},B={1,3,5,7,9}。
集合的表示方法:列举法、描述法与图示法。
(1)列举法:把集合中的所有元素一一列举出来﹐写在大括号内表示集合的方法。
例如:{1,2,3};(2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
例如{x∈R|x-2>3};(3)语言描述法:例如{小于5的自然数};(4)Venn 图,也叫文氏图,它既可以表示一个独立的集合,也可以表示集合与集合之间的相互关系。
如图1-1所示。
图1-1 文氏图(5)常用数集及其记法:非负整数集(即自然数集)记作N ,正整数集记作N +或N*,整数集记作Z ,有理数集记作Q ,实数集记作R 。
4.集合的分类(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:不含任何元素的集合记为φ。
例如{x|=-1,x∈R}。
2x(二)集合间的基本关系1.基本关系(1)全集:一般地,如果一个集合包含研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
(2)子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B 中的元素,就称这两个集合有包含关系,称集合A为集合B的子集,记作A B(或⊆⊇B A),读作“A包含于B”(或B包含A)。
第1课时集合的概念及运算1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C……集合中的元素通常用小写的拉丁字母表示,如a、b、c……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作要注意“∉”的方向,不能把a∉A颠倒过来写.3、集合中元素的特性(1)确定性:集合中的元素必须是确定的,不能含糊不清、模棱两可.(2)互异性:对于一个给定的集合,集合中的元素一定是互异的,相同的元素在同一集合中只能算一个.(3)无序性:集合中的元素是无次序关系的.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集∅(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N* 或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:①自然数集包括数0.②非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*6.子集(1)设有集合A、B,若有x∈A,必有x∈B,那么称A是B的子集。
记作A⊆B,读作B包含A(也可称A包含于B)。
(2)若两集合A、B满足A⊆B且B⊆A,称A与B相等,记作A=B。
(3)若两集合A、B满足A⊆B且A≠B,称A是B的真子集。
记作A⊊B,读作A真包含于B(也可称B真包含A)7.并集、交集与补集(1)并集定义:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}。
数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用。
2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性。
集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z= {整数}(√)Z ={全体整数} (×)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N;A=,则C s A= {0})③空集的补集是全集.④若集合A=集合B,则C B A = ,C A B = C S(C A B)= D ( 注:C A B = ).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集。
③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}。
②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1}则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个。
③n个元素的非空真子集有2n-2个。
5. ⑴①一个命题的否命题为真,它的逆命题一定为真。
老师用讲义 高中数学基础复习第二讲集合与简易逻辑一. 教学目标 1.理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.2.理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.二. 教学重点1.理解集合、子集、补集、交集、并集的概念;2.理解四种命题及其相互关系;3. 掌握充分条件、必要条件及充要条件的意义.三. 教学过程㈠.集合与简易逻辑考点、重点、难点、易错点讲解1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互.........异性..,如 (1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8) (2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(答:5,1<->n m ); (3)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个(答:7)2.遇到A B =∅ 时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。
如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B = ,则实数a =______.(答:10,1,2a =) 3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n 如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
常见教师招聘考试笔试数学专业知识考察范围(小学)教师招聘考试中小学数学部分一般是由四部分组成的:高中数学、初中数学、初等数论与小学数学教材教法研究。
高中数学这部分主要内容是:简易逻辑、数列、不等式、直线和圆的方程、圆锥曲线方程、直线、平面、简单几何体、数学归纳法、概率与统计。
初中数学部分主要包括数的分类、方程与不等式、简单函数、直线与圆、比例等等。
初等数论:数的整除性、不定方程。
而小学数学教材教法研究:小学数学知识的相关基础理论知识、小学数学教学法。
对于高等数学中的考试内容现在已经进入了现在高中数学的教材中,而且这部分的内容考试不难。
因此我将高中数学与高等数学放到一块看看考试的大纲。
首先是简易逻辑,简易逻辑主要是考的是四种命题、充分必要条件。
接下来是数列,数列是高考的必考内容,也成为了招教考试的必考的内容。
数列这部分考试内容是等差数列以及等比数列的通项公式以及前n项和的公式,一般情况下会和函数以及不等式结合起来一块来考察。
考试的方式基本上与高考的水平不相上下,但是考大题的可能性不是太大。
不等式这部分,主要的考点是不等式的性质及其证明,掌握均值不等式的运用,掌握简单不等式的一般解法,这部分的内容是解决函数、数列等知识的基础。
解析几何部分主要包括:直线和圆的方程,圆锥曲线方程。
直线的要求是理解直线的倾斜角和倾斜率,掌握直线方程的点斜式、两点式与一般式。
掌握两条直线位置关系以及点到直线之间的距离。
一般直线与圆一块来考,圆这部分的要求是掌握圆的标准方程和一般方程。
圆锥曲线主要是椭圆、双曲线与圆锥曲线的定义、圆锥曲线以及简单几何性质。
除此之外,还有时候直线与圆锥曲线一块来考,难度不是很大,但是计算量比较大,在小学教师招聘考试中出的可能性不大。
立体几何中主要的考点是直线、平面与简单几何体。
主要考察的是直线、平面的位置关系以及多面体柱、锥、球的表面积与体积公式等等。
概率与统计是现在教师招聘考试数学的必考环节,这部分主要的内容是会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率以及会计算事件在n次独立重复试验中恰好发生k次的概率。