自动控制理论发展综述
- 格式:pdf
- 大小:302.82 KB
- 文档页数:4
自动控制理论的发展自动控制理论是一门研究如何设计和实现系统自动运行的学科。
它涉及到数学、工程和计算机科学等多个领域。
自动控制理论的发展是由人们对系统的自动化处理的需求和对控制系统的分析和优化的追求所推动的。
这篇文章将通过对自动控制理论的历史发展进行梳理,来了解自动控制理论的演进过程。
自动控制理论的起源可以追溯到古代的水门和钟摆控制。
当时的人们通过调节水的流量或小球的重量来实现门的自动开合,或者通过改变钟摆的长度或质量分布来维持钟摆的稳定。
这些简单但实用的控制方法显示了自动控制的价值和潜力。
然而,自动控制理论真正的发展要推迟到18世纪的工业革命时期。
随着机械工业的兴起,人们开始需要控制工业过程中的各种机械装置。
这时,法国数学家拉普拉斯和英国工程师巴贝奇等人开始研究和应用微积分和差分方程等数学工具来分析和改善自动控制系统。
在20世纪初,控制论的形成为自动控制理论的发展奠定了基础。
控制论是一种在一定规律下将输入转换为所需输出的通用方法。
美国工程师诺里伊特(H.W. Norrhte)、俄罗斯数学家卢埃特中心之莫齐托夫、德国工程师亨维茨(A.V. HellwicZ)等人率先提出和发展了控制论的基本概念和数学模型。
他们通过齐次线性微分方程、反馈控制和矩阵论等工具,提出了理论化的控制系统设计方法,并首次将控制论应用于工程实践中。
第二次世界大战期间,控制论得到更加广泛的应用和发展。
在军事和航空工业中,控制论的理论和方法被用于导弹制导、自动驾驶和火箭发动机控制等方面。
这一时期,美国工程师维纳(N. Wiener)提出了现代控制论的概念,并将统计学方法引入到控制论中,开创了系统论的研究领域。
20世纪50年代至70年代,自动控制理论得到了快速发展,并在工程实践中得到广泛应用。
与此同时,数字计算机的发展推动了控制系统的数字化和自动化。
随着计算机技术的提高,对控制系统的分析和优化方法得到了进一步的发展,如最优控制、自适应控制和模糊控制等。
1.2自动控制理论发展概述自动控制理论是在人类征服自然的生产实践活动中孕育、产生,并随着社会生产和科学技术的进步而不断发展、完善起来的。
早在古代,劳动人民就凭借生产实践中积累的丰富经验和对反馈概念的直观认识,发明了许多闪烁控制理论智慧火花的杰作。
例如,我国北宋时代(公元1086~1089年)苏颂和韩公廉利用天衡装置制造的水运仪象台,就是一个按负反馈原理构成的闭环非线性自动控制系统;1681年DennisPapin发明了用做安全调节装置的锅炉压力调节器;1765年俄国人普尔佐诺夫(I.Polzunov )发明了蒸汽锅炉水位调节器等等。
1788,英国人瓦特(James Watt)在他发明的蒸汽机上使用了离心调速器,解决了蒸汽机的速度控制问题,引起了人们对控制技术的重视。
之后,人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。
实践中出现的问题,促使科学家们从理论上进行探索研究。
1868年,英国物理学家麦克斯韦(J.C.Maxwell)通过对调速系统线性常微分方程的建立和分析,解释了瓦特速度控制系统中出现的不稳定问题,开辟了用数学方法研究控制系统的途径。
此后,英国数学家劳斯(E.J.Routh)和德国数学家古尔维茨(A.Hurwitz)分别在1877年和1895年独立地建立了直接根据代数方程的系数判别系统稳定性的准则。
这些方法奠定了经典控制理论中时域分析法的基础。
1932年,美国物理学家奈奎斯特(H.Nyquist)研究了长距离电话线信号传输中出现的失真问题,运用复变函数理论建立了以频率特性为基础的稳定性判据,奠定了频率响应法的基础。
随后,伯德(H.W.Bode)和尼柯尔斯(N.B.Nichols)在20世纪30年代末和40年代初进一步将频率响应法加以发展,形成了经典控制理论的频域分析法,为工程技术人员提供了一个设计反馈控制系统的有效工具。
二战期间,反馈控制方法被广泛用于设计研制飞机自动驾驶仪、火炮定位系统、雷达天线控制系统以及其他军用系统。
自动控制理论发展史
自动控制理论的发展可以追溯到17世纪,那时法国的理论家和发明家巴斯德(Basil)首次提出了“称量”的概念,这有助于他设计出一种物体重量可以自动调整的测量仪器,他认为,可以在重力的作用下自动控制物体重量的概念。
18世纪初,英国的工程师威廉·劳伦斯(William Lawrence)将该理论应用于蒸汽机的负荷控制,他成功地设计出了一种蒸汽机燃料调节系统,可以根据蒸汽机转速变化自动调节燃料的流量,从而控制蒸汽的压力。
20世纪初,美国科学家威廉·马斯特森(William M. Mason)在理论和实践上发展了自动控制理论,以及它在一些领域的应用,他设计出了第一台自动飞行机器人,以自动调节飞机的高度、速度和航向,由此,自动控制技术被广泛应用于航空领域。
20世纪20年代,美国的科学家弗兰克·迪杰斯特拉普(Frank D.J.Stump)提出了“反馈控制”理论,他完成了大量的实验研究,确定了反馈控制系统的概念和原理。
20世纪30年代,埃利·施蒂利克(Erle S.Steele)开展了反馈控制系统的模拟实验。
自动控制理论发展1. 引言自动控制理论是现代工程学的重要分支之一,它涉及到机械、电子、计算机等多个学科的交叉和融合。
自动控制理论的发展可以追溯到19世纪末,随着科学技术的不断进步和应用领域的拓展,自动控制理论也得到了快速发展。
本文将从自动控制理论的起源,主要发展阶段以及当今的前沿研究领域等方面进行阐述。
2. 起源和发展自动控制理论的起源可追溯到19世纪末的工业革命时期。
当时,由于工业化的快速发展和机械化的需求,人们开始思考如何利用机械设备进行精确的控制。
这促使了自动控制理论的初步形成。
早期的自动控制系统主要基于机械装置,如自动调节阀、机械计算机等。
到了20世纪初,电气技术和电子技术的发展为自动控制理论的进一步发展提供了有力支持。
电气控制系统的出现和使用使得自动控制的范围得到了拓展,如电焊机、电力系统、电梯等。
同时,数学理论和控制理论的发展也为自动控制提供了重要的理论基础。
随着计算机技术的快速发展,自动控制理论进入了一个全新的阶段。
现代的自动控制系统主要基于数字计算机进行控制和计算,大大提高了控制系统的精确性和效率。
同时,人工智能和模糊控制等新兴技术的引入也为自动控制理论的应用带来了更多的可能性。
3. 主要发展阶段3.1 经典控制理论经典控制理论是自动控制理论的最早阶段,主要包括PID控制和频域分析等方法。
PID控制器是最简单且常见的控制器之一,它通过调节比例、积分和微分三个部分的参数来实现控制。
频域分析则是从频率的角度对控制系统进行分析和设计。
3.2 现代控制理论现代控制理论是在20世纪50年代至60年代逐渐发展起来的,它以状态空间方法为基础。
状态空间方法通过将系统的动态描述为一组状态方程,从而实现对系统的精确建模和分析。
这一阶段的代表性成果包括线性系统理论、最优控制理论等。
3.3 非线性控制理论非线性控制理论是自动控制理论的重要发展方向之一。
相比于线性系统,非线性系统的动态行为更加复杂,需要采用不同的建模和控制方法。
浅谈自动控制理论的发展近年来,自动控制理论在科学领域中引起越来越多的关注。
自动控制理论作为一门交叉学科,涉及到数学、电子工程、计算机科学等领域,通过研究和设计自动控制系统,实现对各种工业、军事、医疗等应用中的过程进行控制和优化。
本文将从历史、应用以及未来趋势等多个角度对自动控制理论的发展进行浅析。
自动控制理论的发展可以追溯到19世纪中叶,当时工业革命推动了机械工程的迅速发展。
随着机器的广泛应用,人们逐渐认识到需要一种方法来对机器进行控制,以提高生产效率。
在这个背景下,自动控制理论逐渐崭露头角。
早期的自动控制系统主要依靠机械和电气装置实现,如利用煤气压力控制蒸汽机的转速。
然而,由于机械元件的精度和响应速度有限,控制效果并不理想。
随着数学和电子技术的快速发展,自动控制理论逐渐得到了加强和发展。
在20世纪初期,美国工程师尼克斯首先提出了反馈控制理论,它通过测量输出信号并将其与参考信号进行比较,然后根据误差信号对系统进行调整。
这种方法大大改善了自动控制系统的稳定性和精确性。
此后,控制理论的发展成为了一个热门话题,许多学者纷纷投身于自动控制的研究与应用。
在自动控制理论的发展中,控制系统的数学模型起着重要的作用。
控制系统的数学模型通过将实际系统的物理特性以数学形式表示出来,为控制器的设计和分析提供了基础。
通过控制系统的数学模型,工程师们可以从根本上理解和预测系统的行为,并采取相应的措施来优化系统的性能。
控制系统的模型可以分为线性模型和非线性模型两种。
在实际应用中,大多数系统可以近似为线性模型,因此,线性控制理论被广泛应用于各种控制系统中。
值得注意的是,近年来随着计算机科学和人工智能的快速发展,自动控制理论在人工智能领域也得到了广泛应用。
传统的自动控制系统主要依赖于精确的数学模型和规则来进行控制,这对于复杂的非线性系统来说是一项困难的任务。
然而,人工智能技术的出现为解决这个问题提供了新的途径。
通过将机器学习和深度学习技术与自动控制理论相结合,可以有效解决非线性系统控制中的挑战。
自动控制理论发展概况前控制是自动控制理论的起源阶段,主要在19世纪末至20世纪初发展起来。
当时主要研究控制系统的开-闭锁问题,即如何实现不同位置之间的切换控制。
此时的控制系统主要采用开放系统结构,输入信号与输出信号之间没有反馈环路。
该阶段的主要理论包括勒贝格同位、双位同位和电气继电器方法。
随着现代化生产的需要,自动控制理论的研究逐渐转向反馈控制。
反馈控制是通过不断感知系统输出信号,与给定的目标输出信号之间的差异来调整输入信号。
这种控制方式可以使系统对外部扰动和参数变化具有较好的鲁棒性。
控制技术的快速发展促使了反馈控制的普及和应用。
20世纪30年代,现代自动控制理论框架初步建立,产生了控制系统的数学描述、线性系统的稳定性分析和根轨迹法等方法。
20世纪40年代至70年代,现代控制理论得到了迅速发展和广泛应用。
控制系统的数学理论不断深化,控制效果逐渐得到提高。
特别是在航空、导弹、火箭、军事、化工和能源等领域,自动控制理论的应用取得了巨大成功。
在这一时期,经典控制理论和现代控制理论逐渐发展完善,研究了最优控制、鲁棒控制、自适应控制和模糊控制等控制方法。
20世纪70年代以后,现代控制理论进入了第三个阶段,即多模型自适应控制系、模型预测控制、神经网络控制和模糊分级控制系统等理论成果的出现。
同时,计算机技术和信息技术的迅猛发展也为控制理论的研究和应用提供了良好的条件。
现代控制理论注重系统建模、系统特性分析和系统控制方法的研究,提高了控制系统的鲁棒性和优化性能。
此外,随着科学技术的进一步发展,自动控制理论还涌现出一些新的理论和方法,如非线性控制理论、科学计量管控理论、模块化控制理论、混杂动态系统建模与分析方法等。
综上所述,自动控制理论经历了前控制、反馈控制和现代控制三个阶段的发展。
从最早的开-闭锁问题研究到现代的控制系统建模与优化控制,自动控制理论在科学研究和工程实践中发挥着重要作用,并且不断创新和完善。
自动控制理论发展综述作者:董伟华来源:《中国科技博览》2016年第12期[摘要]科学技术的高度发展使得控制的对象日益复杂化,传统的自动控制理论在面临复杂性所带来的困境时,力图突破旧的模式以适应社会对自动化学科提出的新要求。
本文就自动控制理论发展进行论述。
[关键词]自动控制;发展;应用中图分类号:TP13 文献标识码:A 文章编号:1009-914X(2016)12-0115-01引言随着控制系统复杂性的增加,不确定因素的增多,要求各控制理论分支有进一步的发展,弥补各理论分支的缺点与不足,以满足更高的控制性能指标。
一、自动控制理论的概念1.1 概念自动控制是区别于以往的人工控制,它利用外加的自动控制装置对机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行,从而代替人工操作使之达到预期的性能或状态指标,自动控制技术可以有效提高企业的经济效益和产品的质量,在恶劣环境下能够代替人工操作。
在控制论中“系统”和“反馈”是自动控制理论概念的核心,现代科学技术发展的必然趋势是全球对复杂系统科学或复杂性科学研究越来越多,分析系统的性质和结构、调控系统的运动状态是控制理论要解决的主要问题。
“反馈”的概念控制论中最核心的概念,“反馈” 的概念能对付各种等不确定因素对被控系统的影响,也能让控制系统具有人类“智能”行为的特征。
自动控制理论就是研究自动控制系统中变量的变化规律及其改进的途径。
1.2 特点自动控制理论具有两个特点:一是控制理论重视对定量的研究,数学理论与方法被广泛应用在控制理论研究中;二是控制理论的科学命题有广泛的实际背景,具有丰富的实际来源具。
这两个特点是由自动控制理论所包含的“系统”与“反馈”的两个概念所决定的。
二、自动控制理论的发展历程2.1 自动控制理论的萌芽及形成任何一个理论的形成与发展都是伴随着社会生产力的发展而发展的,早在2000 多年前我国发明的指南车就属于一种开环自动调节的机器。