(江苏版)备战18高考数学模拟试卷分项专题03导数及应用
- 格式:doc
- 大小:3.68 MB
- 文档页数:60
1.(2016·河北衡水中学调考)f (x )是定义在R 上的函数,其导函数为f ′(x ),若f (x )-f ′(x )<1,f (0)=2016,则不等式f (x )>2015·e x +1(其中e 为自然对数的底数)的解集为________.2.(2017·福建“四地六校”联考)已知曲线f (x )=23x 3-x 2+ax -1存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a 的取值范围为________________. 3.(2016·泰州二模)若函数f (x )=x 2|x -a |在区间0,2]上单调递增,则实数a 的取值范围是________________.4.(2016·扬州期末)若函数f (x )=ln x -m x (m ∈R )在区间1,e]上取得最小值4,则实数m 的值是________.5.(2016·南京调研)已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________________. 6.函数y =ln 2xx 的极小值为________.7.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8300-170p -p 2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).8.(2016·盐城模拟)当x ∈-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是__________.9.已知函数f (x )=⎩⎨⎧(2x -x 2)e x,x ≤0,-x 2+4x +3,x >0,g (x )=f (x )+2k ,若函数g (x )恰有两个不同的零点,则实数k 的取值范围为________________.10.(2016·苏州模拟)已知函数f (x )=ln1+x1-x. (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33;(3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值.答案精析1.(0,+∞) 2.⎝ ⎛⎭⎪⎫3,723.(-∞,0]∪3,+∞) 4.-3e 5.(32,4)解析 因为函数f (x )在(1,2)上有极值,则需函数f (x )在(1,2)上有极值点.方法一 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1∉(1,2),因此需1<x 2<2,即1<-1+1+2a <2,即4<1+2a <9,所以32<a <4,故实数a 的取值范围为(32,4).方法二 f ′(x )=x 2+2x -2a 的图象是开口向上的抛物线,且对称轴为x =-1,则f ′(x )在(1,2)上是单调递增函数,因此⎩⎨⎧f ′(1)=3-2a <0,f ′(2)=8-2a >0,解得32<a <4,故实数a 的取值范围为(32,4). 6.0解析 函数的定义域为(0,+∞).令y =f (x ),f ′(x )=2ln x -ln 2x x 2=-ln x (ln x -2)x 2.令f ′(x )=0,解得x =1或x =e 2. f ′(x )与f (x )随x 的变化情况如下表:故当x =1时,函数y =ln 2xx 取到极小值0. 7.30解析 由题意知,毛利润=销售收入-进货支出,设该商品的毛利润为L (p ),则 L (p )=pQ -20Q =Q (p -20) =(8300-170p -p 2)(p -20) =-p 3-150p 2+11700p -166000, 所以L ′(p )=-3p 2-300p +11700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0.所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值. 8.-6,-2]解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0,∴φ(x )在(0,1]上递增, φ(x )max =φ(1)=-6, ∴a ≥-6.当x ∈-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4.当x ∈-2,-1)时,φ′(x )<0, 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2, ∴a ≤-2.综上知-6≤a ≤-2.9.⎝ ⎛⎭⎪⎫-72,-32∪⎩⎨⎧⎭⎬⎫0,2+1e 2 解析 由y =(2x -x 2)e x (x ≤0)求导,得y ′=(2-x 2)e x ,故y =(2x -x 2)e x (x ≤0)在(-2,0]上单调递增,在(-∞,-2)上单调递减,且当x <0时,恒有y =(2x -x 2)e x <0.又y =-x 2+4x +3(x >0)在(0,2)上单调递增,在(2,+∞)上单调递减,所以可作出函数y =f (x )的图象,如图.由图可知,要使函数g (x )恰有两个不同的零点,需-2k =0或-2k =-22-2e 2或3<-2k <7,即实数k 的取值范围为⎝ ⎛⎭⎪⎫-72,-32∪⎩⎨⎧⎭⎬⎫0,2+1e 2. 10.(1)解 因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2. 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33,则g ′(x )=f ′(x )-2(1+x 2)=2x 41-x 2.因为g ′(x )>0(0<x <1), 所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33,则h ′(x )=f ′(x )-k (1+x 2)=kx 4-(k -2)1-x 2.所以当0<x <4k -2k 时,h ′(x )<0, 因此h (x )在区间⎝ ⎛⎭⎪⎫0,4k -2k 上单调递减. 当0<x <4k -2k 时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立.综上可知,k 的最大值为2.。
线y=f(x)上任意一点的切线的倾斜角α的取值范围是________.2.(2017·福建福州三中月考)已知点A(1,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=f(x)的切线方程是____________________.3.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)<0的解集为__________________.4.(2016·兰州诊断)在直角坐标系xOy中,设P是曲线C:xy=1(x>0)上任意一点,l是曲线C在点P处的切线,且l交坐标轴于A,B两点,则以下结论正确的是________.①△OAB的面积为定值2;②△OAB的面积有最小值3;③△OAB的面积有最大值4;④△OAB的面积的取值范围是3,4].5.若函数f(x)=2x2-ln x在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是________.6.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是________.7.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是________.8.(2016·江苏南京、盐城第二次模拟)若存在两个正实数x,y,使得等式x+a(y-2e x)(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围为________.9.已知函数f (x )=12x -14sin x -34cos x 的图象在A (x 0,f (x 0))点处的切线斜率为12,则tan ⎝ ⎛⎭⎪⎫x 0+π4的值为__________. 10.若函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是____________________.11.(2016·景德镇第二次质检)已知f (x )=ax +a -2x +2-2a (a >0),若f (x )≥2ln x 在1,+∞)上恒成立,则a 的取值范围是________.12.函数f (x )=ax -cos x ,x ∈π4,π3],若∀x 1,x 2∈π4,π3],x 1≠x 2,f (x 2)-f (x 1)x 2-x 1<0,则实数a 的取值范围是________.13.若函数f (x )=ax 3+x 恰有3个单调区间,则a 的取值范围为________.14.已知函数f (x )=e x1+ax 2(a >0),若f (x )为R 上的单调函数,则实数a 的取值范围是________.答案精析1.π3,π2) 2.6x -y -4=0或3x -2y +1=0 3.(-∞,0)∪(12,2) 4.①5.1,32)解析 ∵f (x )=2x 2-ln x (x >0),∴f ′(x )=4x -1x =4x 2-1x (x >0),由f ′(x )=0,得x =12,当x ∈(0,12)时,f ′(x )<0;当x ∈(12,+∞)时,f ′(x )>0,根据题意,⎩⎪⎨⎪⎧ k -1<12<k +1,k -1≥0,解得1≤k <32.6.(1,4) 解析 y ′=3x 2-3a ,当a ≤0时,y ′≥0,函数y =x 3-3ax +a 为单调函数,不合题意,舍去;当a >0时,y ′=3x 2-3a =0⇒x =±a ,不难分析,当1<a <2,即1<a <4时,函数y =x 3-3ax +a 在(1,2)内有极小值.7.(3,2)解析 由题意可知f ′(x )=0的两个不同解都在区间(-1,1)内.因为f ′(x )=3x 2+2ax +1,所以根据导函数图象可得⎩⎪⎨⎪⎧ Δ=(2a )2-4×3×1>0,-1<-2a 6<1,f ′(-1)=3-2a +1>0,f ′(1)=3+2a +1>0,又a >0, 解得3<a <2.8.(-∞,0)∪1e ,+∞) 解析 由题意得当a =0时,x =0,所以a ≠0,所以原方程可化为-1a =(y x -2e)ln y x =(t -2e)ln t (t =y x >0),令m (t )=(t -2e)ln t ,t >0,则m ′(t )=ln t +t -2e t ,m ″(t )=1t +2e t 2>0,所以当t >e 时,m ′(t )>m ′(e)=0;当0<t <e 时,m ′(t )<m ′(e)=0.因此m (t )≥m (e)=-e ,从而-1a ≥-e.所以a <0或a ≥1e ,即a ∈(-∞,0)∪1e ,+∞).9.2+ 3解析 ∵f ′(x )=12-14cos x +34sin x =12sin ⎝ ⎛⎭⎪⎫x -π6+12, 又f ′(x 0)=12,故sin ⎝ ⎛⎭⎪⎫x 0-π6=0, ∴x 0=k π+π6,k ∈Z ,∴tan x 0=tan π6=33,∴tan ⎝ ⎛⎭⎪⎫x 0+π4=tan x 0+11-tan x 0=1+331-33=2+ 3. 10.(-∞,2-1e )∪(2-1e ,2)解析 f ′(x )=1x +a (x >0).∵函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,∴方程1x +a =2在区间(0,+∞)上有解,即a =2-1x 在区间(0,+∞)上有解,∴a <2.若直线2x -y =0与曲线f (x )=ln x +ax 相切,设切点为(x 0,2x 0),则⎩⎪⎨⎪⎧1x 0+a =2,2x 0=ln x 0+ax 0,解得x 0=e ,a =2-1e .综上,实数a 的取值范围是(-∞,2-1e )∪(2-1e ,2).11.1,+∞)解析 f (x )≥2ln x 在1,+∞)上恒成立,即f (x )-2ln x ≥0在1,+∞)上恒成立.设g (x )=f (x )-2ln x =ax +a -2x +2-2a -2ln x ,则g ′(x )=a -a -2x 2-2x =(x -1)(ax +a -2)x 2. 令g ′(x )=0,则x =1或x =2-a a .由于g (1)=0,a >0,因此2-a a ≤1(否则2-a a 是g (x )的极小值点,即g (2-a a )<g (1)=0),所以a ≥1.12.(-∞,-32]解析 由f (x 2)-f (x 1)x 2-x 1<0知,函数f (x )在π4,π3]上是减函数.又f ′(x )=a +sin x ,所以f ′(x )≤0在π4,π3]上恒成立,即a ≤-sin x 在π4,π3]上恒成立.当π4≤x ≤π3时,-32≤-sin x ≤-22,故-sin x 的最小值为-32,所以a ≤-32.13.(-∞,0)解析 由f (x )=ax 3+x ,得f ′(x )=3ax 2+1.若a ≥0,则f ′(x )>0恒成立,此时f (x )在(-∞,+∞)上为增函数,不满足题意;若a <0,由f ′(x )>0得--13a <x <-13a ,由f ′(x )<0,得x <--13a 或x >-13a .故当a <0时,f (x )的单调递增区间为(--13a ,-13a ),单调递减区间为(-∞,--13a ),( -13a ,+∞),满足题意.14.(0,1]解析f′(x)=e x(1+ax2)-2ax e x(1+ax2)2=e x(1+ax2-2ax)(1+ax2)2,由题意f(x)为R上的单调函数,所以f′(x)≥0或f′(x)≤0在R上恒成立.又a>0,所以f′(x)≥0在R上恒成立,即ax2-2ax+1≥0在R上恒成立,所以Δ=4a2-4a=4a(a-1)≤0,解得0<a≤1,所以实数a的取值范围是0<a≤1.。
第2讲利用导数研究函数的单调性基础巩固题组(建议用时:40分钟)一、填空题1.函数f(x)=x-ln x的单调递减区间为________.解析函数的定义域是(0,+∞),且f′(x)=1-错误!=错误!,令f′(x)〈0,解得0<x<1,所以单调递减区间是(0,1).答案(0,1)2.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述:①f(b)>f(c)〉f(d);②f(b)>f(a)>f(e);③f(c)>f(b)>f(a);④f(c)>f(e)>f(d).其中正确的是________(填序号).解析依题意得,当x∈(-∞,c)时,f′(x)>0,因此,函数f(x)在(-∞,c)上是增函数,由a<b〈c,所以f(c)〉f(b)>f(a).答案③3.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围为________.解析∵f′(x)=6x2-6mx+6,当x∈(2,+∞)时,f′(x)≥0恒成立,即x2-mx+1≥0恒成立,∴m≤x+错误!恒成立.令g(x)=x+错误!,g′(x)=1-错误!,∴当x>2时,g′(x)>0,即g(x)在(2,+∞)上单调递增,∴m≤2+错误!=错误!.答案错误!4.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析因为f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x。
令f′(x)>0,即(-x2+2)e x>0,因为e x〉0,所以-x2+2>0,解得-错误!〈x<错误!,所以函数f(x)的单调递增区间为(-错误!,错误!).答案(-错误!,错误!)5.已知函数f(x)=-错误!x2+4x-3ln x在区间上不单调,则t的取值范围是________.解析由题意知f′(x)=-x+4-错误!=-错误!,由f′(x)=0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间上就不单调,由t<1<t +1或t<3〈t+1,得0<t〈1或2〈t<3。
导数及其应用1.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.【答案】⎛ ⎝⎭2.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______. 【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则:当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有ln xa x =有且只有一个实根。
令()()2ln 1ln ,'x x g x g x x x -==, 当x >e 时,g ′(x )<0,g (x )递减; 当0<x <e 时,g ′(x )>0,g (x )递增。
即有x =e 处取得极大值,也为最大值,且为1e, 如图g (x )的图象,当直线y =a (a >0)与g (x )的图象 只有一个交点时,则1a e=. 回归原问题,则原问题中a e =.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.【答案】56274.【南师附中2017届高三模拟二】在平面直角坐标系xOy 中,P 是曲线:xC y e =上一点,直线:20l x y c ++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为__________.【答案】4ln2--【解析】设(),tP t e ,因为x y e '=,所以切线斜率t k e =,由题设1122tt e e -=-⇒=,故ln2t =,即点()ln2,2P ,将其代入20x y c ++=可得4ln2c =--,应填答案4ln2--。
专题3.3 导数的综合应用班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 【2017课标3,理11改编】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =_________【答案】12【解析】2. 【江苏省南通市如东县、徐州市丰县2017届高三10月联考】已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<- 3. 【泰州中学2016-2017年度第一学期第一次质量检测】若函数()y f x =的定义域为R ,对于x R ∀∈,'()()f x f x <,且(1)f x +为偶函数,(2)1f =,则不等式()xf x e <的解集为 . 【答案】(0,)+∞ 【解析】试题分析:令()()x f x g x e =,则()()()0xf x f xg x e'-'=<,因为(1)f x +为偶函数,所以(1)(1)(0)(2)1g(0)1f x f x f f +=-+⇒==⇒=,因此()()1(0)0x f x e g x g x <⇒<=⇒>4. 【2017届高三七校联考期中考试】若()1ln ,(),0xexf x x a xg x a e =--=<,且对任意[]()1212,3,4,x x x x ∈≠121211|()()|||()()f x f xg x g x -<-的恒成立,则实数a 的取值范围为 ▲ . 【答案】22[3,0)3e - 【解析】则()'21()10xe x a h x x ex-=--≤在(3,4)x ∈上恒成立,[]11,3,4x x e a x e x x --∴≥-+∈恒成立 令[]11(),3,4x x e u x x ex x--=-+∈,[]21112(1)113'()11,3,424x x x e x u x ee x x x ---⎡⎤-⎛⎫∴=-+=--+∈⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 21211331,'()0244x e e u x x -⎡⎤⎛⎫-+>>∴<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦Q ,()u x ∴为减函数,()u x ∴在[]3,4x ∈的最大值为22(3)33u e =-综上,实数a 的取值范围为22[3,0)3e -.5. f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则af (b )与bf (a )的大小关系为________.【答案】af (b )≤bf (a )【解析】∵xf ′(x )≤-f (x ),f (x )≥0,∴⎝ ⎛⎭⎪⎫f x x ′=xfx -f x x 2≤-2fxx 2≤0.则函数f x x在(0,+∞)上是单调递减的,由于0<a <b ,则f a a≥f b b.即af (b )≤bf (a ).6.设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”,也称f (x )在区间D 上存在“次不动点”,若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点”,则实数a 的取值范围是________.【答案】⎝⎛⎦⎥⎤-∞,127.电动自行车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 【答案】40【解析】由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0; 当x >40时,y ′>0.所以当x =40时,y 有最小值.8.函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是________. 【答案】(-∞,0)【解析】f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1. 要使f ′(x )=0有两个不等实根,则a <0.9.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.【答案】2110.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1、x 2∈(0,+∞),不等式g x 1k ≤f x 2k +1恒成立,则正数k 的取值范围是________. 【答案】[1,+∞)解析】因为对任意x 1、x 2∈(0,+∞), 不等式g x 1k≤f x 2k +1恒成立,所以kk +1≥⎣⎢⎡⎦⎥⎤g x 1f x 2max . 因为g (x )=e 2xex ,所以g ′(x )=(x e 2-x )′=e 2-x +x e 2-x ·(-1)=e 2-x (1-x ). 当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0, 所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e ; 因为f (x )=e 2x 2+1x,当x ∈(0,+∞)时,f (x )=e 2x +1x ≥2e,当且仅当e 2x =1x,即x =1e时取等号,故f (x )min =2e.所以⎣⎢⎡⎦⎥⎤g x 1f x 2max =e 2e =12. 所以kk +1≥12.又因为k 为正数,所以k ≥1.二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指.定区域内....。
3.2 导数的应用第1课时导数与函数的单调性1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)求函数y=f(x)的极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:①求f′(x);②求方程f′(x)=0的根;③考察f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:第一步求f(x)在区间(a,b)上的极值;第二步将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值.【知识拓展】1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.3.对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( × )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( √ ) (3)函数的极大值不一定比极小值大.( √ )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( × ) (5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( √ ) (6)三次函数在R 上必有极大值和极小值.( × )1.(教材改编)f (x )=x 3-6x 2的单调递减区间为 . 答案 (0,4)解析 f ′(x )=3x 2-12x =3x (x -4), 由f ′(x )<0,得0<x <4, ∴单调递减区间为(0,4).2.(教材改编)函数f (x )=x -2sin x 在(0,π)上的单调递增区间为 . 答案 (π3,π)解析 令f ′(x )=1-2cos x >0,得cos x <12,又x ∈(0,π),所以π3<x <π.3.(教材改编)函数y =3x 3-9x +5的极大值为 . 答案 11解析 y ′=9x 2-9.令y ′=0,得x =±1. 当x 变化时,y ′,y 的变化情况如下表:从上表可以看出,当x =-1时,函数y 有极大值, 3×(-1)3-9×(-1)+5=11.4.(2016·苏中八校联考)函数f (x )=x -ln x 的单调递减区间为 . 答案 (0,1)解析 函数的定义域是(0,+∞),f ′(x )=1-1x =x -1x,令f ′(x )<0,得0<x <1,所以单调递减区间是(0,1).5.设a ∈R ,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是 . 答案 (-∞,-1)解析 ∵y =e x+ax ,∴y ′=e x+a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵当x >0时,-e x <-1, ∴a =-e x<-1.第1课时 导数与函数的单调性题型一 不含参数的函数的单调性例1 (1)函数y =12x 2-ln x 的单调递减区间为 .(2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是 .答案 (1)(0,1) (2)⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2 解析 (1)y =12x 2-ln x ,y ′=x -1x =x 2-1x=x -x +x(x >0).令y ′<0,得0<x <1,∴单调递减区间为(0,1). (2)f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2, 即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2.思维升华 确定函数单调区间的步骤 (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(1)函数y =4x 2+1x的单调增区间为 .(2)已知函数f (x )=x ln x ,则下面关于函数f (x )单调性的判断正确的是 . ①在(0,+∞)上递增; ②在(0,+∞)上递减; ③在(0,1e)上递增;④在(0,1e)上递减.答案 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)④ 解析 (1)由y =4x 2+1x ,得y ′=8x -1x2,令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝ ⎛⎭⎪⎫12,+∞.(2)因为函数f (x )=x ln x ,定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数的单调递增区间为(1e ,+∞);当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为(0,1e ).题型二 含参数的函数的单调性例2 (2016·江苏新海中学月考改编)已知函数f (x )=2x 3+32tx 2-3t 2x +t -12(t ≠0),求f (x )的单调区间.解 f ′(x )=6x 2+3tx -3t 2=3(2x -t )(x +t ). 令f ′(x )=0,得x =-t 或x =t2.∵t ≠0,以下分两种情况进行讨论: ①若t <0,则t2<-t .由f ′(x )>0,得x <t2或x >-t ;由f ′(x )<0,得t2<x <-t .②若t >0,则t2>-t .由f ′(x )>0,得x <-t 或x >t2;由f ′(x )<0,得-t <x <t2.∴当t <0时,f (x )的单调递增区间为(-∞,t 2),(-t ,+∞),单调递减区间为(t2,-t );当t >0时,f (x )的单调递增区间为(-∞,-t ),(t 2,+∞),单调递减区间为(-t ,t2).思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. (3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈(1-a2a ,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a)上单调递减,在( 1-a2a,+∞)上单调递增.题型三 已知函数单调性求参数例3 (2016·南通模拟)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=(1x-1)2-1,所以G (x )min =-1.所以a >-1,即a 的取值范围为(-1,+∞). (2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=(1x-1)2-1,因为x ∈[1,4],所以1x ∈[14,1],所以G (x )max =-716(此时x =4),所以a ≥-716,即a 的取值范围是[-716,+∞).引申探究1.本题(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解 由h (x )在[1,4]上单调递增得, 当x ∈[1,4]时,h ′(x )≥0恒成立, 即当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,(1x 2-2x)min =-1(此时x =1),∴a ≤-1,即a 的取值范围是(-∞,-1].2.本题(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围. 解 h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 即当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,(1x 2-2x)min =-1,∴a >-1,即a 的取值范围是(-1,+∞). 思维升华 根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解. (3)函数在某个区间存在单调区间可转化为不等式有解问题.已知函数f (x )=e xln x -a e x(a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围. 解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x-a +ln x )e x,f ′(1)=(1-a )e ,由(1-a )e·1e=-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x,若f (x )为单调递减函数,则f ′(x )≤0在x >0时恒成立. 即1x-a +ln x ≤0在x >0时恒成立.所以a ≥1x+ln x 在x >0时恒成立.令g (x )=1x+ln x (x >0),则g ′(x )=-1x 2+1x =x -1x2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在(1,+∞)上为单调递增函数,此时g (x )的最小值为g (1)=1,但g (x )无最大值(且无趋近值).故f (x )不可能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0在x >0时恒成立,即1x-a +ln x ≥0在x >0时恒成立,所以a ≤1x+ln x 在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.用分类讨论思想研究函数的单调性典例 (16分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思想方法指导 含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:(1)方程f ′(x )=0是否有根;(2)若f ′(x )=0有根,求出根后判断其是否在定义域内;(3)若根在定义域内且有两个,比较根的大小是常见的分类方法. 规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴, 得g ′(1)=1+2a +b =0, ∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-a +x +1x=ax -x -x.∵函数g (x )的定义域为(0,+∞),∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1; 由g ′(x )<0,得x >1.[8分] 当a >0时,令g ′(x )=0,得x =1或x =12a ,[9分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1;[11分]若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a;若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0. [14分]综上可得:当a =0时,函数g (x )在(0,1)上单调递增, 在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a )上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[16分]1.(2015·课标全国Ⅱ改编)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是 . 答案 (-∞,-1)∪(0,1)解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f xx, 则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=[f xx]′ =xfx -f xx 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数. 所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0 ⇔f x x >0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f xx<0⇔f (x )>0.综上,知使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的 条件.答案 充分不必要解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件. 3.在区间(-1,1)内不是增函数的函数是 . ①y =e x+x ; ②y =sin x ;③y =x 3-6x 2+9x +2; ④y =x 2+x +1. 答案 ④解析 ①y =e x +x ,y ′=e x+1>0,在区间(-1,1)内是增函数; ②y =sin x ,y ′=cos x ,在区间(-1,1)内是增函数;③y =x 3-6x 2+9x +2,y ′=3x 2-12x +9=3(x -2)2-3,在区间(-1,1)内是增函数; ④y =x 2+x +1,y ′=2x +1,在区间(-12,1)内y ′>0,在区间(-1,-12)内y ′<0,在区间(-1,1)内不单调.4.已知函数y =f (x )在定义域[-4,6]内可导,其图象如图,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为 .答案 [-43,1]∪[113,6]解析 不等式f ′(x )≤0的解集即函数y =f (x )的减区间,由题图知y =f (x )的减区间为[-43,1],[113,6],故f ′(x )≤0的解集为[-43,1]∪[113,6].5.(2017·江苏扬州中学月考)若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是 . 答案 [12,+∞)解析 f ′(x )=2mx +1x -2,由题意知,f ′(x )≥0在(0,+∞)上恒成立,即2m ≥-1x 2+2x在(0,+∞)上恒成立,令t =1x>0,则2m ≥-t 2+2t ,又∵(-t 2+2t )max =1,∴2m ≥1,∴m ≥12.6.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则12e ()xf x 与21e ()xf x 的大小关系为 . 答案 1221e ()e ()xxf x f x > 解析 设g (x )=f xex,则g ′(x )=f xx-f xxx2=f x -f xex,由题意得g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即1212()()e ex x f x f x <, 所以1221e ()e ()xxf x f x >.7.(2016·苏州模拟)若函数f (x )=x 3+bx 2+cx +d 的单调减区间为(-1,3),则b +c = . 答案 -12解析 f ′(x )=3x 2+2bx +c ,由题意知-1<x <3是不等式3x 2+2bx +c <0的解集, ∴-1,3是f ′(x )=0的两个根, ∴b =-3,c =-9,b +c =-12.8.(2016·无锡模拟)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是 .①f (b )>f (c )>f (d ) ②f (b )>f (a )>f (e ) ③f (c )>f (b )>f (a ) ④f (c )>f (e )>f (d ) 答案 ③解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0, 所以函数f (x )在(-∞,c )上是增函数, 因为a <b <c ,所以f (c )>f (b )>f (a ),因此③正确.9.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是 . 答案 (-19,+∞)解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a .当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19, 所以a 的取值范围是(-19,+∞).10.(2016·全国甲卷改编)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是 .答案 ⎣⎢⎡⎦⎥⎤-13,13 解析 ∵函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,∴f ′(x )=1-23cos 2x +a cos x=1-23(2cos 2x -1)+a cos x=-43cos 2x +a cos x +53≥0,即a cos x ≥43cos 2x -53在(-∞,+∞)恒成立.当cos x =0时,恒有0≥-53,得a ∈R ;当0<cos x ≤1时,得a ≥43cos x -53cos x ,令t =cos x ,f (t )=43t -53t 在(0,1]上为增函数,得a ≥f (1)=-13;当-1≤cos x <0时,得a ≤43cos x -53cos x ,令t =cos x ,f (t )=43t -53t 在[-1,0)上为增函数,得a ≤f (-1)=13.综上,可得a 的取值范围是⎣⎢⎡⎦⎥⎤-13,13. 11.(2016·江苏南京十三中月考)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若函数f (x )在区间(1,2)上是增函数,求a 的取值范围. 解 (1)函数f (x )=ax 3+3x 2+3x (a ≠0), ∴f ′(x )=3ax 2+6x +3,令f ′(x )=0,即3ax 2+6x +3=0,则Δ=36(1-a ). ①当a ≥1时,Δ≤0,f ′(x )≥0,∴f (x )在R 上是增函数; ②当a <1且a ≠0时,Δ>0,f ′(x )=0有两个根,x 1=-1+1-aa,x 2=-1-1-aa.(ⅰ)当0<a <1时,易知当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,当x ∈(x 2,x 1)时,f ′(x )<0,故函数f (x )在(-∞,x 2),(x 1,+∞)上是增函数,在(x 2,x 1)上是减函数;(ⅱ)当a <0时,易知当x ∈(-∞,x 1)或x ∈(x 2,+∞)时,f ′(x )<0,当x ∈(x 1,x 2)时,f ′(x )>0, 故函数f (x )在(-∞,x 1),(x 2,+∞)上是减函数, 在(x 1,x 2)上是增函数.(2)当a >0时,f ′(x )=3ax 2+6x +3>0(x ∈(1,2)), 故a >0时,f (x )在区间(1,2)上是增函数, 当a <0时,由f (x )在区间(1,2)上是增函数,可得⎩⎪⎨⎪⎧f,f ,即⎩⎪⎨⎪⎧3a +9≥0,12a +15≥0,解得a ≥-54,所以-54≤a <0.综上,a 的取值范围是[-54,0)∪(0,+∞).12.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x(x >0),由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2(x >0). 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 13.已知函数f (x )=13x 3-a 2x 2.(1)求函数f (x )的单调区间;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)上存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax =x (x -a ). ①当a =0时,f ′(x )=x 2≥0恒成立, ∴f (x )在R 上单调递增.②当a >0时,当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0, ∴f (x )的增区间为(-∞,0),(a ,+∞),减区间为(0,a ).③当a <0时,当x ∈(-∞,a )时,f ′(x )>0;当x ∈(a,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0, ∴f (x )的增区间为(-∞,a ),(0,+∞),减区间为(a,0). (2)∵g (x )=13x 3-a 2x 2+2x ,∴g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立,即当x ∈(-2,-1)时,a <(x +2x)max =-22即可.所以满足要求的a 的取值范围是(-∞,-22).。
1.(2016·常州一模)已知函数f(x)=ln x-x-ax,a∈R.(1)当a=0时,求函数f(x)的极大值;(2)求函数f(x)的单调区间.2.(2015·课标全国Ⅱ)设函数f(x)=e mx+x2-mx.(1)证明:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x1,x2∈-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.3.(2015·课标全国Ⅰ)已知函数f(x)=x3+ax+1 4,g(x)=-ln x.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.4.(2016·山东)已知f(x)=a(x-ln x)+2x-1x2,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,证明f(x)>f′(x)+32对于任意的x∈1,2]成立.5.已知函数f(x)=x ln x和g(x)=m(x2-1)(m∈R).(1)m=1时,求方程f(x)=g(x)的实根;(2)若对任意的x∈(1,+∞),函数y=g(x)的图象总在函数y=f(x)图象的上方,求m 的取值范围;(3)求证:44×12-1+4×24×22-1+…+4×n4×n2-1>ln(2n+1)(n∈N*).答案精析1.解 函数f (x )的定义域为(0,+∞). (1)当a =0时,f (x )=ln x -x ,f ′(x )=1x -1. 令f ′(x )=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )(2)f ′(x )=1x -1+a x 2=-x 2+x +ax 2.令f ′(x )=0,得-x 2+x +a =0,则Δ=1+4a . ①当a ≤-14时,f ′(x )≤0恒成立, 所以函数f (x )的单调减区间为(0,+∞); ②当a >-14时,由f ′(x )=0, 得x 1=1+1+4a 2,x 2=1-1+4a2. (i)若-14<a <0,则x 1>x 2>0, 由f ′(x )<0,得0<x <x 2,x >x 1; 由f ′(x )>0,得x 2<x <x 1. 所以f (x )的单调减区间为(0,1-1+4a 2),(1+1+4a 2,+∞),单调增区间为(1-1+4a 2,1+1+4a 2).(ii)若a =0,由(1)知f (x )的单调增区间为(0,1),单调减区间为(1,+∞). (iii)若a >0,则x 1>0>x 2, 由f ′(x )<0,得x >x 1; 由f ′(x )>0,得0<x <x 1.所以f (x )的单调减区间为(1+1+4a2,+∞),单调增区间为(0,1+1+4a2). 综上所述, 当a ≤-14时,f (x )的单调减区间为(0,+∞);当-14<a <0时,f (x )的单调减区间为(0,1-1+4a 2),(1+1+4a 2,+∞),单调增区间为(1-1+4a 2,1+1+4a2);当a ≥0时,f (x )的单调减区间为(1+1+4a2,+∞),单调增区间为(0,1+1+4a2). 2.(1)证明 f ′(x )=m (e mx -1)+2x . 若m ≥0,则当x ∈(-∞,0)时, e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0. 若m <0,则当x ∈(-∞,0)时, e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0. 所以函数f (x )在(-∞,0)上单调递减, 在(0,+∞)上单调递增. (2)解 由(1)知,对任意的m ,f (x )在-1,0]上单调递减,在0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎨⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎨⎧e m-m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1, 则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e <0, 故当t ∈-1,1]时,g (t )≤0.当m ∈-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0, 即e -m +m >e -1.综上,m 的取值范围是-1,1].3.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0), 则f (x 0)=0,f ′(x 0)=0, 即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0,解得x 0=12,a =-34. 因此,当a =-34时, x 轴为曲线y =f (x )的切线.(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)上无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故1是h (x )的一个零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)上的零点个数.(ⅰ)若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点. (ⅱ)若-3<a <0,则f (x )在(0, -a3)上单调递减,在(-a3,1)上单调递增,故在(0,1)中,当x =-a3时,f (x )取得最小值,最小值为f (-a 3)=2a 3-a 3+14.①若f (-a 3)>0,即-34<a <0,f (x )在(0,1)上无零点;②若f (-a 3)=0,即a =-34,则f (x )在(0,1)上有唯一零点; ③若f (-a 3)<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时, f (x )在(0,1)上有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时, h (x )有两个零点;当-54<a <-34时,h (x )有三个零点. 4.(1)解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0, f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0, f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3·⎝⎛⎭⎪⎫x -2a ⎝ ⎛⎭⎪⎫x +2a . ①当0<a <2时,2a >1, 当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a ,+∞时, f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0, f (x )单调递减. ②当a =2时,2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③当a >2时,0<2a <1,当x ∈⎝⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎪⎫2a ,1时,f ′(x )<0, f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减; 当0<a <2时,f (x )在(0,1)内单调递增,在⎝ ⎛⎭⎪⎫1,2a 内单调递减, 在⎝⎛⎭⎪⎫2a ,+∞内单调递增; 当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a ,1内单调递减, 在(1,+∞)内单调递增. (2)证明 由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎝ ⎛⎭⎪⎫1-1x -2x 2+2x 3=x -ln x +3x +1x 2-2x 3-1,x ∈1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x ≥0,可得g (x )≥g (1)=1,当且仅当x =1时取得等号. 又h ′(x )=-3x 2-2x +6x 4,设φ(x )=-3x 2-2x +6,则φ(x )在x ∈1,2]上单调递减. 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2), 使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减. 由h (1)=1,h (2)=12, 可得h (x )≥h (2)=12, 当且仅当x =2时取得等号. 所以f (x )-f ′(x )>g (1)+h (2)=32,即f (x )>f ′(x )+32对于任意的x ∈1,2]成立. 5.(1)解 m =1时,f (x )=g (x ), 即x ln x =x 2-1,而x >0,所以方程即为ln x -x +1x =0. 令h (x )=ln x -x +1x ,则h ′(x )=1x -1-1x 2=-x 2+x -1x 2=-[(x -12)2+34]x 2<0,而h (1)=0,故方程f (x )=g (x )有唯一的实根x =1.(2)解 对于任意的x ∈(1,+∞),函数y =g (x )的图象总在函数y =f (x )图象的上方, 即∀x ∈(1,+∞),f (x )<g (x ), 即ln x <m (x -1x ),设F (x )=ln x -m (x -1x ),即∀x ∈(1,+∞),F (x )<0, F ′(x )=1x -m (1+1x 2) =-mx 2+x -m x 2.①若m ≤0,则F ′(x )>0,F (x )>F (1)=0,这与题设F (x )<0矛盾. ②若m >0,方程-mx 2+x -m =0的判别式Δ=1-4m 2, 当Δ≤0,即m ≥12时,F ′(x )≤0, ∴F (x )在(1,+∞)上单调递减, ∴F (x )<F (1)=0,即不等式成立.当Δ>0,即0<m <12时,方程-mx 2+x -m =0有两个实根,设两根为x 1,x 2且x 1<x 2,则⎩⎪⎨⎪⎧x 1+x 2=1m >2,x 1x 2=1,∴方程有两个正实根且0<x 1<1<x 2. 当x ∈(1,x 2)时,F ′(x )>0,F (x )单调递增,F (x )>F (1)=0与题设矛盾. 综上所述,实数m 的取值范围是 ⎣⎢⎡⎭⎪⎫12,+∞. (3)证明 由(2)知,当x >1时,m =12时, ln x <12(x -1x )成立.不妨令x =2k +12k -1>1(k ∈N *),∴ln 2k +12k -1<12⎝⎛⎭⎪⎫2k +12k -1-2k -12k +1 =4k4k 2-1, ln(2k +1)-ln(2k -1)<4k4k 2-1(k ∈N *), ⎩⎪⎨⎪⎧ln3-ln1<44×12-1,ln5-ln3<4×24×22-1,…ln (2n +1)-ln (2n -1)<4×n4×n 2-1(n ∈N *),累加可得44×12-1+4×24×22-1+…+4×n4×n 2-1>ln(2n +1)(n ∈N *).。
1.函数y=12x2-ln x的单调递减区间为________.2.(2016·常州模拟)若函数f(x)=x+a ln x不是单调函数,则实数a的取值范围是____________.3.(2016·镇江一模)若函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x ln x,则不等式f(x)<-e的解集为______________.4.(2016·镇江模拟)已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在-1,1]上是单调减函数,则a的取值范围是____________.5.(2017·江苏扬州中学月考)若函数f(x)=mx2+ln x-2x在定义域内是增函数,则实数m的取值范围是____________________.6.已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0),(1)若函数f(x)的单调递减区间是(0,4),则实数k的值为____________;(2)若在(0,4)上为减函数,则实数k的取值范围是____________.7.已知函数y=-13x3+bx2-(2b+3)x+2-b在R上不是单调减函数,则b的取值范围是________________.8.(2016·兰州一模)若函数f(x)=x2-e x-ax在R上存在单调递增区间,则实数a的取值范围是______________________.9.(2016·常州武进期中)已知定义在R上的奇函数f(x),设其导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),则满足13(2x-1)f(2x-1)<f(3)的实数x的取值范围是________.10.(2016·天津十二区县重点高中第一次联考)已知函数f (x )=ln x -1x ,g (x )=ax +b .(1)若函数h (x )=f (x )-g (x )在(0,+∞)上单调递增,求实数a 的取值范围;(2)若直线g (x )=ax +b 是函数f (x )=ln x -1x 的图象的切线,求a +b 的最小值.答案精析的单调性1.(0,1] 2.(-∞,0)3.(-∞,-e)解析当x >0时,f (x )=x ln x ,则f ′(x )=ln x +1.令f ′(x )=ln x +1=0,解得x =1e ,易知当x >0时,f (x )min =f (1e )=-1e >-e ,故只能在x <0时,求解f (x )<-e.因为函数f (x )为奇函数,在同一平面直角坐标系中作出f (x )的大致图象如图所示,根据函数单调性,且f (-e)=-f (e)=-e·lne =-e ,得所求不等式的解集为x <-e.4.⎣⎢⎡⎭⎪⎫34,+∞ 5.12,+∞)解析 f ′(x )=2mx +1x -2,由题意知,f ′(x )≥0在(0,+∞)上恒成立,即2m ≥-1x 2+2x 在(0,+∞)上恒成立,令t =1x >0,则2m ≥-t 2+2t ,又∵(-t 2+2t )max =1,∴2m ≥1,∴m ≥12.6.(1)13 (2)⎝ ⎛⎦⎥⎤0,13 解析 (1)f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13.(2)由f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)≤0,解得k ≤13.又k >0,故0<k ≤13.7.(-∞,-1)∪(3,+∞)解析 y ′=-x 2+2bx -(2b +3),要使原函数在R 上单调递减,应有y ′≤0恒成立,所以Δ=4b 2-4(2b +3)=4(b 2-2b -3)≤0,所以-1≤b ≤3,故使该函数在R 上不是单调减函数的b 的取值范围是b <-1或b >3.8.(-∞,2ln2-2]解析 因为f (x )=x 2-e x -ax ,所以f ′(x )=2x -e x -a ,因为函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,所以f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln2,则当x <ln2时,g ′(x )>0,g (x )单调递增,当x >ln2时,g ′(x )<0,g (x )单调递减,所以当x =ln2时,g (x )取得最大值,g (x )max =g (ln2)=2ln2-2,所以a ≤2ln2-2.9.(-1,2)解析 令F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),∵当x ∈(-∞,0]时,xf ′(x )<f (-x )恒成立,且由题意知f (-x )=-f (x ), ∵当x ∈(-∞,0]时,F ′(x )<0,即F (x )在(-∞,0]上递减.不等式13(2x -1)f (2x -1)<f (3)可化为(2x -1)f (2x -1)<3f (3),即F (2x -1)<F (3),易知F (x )为偶函数,所以不等式可化为|2x -1|<3,解得-1<x <2.10.解 (1)h (x )=f (x )-g (x )=ln x -1x -ax -b ,则h ′(x )=1x +1x 2-a .∵h (x )=f (x )-g (x )在(0,+∞)上单调递增,∴对∀x >0,都有h ′(x )=1x +1x 2-a ≥0,即对∀x>0,都有a≤1x+1x2.∵1x+1x2>0,∴a≤0.故实数a的取值范围是(-∞,0].(2)设切点(x0,ln x0-1x0),则切线方程为y-(ln x0-1 x0)=(1x0+1x20)(x-x0),即y=(1x0+1x20)x-(1x0+1x20)x0+(ln x0-1x0),即y=(1x0+1x20)x+(ln x0-2x0-1),令1x0=t>0,由题意得a=1x0+1x20=t+t2,b=ln x-2x0-1=-ln t-2t-1,令a+b=φ(t)=-ln t+t2-t-1,则φ′(t)=-1t+2t-1=(2t+1)(t-1)t,当t∈(0,1)时,φ′(t)<0,φ(t)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,φ(t)在(1,+∞)上单调递增.∴a+b=φ(t)≥φ(1)=-1,故a+b的最小值为-1.。
第三章 导数及应用1.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.【答案】⎛⎝⎭2.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______. 【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则:当x ⩽0时,f (x )=x +2x,单调递增,f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有ln xa x =有且只有一个实根。
令()()2ln 1ln ,'x x g x g x x x-==, 当x >e 时,g ′(x )<0,g (x )递减; 当0<x <e 时,g ′(x )>0,g (x )递增。
即有x =e 处取得极大值,也为最大值,且为1e, 如图g (x )的图象,当直线y =a (a >0)与g (x )的图象只有一个交点时,则1a e=. 回归原问题,则原问题中a e =.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 3.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x ax =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.【答案】56274.【南师附中2017届高三模拟二】在平面直角坐标系xOy 中,P 是曲线:xC y e =上一点,直线:20l x y c ++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为__________. 【答案】4ln2--【解析】设(),tP t e ,因为x y e '=,所以切线斜率t k e =,由题设1122tt e e -=-⇒=,故l n2t =,即点()ln2,2P ,将其代入20x y c ++=可得4ln2c =--,应填答案4ln2--。
5.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 【答案】()0,16.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x=+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________. 【答案】1,e⎛⎤-∞ ⎥⎝⎦【解析】结合函数的解析式:122e e 1x x y +=+可得:()()122221'1x x x e e y e +-=+, 令y ′=0,解得:x =0,当x >0时,y ′>0,当x <0,y ′<0,则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x =+-∈可得:()22ln 1'x x f x x-+=, x ∈(0,e ),()'0f x >,则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x -=,当x ∈(0,e ),g ′(x )>0,g (x )在(0,e )单调递增,当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.7.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.8.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.【答案】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。
因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。
根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。
许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。
9.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e:=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 【答案】-4-ln2点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
10.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______. 【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =, (2)当3a >时,()()2max112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
52a ∴=。
11.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.【答案】()(),10,1-∞-⋃12.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'fx f x ≥得:()220ax b a x c b +-+-≥在R 上恒成立,等价于:0{a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 13.【泰州中学2018届高三10月月考】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减; 当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.14.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.【答案】(【解析】()2310f x x x ⎛=-+>⇒∈ ⎝'⎭ ,所以增区间是⎛ ⎝⎭15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为. 【答案】(0,1)考点:本题考查函数的单调性与导数的关系16.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=lnx-mx(m∈R)在区间[1,e]上取得最小值4,则m=________.【答案】-3e【解析】f′(x)=1x+2mx=2x mx+,令f′(x)=0,则x=-m,且当x<-m时,f′(x)<0,f(x)单调递减,当x>-m时,f′(x)>0,f(x)单调递增.若-m≤1,即m≥-1时,f(x)min=f(1)=-m≤1,不可能等于4;若1<-m≤e,即-e≤m<-1时,f(x)min=f(-m)=ln(-m)+1,令ln(-m)+1=4,得m=-e3(-e,-1);若-m>e,即m<-e时,f(x)min=f(e)=1-me,令1-me=4,得m=-3e,符合题意.综上所述,m=-3e.17.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=3x x+,对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,则x的取值范围为_____.【答案】2 2,3⎛⎫- ⎪⎝⎭18.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.【答案】.【解析】由题意,y ′=ln x +1−2mx 令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =12时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <12时,y =ln x 与y =2mx −1的图象有两个交点,则实数m 的取值范围是(0,12),故答案为:(0,12).19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2,即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe+≥1(x≥0), y′=1xx e-,当x ∈(0,1)时,y′>0,函数是增函数,x ∈(1,+∞)时,y′<0,函数是减函数,x=1时,函数取得最大值:11e+, 当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点, 当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点.故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,).点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.20.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 【答案】221.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()3213f x ax x x =-+在区间()0,2上是单调增函数,则实数a 的取值范围是___________. 【答案】1a ≥【解析】求导()222121'21011f x ax x a x x x ⎛⎫=-+≥⇒≥-+=--+ ⎪⎝⎭在()0,2上恒成立,即1a ≥ .22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e exx f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0xxf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,.23.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()2342ln 2f x x a x x =++-在区间()12,上存在最值,则实数a 的取值范围是________. 【答案】()95--,【解析】∵()()()2342234x a x f x x a x x++-=++-=',故可将题意等价的转化为()()120f f ''⋅<,即()()590a a ++<,解得95a -<<-,故答案为()95--,.24.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{ 52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________. 【答案】714⎛⎤ ⎥⎝⎦,25.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内26.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.27.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶2【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()在点11f (,())处的切线方程,代入点211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得,2min max f x g x +≥()(),分析可得必有()()215218f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:⑵()()()211'ax x f x x-+=,∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立, 410{610a a -≥∴-≥,得14a ≥;若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,410{610a a -≤∴-≤,得16a ≤,综上,实数a 的取值范围为11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;⑶由题意得,()()min max 2f x g x +≥,()max 128g x g π⎛⎫== ⎪⎝⎭,()min 158f x ∴≥,即()()21521ln 8f x ax a x x =+--≥, 由()()()()()222112111'221ax a x ax x f x ax a x x x+---+=+--==, 当0a ≤时,()10f <,则不合题意;当0a >时,由()'0f x =,得12x a=或1x =-(舍去), 当102x a<<时,()'0f x <,()f x 单调递减, 当12x a>时,()'0f x >,()f x 单调递增. ()min 11528f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117ln 2228a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x∴=+>',()h x ∴单调递增,a Z ∈,2a ∴为偶数,又()172ln248h =-<,()174ln488h =->, 24a ∴≥,故整数a 的最小值为2。