2019版高考数学一轮复习第三章导数及其应用学案文
- 格式:doc
- 大小:1006.50 KB
- 文档页数:67
(g(x) HO).第三章 导数及其应用第一节导数的概念及导数的运算本节主要包括2个知识点:1•导数的概念及运算; 2.导数的儿何意义.突破点(一)导数的概念及运算基础联通抓主干知识的“源”与“流”1. 瞬时速度和瞬时加速度‘ ‘ △ S △s⑴瞬时速度:对于tE [心,to+ A 刃时的平均速度v =R:,当A f-*o 时,v 趋 近于一个常数,这个常数就是t=t.的瞬时速度.-------------------------------------------------- △ V -- △ V (2)瞬时加速度:对于tE [ to, to+ A 刃时的平均加速度a =冬〒,当A r-*0时,a =冬〒趋近于一个常数,这个常数就是t=h 的瞬时加速度.2. 函数y=f (x )在/=*)处的导数A / 设函数尸心)在区|'可(臼,b )上有定义,心b ),若厶/无限趋近于0吋,比值二函数fd )在处的导数,记作尸(心).3. 函数厂(0的导函数若函数f (x )在区间(曰,方)内任意一点都可导,则代方在各点的导数也随着自变量丸 的变化而变化,因而也是自变量/的函数,该函数称为fd )的导函数,记作尸3.4. 基本初等函数的求导公式原函数a X R (日>0,且 N HI)log^(c?>0,且占1)X eIn x sin x cos X导函数a xaln a1 x\x\ aeA丄 Xcos X — sin x5.导数运算法则(1) [fd)±g3]‘ =f (方 ±呂’ 3;(2) [f (动 g(x) ]' =f (x)g(x)+f(x)g‘(力;(3) [g)]‘ =Cf C Y )(C 为常数);f Xo+ A X — f XoA T无限趋近于 个常数昇,则称f (x )在X=Ab 处可导,并称常数A 为In xI IIx — x fIn x= 2X一 • x~ln x x1 —In x= 2 ・ Xsin x ' cos x —sin xcos xcos"cos xcos x —sin x —sin /coshIICOS X(4)/ =(3VT — (2')‘ +(e)z= (3・ e”+3W)' —(2・ = 3A (ln 3)・ e'+3 e A -2v ln 2 = (ln 3+1) • (3e)J-2'ln 2.[方法技巧]导数的运算方法考点贯通 抓高考命题的“形”与“神”"一已知函数的解析式求导数[例1]求下列函数的导数:(3)y=tan x\ ⑷ y=3e x -2v +e.(3)/pin x (cos x.(2)/(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幕的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.二导数运算的应用[例2](1) (2017 •济宁二模)已知函数f3=/(2 017+ln 方,F仏)=2 018,则Xa= ________ .(2)已知£(力=*#+2/尸(2 017) +2 0171n %,则f' (1)= .[解析](1)由题意可知尸(^) = 2 017 + ln x+x• ~=2 018 +In x.由尸(%o) =2 018, x得]n Ao=O,解得Xo=[.9 ni7(2)由题意得尸(力=才+2尸(2 017)+ ------------- ,2017所以尸(2 017)=2 017 + 2尸(2 017)+亍而■即f (2 017) =-(2 017 + 1)=-2 018.故尸(1)=1+2X (-2 018)+2 017 = -2 018.[答案]仃)1⑵-2 018[方法技巧]能力练通抓应用体验的“得”与“失”1.[考点二 1 (2018 •太仓中学月考)已知£(A) = sin x+cos “ iE fi(x)= f i(x),石3 =f 2(方,…,力(劝n-dx)且刀22),则彳£+彳£------------ _________________ •解析:fig = f i(x)=cosx—sin “ fi(x) = f 2(A r) = —sin cos x, f\3=f‘ 3(方= sin cos x, =f 4(x)=sin x+cos x.故周期为4,前四项和为0,所以原式=答案:12.[考点X](2018 •徐州期初检测)记定义在R上的函数y =f(0的导函数为f (0.如果存在刃£3,方],使得flS = F(心)。
导数及其应用知识点一、导数的基本运算1.基本初等函数的导数公式原函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e xf ′(x )=e xf (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 小题速通1.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x2.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)3.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1034.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 5.函数y =ln 2x +1x的导数为________.易错点1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n)′=nxn -1中n ≠0且n ∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.1、已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2 2、若函数f (x )=2x+ln x 且f ′(a )=0,则2aln 2a=( )A .-1B .1C .-ln 2D .ln 2知识点二、导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0). 小题速通1.(2018·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4 2.设函数f (x )=x ln x ,则点(1,0)处的切线方程是________. 3.已知曲线y =2x 2的一条切线的斜率为2,则切点的坐标为________.4.函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,则f (1)+f ′(1)=________. 易错点1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别. 1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.(2017·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.知识点三、利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系(1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f ′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤(1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间. 小题速通1.函数f (x )=2x 3-9x 2+12x +1的单调减区间是( )A .(1,2)B .(2,+∞)C .(-∞,1)D .(-∞,1)和(2,+∞) 2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( )A .(-∞,-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞) D .[-5,+∞) 易错点若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立. 若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________.知识点四、利用导数研究函数的极值与最值1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 小题速通1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .42.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( )A .2B .3C .4D .53.(2017·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0 D .不存在 4.若函数f (x )=12x 2-ax +ln x 有极值,则a 的取值范围为________.5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________. 易错点1.f ′(x 0)=0是x 0为f (x )的极值点的既不充分也不必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论. 1.(2017·岳阳一模)下列函数中,既是奇函数又存在极值的是( )A .y =x 3B .y =ln(-x )C .y =x e -xD .y =x +2x2.设函数f (x )=x 3-3x +1,x ∈[-2,2]的最大值为M ,最小值为m ,则M +m =________.知识点五、定积分1.定积分的概念在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛a b f (x )d x (k 为常数); (2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3) ⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x ) ⎪⎪⎪ba,即⎠⎛ab f (x )d x =F (x ) ⎪⎪⎪ba =F (b )-F (a ).小题速通1.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-22.⎠⎛01(e x+x)d x =________.3.(2015·天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 易错点定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 由曲线y =x 2和直线x =0,x =1,y =14所围成的图形(如图所示)的面积为( )A .23 B.13 C .12 D.14过关检测练习一、选择题1.已知函数f (x )=log a x (a>0且a ≠1),若f ′(1)=-1,则a =( )A .e B.1e C.1e 2 D.122.直线y =kx +1与曲线y =x 2+ax +b 相切于点A(1,3),则2a +b 的值为( )A .-1B .1C .2D .-23.函数y =2x 3-3x 2的极值情况为( )A .在x =0处取得极大值0,但无极小值B .在x =1处取得极小值-1,但无极大值C .在x =0处取得极大值0,在x =1处取得极小值-1D .以上都不对4.若f(x)=-12x 2+m ln x 在(1,+∞)是减函数,则m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1]D .(-∞,1)5.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( )A .0B .1C .2D .37.由曲线y =x 2-1,直线x =0,x =2和x 轴所围成的封闭图形的面积是( )A .⎠⎛02(x 2-1)d x B.⎠⎛02|x 2-1|d x C .⎠⎛02(x 2-1)d x D .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x8.若函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范围是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2) 二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________. 10.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.11.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +3,则f (1)+f ′(1)=________.12.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m的取值范围为________. 三、解答题13.已知函数f (x )=x +a x+b (x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求实数b 的取值范围.14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.高考研究课:一 导数运算是基点、几何意义是重点、定积分应用是潜考点 考点 考查频度 考查角度导数的几何意义5年7考 求切线、已知切线求参数、求切点坐标定积分未考查[典例] (1)(2018·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2 B .-1π2 C .-3π D .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A .-sin x -cos xB .sin x -cos xC .sin x +cos xD .cos x -sin x (3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1 D .e 方法技巧1、可导函数的求导步骤(1)分析函数y =f (x )的结构特点,进行化简; (2)选择恰当的求导法则与导数公式求导; (3)化简整理答案. 2、求导运算应遵循的原则求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错. 即时演练1.(2018·江西九校联考)已知y =(x +1)(x +2)(x +3),则y ′=( )A .3x 2-12x +6 B .x 2+12x -11 C .x 2+12x +6 D .3x 2+12x +11 2.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.题型二、导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题的第1问中,难度较低,属中、低档题. 常见的命题角度有: 1求切线方程; 2确定切点坐标;3已知切线求参数值或范围; 4切线的综合应用.角度一:求切线方程1.已知函数f (x )=ln(1+x )-x +x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是________.角度二:确定切点坐标2.已知函数f (x )=exx(x >0),直线l :x -ty -2=0.若直线l 与曲线y =f (x )相切,则切点横坐标的值为________.角度三:已知切线求参数值或范围3.(2017·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是________.4.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围是________.角度四:切线的综合应用5.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值.方法技巧利用导数解决切线问题的方法(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.题型三、定积分及应用[典例] (1)(2018·东营模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则⎠⎛02f(x)d x 等于( )A.34B.45C.56D .不存在 (2)设f (x )=)⎩⎨⎧1-x 2,x ∈[-1,1,x 2-1,x ∈[1,2],则⎠⎛-12f (x )dx 的值为( )A.π2+43 B.π2+3 C.π4+43 D.π4+3 (3)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.方法技巧求定积分的2种方法及注意事项(1)定理法运用微积分基本定理求定积分时要注意以下几点: ①对被积函数要先化简,再求积分;②求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; ③对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; ④注意用“F′(x )=f (x )”检验积分的对错. (2)面积法根据定积分的几何意义可利用面积求定积分. 即时演练1.(2018·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -12.直线y =2x +3与抛物线y =x 2所围成封闭图形的面积为________.3.如图,在长方形OABC 内任取一点P ,则点P 落在阴影部分的概率为________.高考真题演练1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .32.(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.3.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________. 4.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 5.(2015·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.高考达标检测一、选择题1.若a =⎠⎛02x d x ,则二项式⎝⎛⎭⎪⎫x -a +1x 6展开式中的常数项是( ) A .20 B .-20 C .-540 D .5402.(2018·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -23.(2018·济南一模)已知曲线f (x )=ln x 的切线经过原点,则此切线的斜率为( )A .eB .-eC .1eD .-1e4.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f(x)图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-25.(2018·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,π B.⎣⎢⎡⎭⎪⎫2π3,π C .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D.⎝ ⎛⎦⎥⎤π2,5π6 6.已知曲线y =1e x+1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0 D .4x -2y -1=0二、填空题7.若a 和b 是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg (ax 2+4x +4b)的值域为R 的概率为________. 8.已知函数f (x )=e ax+bx (a <0)在点(0,f(0))处的切线方程为y =5x +1,且f (1)+f ′(1)=12.则a ,b 的值分别为________.9.(2017·东营一模)函数f (x )=x ln x 在点P(x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f (x 0))的坐标为________.10.设过曲线f (x )=-e x-x(e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,则m 的取值范围是________. 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.12.已知函数f (x )=12x 2-ax +(3-a )ln x ,a ∈R.(1)若曲线y =f (x )在点(1,f (1))处的切线与直线2x -y +1=0垂直,求a 的值; (2)设f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 1)+f (x 2)>-5.能力提高训练题1.(2018·广东七校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 32.函数y =f (x )图象上不同两点M (x 1,y 1),N (x 2,y 2)处的切线的斜率分别是k M ,k N ,规定φ(M ,N )=|k M -k N ||MN |(|MN |为线段MN 的长度)叫做曲线y =f (x )在点M 与点N 之间的“弯曲度”.设曲线f (x )=x 3+2上不同两点M (x 1,y 1),N (x 2,y 2),且x 1x 2=1,则φ(M ,N )的取值范围是________.高考研究课:二、函数单调性必考,导数工具离不了全国卷5年命题分析考点 考查频度 考查角度函数单调性5年6考讨论单调性及证明单调性问题[典例] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x2,a ∈R ,讨论f (x )的单调性.方法技巧导数法判断函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 即时演练1.(2017·芜湖一模)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( )A.()0,+∞B.()-∞,0C.()-∞,1D.()1,+∞ 2.(2016·全国卷Ⅱ节选)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. 题型二、利用导数研究函数单调性的应用函数的单调性是高考命题的重点,其应用是考查热点.,常见的命题角度有: 1y =f (x )与y =f ′(x )的图象辨识;2比较大小;3已知函数单调性求参数的取值范围; 4构造函数解不等式.角度一:y =f (x )与y =f ′(x )的图象辨识1.已知函数f (x )=ax 3+bx 2+cx +d ,若函数f (x )的图象如图所示,则一定有( )A .b >0,c >0B .b <0,c >0C .b >0,c <0D .b <0,c <02.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )角度二:比较大小3.设定义在R 上的函数f (x )的导函数为f ′(x ),且满足f (2-x )=f (x ),f ′xx -1<0,若x 1+x 2>2,x 1<x 2,则( ) A .f (x 1)<f (x 2) B .f (x 1)=f (x 2) C .f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小不能确定角度三:已知函数单调性求参数的取值范围4.(2018·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)5.(2018·成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.方法技巧由函数的单调性求参数的范围的方法(1)可导函数f (x )在D 上单调递增(或递减)求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f (x )在D 上不单调,则f (x )在D 上有极值点,且极值点不是D 的端点.角度四:构造函数解不等式6.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2f (x +2 018)-f (-1)<0的解集为________.高考真题演练1.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 2.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 3.(2017·全国卷Ⅰ)已知函数f (x )=e x(e x-a )-a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.高考达标检测一、选择题1.已知函数f (x )=ln x +x 2-3x (a ∈R),则函数f (x )的单调递增区间为( )A.⎝ ⎛⎭⎪⎫-∞,12 B .(1,+∞) C.⎝ ⎛⎭⎪⎫-∞,12和(1,+∞) D.⎝ ⎛⎭⎪⎫0,12和(1,+∞) 2.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )3.对于R 上可导的任意函数f (x ),若满足1-xf ′x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)4.已知函数f (x )=x sin x ,x 1,x 2∈⎝ ⎛⎭⎪⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0 B .x 1+x 2>0 C .x 21-x 22>0 D .x 21-x 22<05.(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定6.已知定义在R 上的函数y =f (x )满足条件f (x +4)=-f (x ),且函数y =f (x +2)是偶函数,当x ∈(0,2]时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈[-2,0)时,f (x )的最小值为3,则a 的值为( ) A .e 2B .eC .2D .1 二、填空题7.设函数f (x )=x (e x-1)-12x 2,则函数f (x )的单调增区间为________.8.已知函数f (x )=x ln x -ax 2-x .若函数f (x )在定义域上为减函数,则实数a 的取值范围是________. 9.(2018·兰州诊断)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 三、解答题10.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.11.(2018·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范围; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.12.(2018·湖南十校联考)函数f (x )=13x 3+|x -a |(x ∈R ,a ∈R).(1)若函数f (x )在R 上为增函数,求a 的取值范围;(2)若函数f (x )在R 上不单调时,记f (x )在[-1,1]上的最大值、最小值分别为M (a ),m (a ),求M (a )-m (a ).能力提高训练题1.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则b a的最小值为________.2.已知函数f (x )=(a -1)ln x -a 2x 2+x (a ∈R),g (x )=-13x 3-x +(a -1)ln x .(1)若a ≤12,讨论f (x )的单调性;(2)若过点⎝ ⎛⎭⎪⎫0,-13可作函数y =g (x )-f (x )(x >0)图象的两条不同切线,求实数a 的取值范围.高考研究课:三、极值、最值两考点,利用导数巧推演全国卷5年命题分析考点考查频度考查角度极值5年6考求极值、由极值求参数最值5年5考求最值、证明最值的存在性函数的极值是每年高考的必考内容,题型既有选择题、填空题,也有解答题,难度适中,为中高档题.常见的命题角度有:1知图判断函数极值;2已知函数求极值;3已知极值求参数值或范围.角度一:知图判断函数极值1.(2018·赤峰模拟)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)角度二:已知函数求极值2.已知函数f (x )=x -1+aex (a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值.角度三:已知极值求参数值或范围3.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围是( ) A .(-1,0) B .(-1,+∞) C .(0,1) D .(1,+∞)4.已知函数f (x )=ax -x 2-ln x ,若函数f (x )存在极值,且所有极值之和小于5+ln 2,则实数a 的取值范围是________.方法技巧利用导数研究函数极值的一般流程题型二、运用导数解决函数的最值问题[典例] (2018·日照模拟)设函数f (x )=(x -1)e x -kx 2(k ∈R). (1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .方法技巧求函数f (x )在[a ,b ]上的最值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.即时演练1.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( ) A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)2.(2018·南昌模拟)已知函数f (x )=(2x -4)e x +a (x +2)2(x >0,a ∈R ,e 是自然对数的底数).(1)若f (x )是(0,+∞)上的单调递增函数,求实数a 的取值范围;(2)当a ∈⎝ ⎛⎭⎪⎫0,12时,证明:函数f (x )有最小值,并求函数f (x )的最小值的取值范围.高考真题演练1.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)·ex -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1 2.(2014·全国卷Ⅱ)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)3.(2013·全国卷Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则 f ′(x 0)=04.(2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.5.(2013·全国卷Ⅱ)已知函数f (x )=x 2e -x .(1)求f (x )的极小值和极大值; (2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.6.(2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.7.(2017·山东高考)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e=2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.高考达标检测一、选择题1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为() A .-23 B .-2C .-2或-23D .2或-233.(2018·浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( ) A.23B.43C.83D.163 4.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,有以下命题:①f (x )的解析式为:f (x )=x 3-4x ,x ∈[-2,2];②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于零.其中正确的命题个数为( )A .0B .1C .2D .3 5.(2017·长沙二模)已知函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.3-1 B.34 C.43 D.3+16.已知直线l 1:y =x +a 分别与直线l 2:y =2(x +1)及曲线C :y =x +ln x 交于A ,B 两点,则A ,B 两点间距离的最小值为( )A.355B .3 C.655 D .3 2二、填空题7.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.8.已知函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为________. 9.(2018·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是________.三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 3+x 2,x <1,a ln x ,x ≥1.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.11.设函数f (x )=12x 2-(a +1)x +a ln x ,a >0.(1)求函数f (x )的单调区间;(2)讨论函数f (x )的零点个数.12.已知函数f (x )=ln x +x 2-ax (a ∈R).(1)当a =3时,求函数f (x )的单调区间;(2)若函数f (x )有两个极值点x 1,x 2,且x 1∈(0,1],证明f (x 1)-f (x 2)≥-34+ln 2.能力提高训练题1.若函数f (x )=x 3+ax 2+bx 的图象与x 轴相切于点(c,0),且f (x )有极大值4,则c =( )A .-3B .-1C .1D .32.已知函数f (x )=12x 2+(1-m )x +ln x .(1)若函数f (x )存在单调递减区间,求实数m 的取值范围;(2)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.高考研究课:四、综合问题是难点,3大题型全冲关全国卷5年命题分析考点考查频度考查角度利用导数解决生活中的优化问题未考查利用导数研究函数零点或方程根5年3考讨论函数零点个数不等式恒成立问题5年4考不等式恒成立求参证明不等式5年7考不等式证明[典例] 一辆火车前行每小时电力的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的电价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?方法技巧利用导数解决生活中的优化问题的4步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 即时演练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件2.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (k >0).现已知相距18 km 的A ,B 两家化工厂(污染源)的污染强度分别为a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km).(1)试将y 表示为x 的函数;(2)若a =1,且x =6时,y 取得最小值,试求b 的值.题型二、利用导数研究函数的零点或方程根[典例] 已知函数f (x )=(x +a )e x,其中e 是自然对数的底数,a ∈R.(1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. 方法技巧利用导数研究零点或方程根的方法研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 即时演练1.已知函数f (x )=e 2x-ax 2+bx -1,其中a ,b ∈R ,e 为自然对数的底数,若f (1)=0,f ′(x )是f (x )的导函数,函数f ′(x )在区间(0,1)内有两个零点,则a 的取值范围是( )A .(e 2-3,e 2+1) B .(e 2-3,+∞) C .(-∞,2e 2+2)D .(2e 2-6,2e 2+2)2.(2017·西安一模)已知函数f (x )=x +1+ax-a ln x .若函数y =f (x )的图象在x =1处的切线与直线2x +y -1=0平行.(1)求a 的值;(2)若方程f(x)=b的区间[1,e]上有两个不同的实数根,求实数b的取值范围.题型二、利用导数研究与不等式有关的问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.常见的命题角度有:1证明不等式;2不等式恒成立问题.角度一:证明不等式1.已知函数f(x)=ln x-ax2+(2-a)x(a>0).(1)讨论函数f(x)的单调性;(2)证明:当0<x <1a时,f ⎝ ⎛⎭⎪⎫1a +x >f ⎝ ⎛⎭⎪⎫1a -x ;(3)设函数y =f (x )的图象与x 轴交于A ,B 两点,线段AB 的中点的横坐标为x 0,证明:f ′(x 0)<0.方法技巧利用导数证明不等式的方法可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.如:证明:f (x )>g (x )(x ∈D ),令F (x )=f (x )-g (x ),x ∈D ,只需证明F (x )min >0(x ∈D )即可,从而把证明不等式问题转化求F (x )min 问题.角度二:不等式恒成立问题2.(2016·四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).方法技巧1.利用导数研究不等式恒成立问题的思路首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题. 2.不等式成立(恒成立)问题常见转化方法(1)f (x )≥a 恒成立⇒f (x )min ≥a ,f (x )≥a 成立⇒f (x )max ≥a . (2)f (x )≤b 恒成立⇔f (x )max ≤b ,f (x )≤b 成立⇔f (x )min ≤b . (3)f (x )>g (x )恒成立F x =f x -g xF (x )min >0.(4)①∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max .②∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min .③∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x )min .④∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max .高考真题演练1.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x+(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.2.(2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12·⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.3.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.4.(2015·全国卷Ⅱ)设函数f(x)=e mx+x2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.高考达标检测1.(2014·全国卷Ⅰ)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2.已知函数f (x )=ln x -a x +a x2(a ∈R).(1)若a =1,求函数f (x )的极值;(2)若f (x )在[1,+∞)内为单调增函数,求实数a 的取值范围; (3)对于n ∈N *,求证:11+12+22+12+33+12+…+n n +12<ln(n +1).。
第三章 导数及其应用命题探究解答过程 (解法一) (1)f(x)的定义域为(-∞,+∞),f '(x)=2ae 2x+(a-2)e x-1=(ae x-1)(2e x+1).其中2e x+1>0恒成立.(i)若a≤0,则f '(x)<0,所以f(x)在(-∞,+∞)上单调递减.(ii)若a>0,则由f '(x)=0得x=-ln a.当x∈(-∞,-ln a)时, f '(x)<0;当x∈(-ln a,+∞)时, f '(x)>0.所以f(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.(2)(i)若a≤0,由(1)知, f(x)至多有一个零点. (ii)若a>0,由(1)知,当x=-ln a 时, f(x)取得最小值,最小值为f(-ln a)=1-+ln a.①当a=1时,由于f(-ln a)=0,故f(x)只有一个零点; ②当a∈(1,+∞)时,由于1-+ln a>0,即f(-ln a)>0,故f(x)没有零点;③当a∈(0,1)时,1-+ln a<0,即f(-ln a)<0.又f(-2)=ae -4+(a-2)e -2+2>-2e -2+2>0,故f(x)在(-∞,-ln a)有一个零点. 设正整数n 0满足n 0>ln,则f(n 0)=(a+a-2)-n 0>-n 0>-n 0>0.由于ln>-ln a,因此f(x)在(-ln a,+∞)有一个零点. 综上,a 的取值范围为(0,1). (解法二) (1)同解法一(1).(2)若a≤0,则f(x)在R 上单调递减,至多只有一个零点,不符,舍去; 若a>0,当x→+∞时,f(x)→+∞;当x→-∞时,f(x)→+∞,要使f(x)有两个零点,只要f min (x)=f(-ln a)<0即可,即a·+(a -2)·-ln <0,即1--ln <0,令t=>0,则g(t)=1-t-ln t,且g(t)在(0,+∞)上单调递减,又g(1)=0,∴当t=>1,即0<a<1时,g(t)<0,即f(-ln a)<0.即f(x)有两个零点时,a的取值范围为(0,1)§3.1导数的概念及其运算考纲解读分析解读 1.理解导数概念,会求过曲线上某点的切线的斜率与切线方程,能将平行或垂直直线间的关系转化为导数关系.2.熟记常见基本初等函数的导数公式并结合导数的运算法则求简单函数的导数,会求简单复合函数的导数.3.利用导数的几何意义求曲线的切线斜率是高考热点,分值为5分左右,属于中低档题.五年高考考点一导数的概念及其几何意义1.(2016山东,10,5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )A.y=sin xB.y=ln xC.y=e xD.y=x3答案 A2.(2014课标Ⅱ,8,5分)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0B.1C.2D.3答案 D3.(2014大纲全国,7,5分)曲线y=xe x-1在点(1,1)处切线的斜率等于( )A.2eB.eC.2D.1答案 C4.(2016课标全国Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b= .答案1-ln 25.(2015陕西,15,5分)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P 的坐标为.答案(1,1)教师用书专用(6—8)6.(2014江西,13,5分)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.答案(-ln 2,2)7.(2013福建,17,13分)已知函数f(x)=x-aln x(a∈R).(1)当a=2时,求曲线y=f(x)在点A(1, f(1))处的切线方程;(2)求函数f(x)的极值.解析函数f(x)的定义域为(0,+∞), f '(x)=1-.(1)当a=2时, f(x)=x-2ln x, f '(x)=1-(x>0),因而f(1)=1, f '(1)=-1,所以曲线y=f(x)在点A(1, f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由f '(x)=1-=,x>0知:①当a≤0时, f '(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f '(x)=0,解得x=a.又当x∈(0,a)时, f '(x)<0,则f(x)在(0,a)上单调递减;当x∈(a,+∞)时, f '(x)>0,则f(x)在(a,+∞)上单调递增,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-aln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-aln a,无极大值.8.(2013北京,18,13分)设L为曲线C:y=在点(1,0)处的切线.(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方.解析(1)设f(x)=,则f '(x)=.所以f '(1)=1.所以L的方程为y=x-1.(2)证明:令g(x)=x-1-f(x),则除切点之外,曲线C在直线L的下方等价于g(x)>0(∀x>0,x≠1).g(x)满足g(1)=0,且g'(x)=1-f '(x)=.当0<x<1时,x2-1<0,ln x<0,所以g'(x)<0,故g(x)单调递减;当x>1时,x2-1>0,ln x>0,所以g'(x)>0,故g(x)单调递增.所以,g(x)>g(1)=0(∀x>0,x≠1).所以除切点之外,曲线C在直线L的下方.考点二导数的运算1.(2013江西,13,5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f '(1)= .答案 22.(2017北京,19,13分)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0, f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.解析(1)因为f(x)=e x cos x-x,所以f '(x)=e x(cos x-sin x)-1, f '(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0, f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x-sin x)-1,则h'(x)=e x(cos x-sin x-sin x-cos x)=-2e x sin x.当x∈时,h'(x)<0,所以h(x)在区间上单调递减.所以对任意x∈有h(x)<h(0)=0,即f '(x)<0.所以函数f(x)在区间上单调递减.因此f(x)在区间上的最大值为f(0)=1,最小值为f =-.教师用书专用(3—4)3.(2016北京,18,13分)设函数f(x)=xe a-x+bx,曲线y=f(x)在点(2, f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.解析(1)因为f(x)=xe a-x+bx,所以f '(x)=(1-x)e a-x+b.依题设,知即解得a=2,b=e.(2)由(1)知f(x)=xe2-x+ex.由f '(x)=e2-x(1-x+e x-1)及e2-x>0知, f '(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g'(x)=-1+e x-1.所以,当x∈(-∞,1)时,g'(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知, f '(x)>0,x∈(-∞,+∞).故f(x)的单调递增区间为(-∞,+∞).4.(2015北京,18,13分)已知函数f(x)=ln.(1)求曲线y=f(x)在点(0, f(0))处的切线方程;(2)求证:当x∈(0,1)时, f(x)>2;(3)设实数k使得f(x)>k对x∈(0,1)恒成立,求k的最大值.解析(1)因为f(x)=ln(1+x)-ln(1-x),所以f '(x)=+, f '(0)=2.又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)-2,则g'(x)=f '(x)-2(1+x2)=.因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时, f(x)>2.(3)由(2)知,当k≤2时, f(x)>k对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)-k,则h'(x)=f '(x)-k(1+x2)=.所以当0<x<时,h'(x)<0,因此h(x)在区间上单调递减.当0<x<时,h(x)<h(0)=0,即f(x)<k.所以当k>2时, f(x)>k并非对x∈(0,1)恒成立.综上可知,k的最大值为2.三年模拟A组2016—2018年模拟·基础题组考点一导数的概念及其几何意义1.(2018福建闽侯第六中学月考,8)设a为实数,函数f(x)=x3+ax2+(a-3)x的导数为f '(x),且f '(x)是偶函数,则曲线y=f(x)在点(2,f(2))处的切线方程为( )A.6x+y-12=0B.9x+y-16=0C.6x-y-12=0D.9x-y-16=0答案 D2.(2017湖北百所重点高中联考,4)已知函数f(x+1)=,则曲线y=f(x)在点(1,f(1))处的切线的斜率为( )A.1B.-1C.2D.-2答案 A3.(2017广东惠州第二次调研,14)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为. 答案 24.(人教A选2—2,一,1-2A,7,变式)已知函数f(x)=ax+1-e x(a∈R,e为自然对数的底数),若函数f(x)的图象在点(1,f(1))处的切线平行于x轴,则a= .答案 e考点二导数的运算5.(2018甘肃武威第六中学第二阶段过关考试,4)已知函数f(x)的导函数为 f '(x),且满足f(x)=2xf '(1)+ln x,则f '(1)=( )A.-eB.-1C.1D.e答案 B6.(2017山西名校联考,3)若函数f(x)的导函数的图象关于y轴对称,则f(x)的解析式可能为( )A.f(x)=3cos xB.f(x)=x3+x2C.f(x)=1+sin 2xD.f(x)=e x+x答案 C7.(2016安徽安庆二模,7)给出定义:设f '(x)是函数y=f(x)的导函数, f ″(x)是函数y=f '(x)的导函数,若方程f ″(x)=0有实数解x0,则称点(x0, f(x0))为函数y=f(x)的“拐点”.已知函数f(x)=3x+4sin x-cos x的拐点是M(x0, f(x0)),则点M( )A.在直线y=-3x上B.在直线y=3x上C.在直线y=-4x上D.在直线y=4x上答案 BB组2016—2018年模拟·提升题组(满分:35分时间:25分钟)一、选择题(每小题5分,共20分)1.(2018广东阳春第一中学月考,9)丹麦数学家琴生(Jensen)是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方向留下了很多宝贵的成果,设函数f(x)在(a,b)上的导函数为f '(x),f '(x)在(a,b)上的导函数为f ″(x),若在(a,b)上,f ″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”,已知f(x)=-x3+x2在(1,4)上为“凸函数”,则实数t的取值范围是( )A.[3,+∞)B.(3,+∞)C. D.答案 C2.(2017广东惠州模拟,12)设曲线f(x)=-e x-x(e为自然对数的底数)上任意一点处的切线为l1,总存在曲线g(x)=3ax+2cos x上某点处的切线l2,使得l1⊥l2,则实数a的取值范围为( )A.[-1,2]B.(3,+∞)C. D.答案 D3.(2017江西新余第二次模拟,9)将函数g(x)=2cos x-·cos图象上各点的横坐标伸长为原来的2倍(纵坐标不变)后得到函数h(x)的图象,设f(x)=x2+h(x),则f '(x)的图象大致为()答案 A4.(2017河南洛阳期中,12)设点P,Q分别是曲线y=xe-x(e是自然对数的底数)和直线y=x+3上的动点,则P,Q两点间距离的最小值为( )A. B.C. D.答案 C二、填空题(每小题5分,共15分)5.(2018重庆梁平二调,15)曲线y=a(a>0)与曲线y=ln有公共点,且在公共点处的切线相同,则a 的值为.答案6.(2018河南联考,16)已知过点(0,-1)且与曲线y=f(x)=-x3+x2-6x(x>0)相切的直线有且仅有两条,则实数a的取值范围是.答案(2,+∞)7.(2017天津红桥期中,16)若在曲线f(x)=ax5+ln x上存在垂直于y轴的切线,则实数a的取值范围是.答案(-∞,0)C组2016—2018年模拟·方法题组方法利用导数的几何意义求曲线的切线方程1.(2018江苏丹阳高级中学期中,10)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,f(x1))处的切线与该曲线交于另一点Q(x2,f(x2)),记f '(x)为函数f(x)的导数,则的值为.答案2.(2017河南百校联盟模拟,16)已知函数f(x)=-f '(0)e x+2x,点P为曲线y=f(x)在点(0, f(0))处的切线l上的一点,点Q在曲线y=e x上,则|PQ|的最小值为.答案3.(2016江西百所重点高中阶段性诊断,14)若曲线f(x)=在点(1,1)处的切线经过点A(a,0),B(0,b),则a与b的等差中项为.答案。
第三章 导数及其应用1.瞬时速度和瞬时加速度(1)瞬时速度:对于t ∈[t 0,t 0+Δt ]时的平均速度v =Δs Δt ,当Δt →0时,v =ΔsΔt 趋近于一个常数,这个常数就是t =t 0的瞬时速度.(2)瞬时加速度:对于t ∈[t 0,t 0+Δt ]时的平均加速度a =Δv Δt ,当Δt →0时,a =ΔvΔt趋近于一个常数,这个常数就是t =t 0的瞬时加速度.2.函数y =f (x )在x =x 0处的导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx =f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).3.函数f (x )的导函数若函数y =f (x )在区间(a ,b )内任意一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).4.基本初等函数的求导公式(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[Cf (x )]′=Cf ′(x )(C 为常数); (4)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2(g (x )≠0).考点贯通抓高考命题的“形”与“神”已知函数的解析式求导数[例1] 求下列函数的导数: (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ;(2)y =ln x x;(3)y =tan x ; (4)y =3x e x-2x+e.[解] (1)∵y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=⎝ ⎛⎭⎪⎫ln x x ′=ln x ′x -x ′ln x x 2=1x·x -ln xx2=1-ln xx2. (3)y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=sin x ′cos x -sin x cos x ′cos 2x=cos x cos x -sin x -sin x cos 2x =1cos 2x. (4)y ′=(3x e x)′-(2x)′+(e)′ =(3x)′e x+3x(e x)′-(2x)′ =3x(ln 3)·e x+3x e x-2xln 2 =(ln 3+1)·(3e)x-2xln 2. [方法技巧]导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.导数运算的应用[例2] ,f ′(x 0)=2 018,则x 0=________.(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x=2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x,所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017,即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)1 (2)-2 018 [方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求的导数值.能力练通抓应用体验的“得”与“失”1213x )=f ′2(x ),…,f n (x )=f ′n -1(x )(n ∈N *且n ≥2),则f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 017⎝ ⎛⎭⎪⎫π2=________.解析:f 2(x )=f ′1(x )=cos x -sin x ,f 3(x )=f ′2(x )=-sin x -cos x ,f 4(x )=f ′3(x )=sin x -cos x ,f 5(x )=f ′4(x )=sin x +cos x ,故周期为4,前四项和为0,所以原式=f 1⎝ ⎛⎭⎪⎫π2=sin π2+cos π2=1.答案:12.[考点二](2018·徐州期初检测)记定义在R 上的函数y =f (x )的导函数为f ′(x ).如果存在x 0∈[a ,b ],使得f (b )-f (a )=f ′(x 0)(b -a )成立,则称x 0为函数f (x )在区间[a ,b ]上的“中值点”,那么函数f (x )=x 3-3x 在区间[-2,2]上的“中值点”的个数为________.解析:因为f (2)=2,f (-2)=-2,f-f -2--=1,所以f ′(x )=3x 2-3=1,得x =±233∈[-2,2],故有2个“中值点”.答案:23.[考点二](2018·南京重点中学月考)已知函数f (x )的导数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于________.解析:因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.答案:-944.[考点二]在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.又数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=4 096.答案:4 0965.[考点一]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x e.解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=xx-cos xxx2=-sin x +cos x ex. 突破点(二) 导数的几何意义基础联通抓主干知识的“源”与“流”函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.考点贯通抓高考命题的“形”与“神”求切线方程[例1] 已知函数f ((1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0. (2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f x 1x 0-x 1,求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.[提醒] “过点A 的曲线的切线方程”与“在点A 处的曲线的切线方程”是不相同的,后者A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.求切点坐标[例2] (1)设曲线y =e x在点(0,1)处的切线与曲线y =x(x >0)上点P 处的切线垂直,则点P 的坐标为________.(2)(2018·广州模拟)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为________.[解析] (1)y =e x的导数为y ′=e x,则曲线y =e x在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x (x >0),设P (m ,n ),则曲线y =1x(x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).(2)由题意知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率为f ′(x 0)=3x 20+2ax 0, 又切线方程为x +y =0,所以x 0≠0,且⎩⎪⎨⎪⎧3x 20+2ax 0=-1,x 0+x 30+ax 20=0,解得a =±2,x 0=-a2.所以当⎩⎪⎨⎪⎧x 0=1,a =-2时,点P 的坐标为(1,-1);当⎩⎪⎨⎪⎧x 0=-1,a =2时,点P 的坐标为(-1,1).[答案] (1)(1,1) (2)(1,-1)或(-1,1)求参数的值[例3] (1)直线y (1,3),则2a +b 的值为________.(2)已知曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =________. [解析] (1)依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1.(2)由y ′=-2x -2得曲线在点(3,2)处的切线斜率为-12,又切线与直线ax +y +1=0垂直,则⎝ ⎛⎭⎪⎫-12×(-a )=-1,得a =-2. [答案] (1)1 (2)-2 [方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.能力练通抓应用体验的“得”与“失”. 解析:∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x(sin x +cos x ),∴f ′(0)=2,∴曲线f (x )在点(0,f (0))处的切线方程为y =2x .答案:y =2x2.[考点三](2018·仪征中学高三月考)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________.解析:设直线y =2x +m 与曲线y =x ln x 相切于P (t ,t ln t ),t >0,由y =x ln x 得y ′=ln x +1,由题意ln t +1=2,所以t =e ,即P (e ,e),所以e =2e +m ,解得m =-e.答案:-e3.[考点二]在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x +1上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:由y ′=3x 2-1=2,得x =±1,又点M 在第二象限内,故x =-1,此时y =1,即点M 的坐标为(-1,1).答案:(-1,1)4.[考点三](2018·衡阳八中模拟)已知函数f (x )=a xln x ,x ∈(0,+∞),其中a >0且a ≠1,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.解析:因为f (x )=a xln x ,所以f ′(x )=ln a ·a xln x +a xx.又f ′(1)=3,所以a =3.答案:35.[考点一]如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=01.(2018·镇江调研)函数f (x )=(x +1)2(x -1)在x =1处的导数等于________. 解析:f (x )=(x +1)2(x -1)=x 3+x 2-x -1,f ′(x )=3x 2+2x -1,f ′(1)=3+2-1=4.答案:42.(2017·苏州暑假测试)曲线y =2x在x =0处的切线方程是________.解析:因为y ′=2xln 2,所以在x =0处的切线斜率为k =20×ln 2=ln 2,因此切线方程是y -1=ln 2×(x -0),即y =x ln 2+1.答案:y =x ln 2+13.已知直线y =-x +1是函数f (x )=-1ae x图象的切线,则实数a =________.解析:设切点为(x 0,y 0).f ′(x )=-1a e x ,则f ′(x 0)=-1a·e x 0=-1,∴e x 0=a ,又-1a·e x 0=-x 0+1,∴x 0=2,∴a =e 2.答案:e 24.(2018·无锡期末)过曲线y =x -1x(x >0)上一点P (x 0,y 0)处的切线分别与x 轴、y 轴交于点A ,B ,O 是坐标原点,若△OAB 的面积为13,则x 0=________.解析:∵y ′=1+1x 2,∴y ′x =x 0=1+1x 20,∴AB :y -y 0=⎝⎛⎭⎪⎫1+1x 20(x -x 0).又y 0=x 0-1x 0,∴y -x 0+1x 0=⎝ ⎛⎭⎪⎫1+1x 20(x -x 0)令x =0得y =-2x 0;令y =0得x =2x 01+x 20,∴S △OAB =12·2x 0·2x 01+x 20=13,解得x =5(负值舍去). 答案: 55.(2018·常州月考)设点P 为函数f (x )=12⎝ ⎛⎭⎪⎫x 3-1x 图象上任一点,且f (x )在点P 处的切线的倾斜角为α,则α的取值范围为________.解析:由f (x )=12⎝ ⎛⎭⎪⎫x 3-1x 得,f ′(x )=12⎝ ⎛⎭⎪⎫3x 2+1x 2≥12×23=3,即tan α≥3(α∈[0,π)),解得π3≤α<π2.答案:⎣⎢⎡⎭⎪⎫π3,π2 [练常考题点——检验高考能力]一、填空题1.(2018·扬州期初测试)若以数列{a n }中的各项a n 作为系数,构成一个函数系y =a n x 3,其图象在x =1处的切线的斜率为4a n -1-1(n ≥2),且a 1=43,则a n =________.解析:由y =a n x 3,得y ′=3a n x 2,故当x =1时,切线的斜率k =3a n ,从而3a n =4a n -1-1(n ≥2),于是3a n -3=4a n -1-4(n ≥2),故a n -1a n -1-1=43(n ≥2),又a 1=43,所以a 1-1=13,所以数列{a n -1}是以13为首项,43为公比的等比数列,故a n -1=13×⎝ ⎛⎭⎪⎫43n -1,从而a n =4n -13n +1.答案:4n -13n +12.(2018·泰州模拟)已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =f ′(t )=3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故-a +274-a =0,解得a =278.答案:2783.(2018·太仓高级中学模拟)若点P ,Q 分别是曲线y =x +4x与直线4x +y =0上的动点,则线段PQ 长的最小值为________.解析:易知曲线y =x +4x 与直线4x +y =0无公共点,设直线4x +y =m 与y =x +4x相切,P 为切点.对y =x +4x 求导得y ′=-4x 2,由-4x2=-4得x =±1,因此P (1,5)或P (-1,-3),解得m =9或m =-7,此时两直线4x +y =m,4x +y =0间的距离分别为917,717,故线段PQ 长的最小值为71717.答案:717174.(2018·淮安月考)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上为凸函数的是________.(填序号)①f (x )=sin x +cos x ;②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1;④f (x )=x e x.解析:在定义域⎝⎛⎭⎪⎫0,π2内,由f ″(x )=-sin x -cos x <0,得①是凸函数;由f ″(x )=-1x2<0,得②是凸函数;由f ″(x )=-6x <0,得③是凸函数;由f ″(x )=2e x +x e x>0,得④不是凸函数.答案:①②③5.(2018·重庆诊断)已知函数f (x )=2e x+1+sin x ,其导函数为f ′(x ),则f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)的值为________.解析:∵f (x )=2e x +1+sin x ,∴f ′(x )=-2e xx +2+cos x ,f (x )+f (-x )=2e x+1+sin x +2e -x +1+sin(-x )=2,f ′(x )-f ′(-x )=-2e xx +2+cos x +2e -x-x +2-cos(-x )=0,∴f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)=2.答案:26.(2018·宿迁期初测试)若直线l 与曲线C 满足下列两个条件:(ⅰ)直线l 在点P (x 0,y 0)处与曲线C 相切;(ⅱ)曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C ,下列四个命题:①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3; ②直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x ; ③直线l :y =-x +π在点P (π,0)处“切过”曲线C :y =sin x ; ④直线l :y =x +1在点P (0,1)处“切过”曲线C :y =e x. 其中正确的命题有________.(填序号)解析:对于①,y =x 3在点P (0,0)处的切线为y =0,且曲线y =x 3在(0,0)附近位于直线y =0两侧,符合题中两个条件,所以正确;对于②,曲线C :y =ln x 在直线l :y =x -1的同侧,不符合题意,所以错误;对于③,由图象可知,曲线C :y =sin x 在点P (π,0)附近位于直线l 的两侧,符合题意,所以正确;对于④,曲线C :y =e x在直线l :y =x +1的同侧,不符合题意,所以错误.即正确的有①③.答案:①③7.(2018·启东中学月考)若曲线y =a ln x 与曲线y =x 22e在它们的公共点P (s ,t )处具有公切线,则ts=________.解析:函数y =a ln x 的导函数为y ′=a x ,其切线在P (s ,t )处的斜率为k 1=a s.函数y =x 22e 的导函数为y ′=x e ,其切线在P (s ,t )处的斜率为k 2=s e .由曲线y =a ln x 与曲线y =x 22e在它们的公共点P (s ,t )处具有公切线,可得a s =s e ,且t =s 22e =a ln s ,s >0,所以ln s =12,所以s 2=e ,所以t =12,s =e ,即t s =e 2e.答案:e 2e8.(2018·无锡期初测试)曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1,x ∈[1,2]上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为________.解析:设P (x 0,x 20+1),x ∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 2+1)=2x 0(x -x 0),令y =2x 0(x -x 0)+x 20+1=g (x ),由g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),得S 普通梯形=g+g 2×1=-x 20+3x 0+1=-⎝⎛⎭⎪⎫x 0-322+134,所以当P 点坐标为⎝ ⎛⎭⎪⎫32,134时,S普通梯形最大. 答案:⎝ ⎛⎭⎪⎫32,1349.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:由题意,可知f ′(x )=3ax 2+1x ,又曲线存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0).答案:(-∞,0)10.(2018·南通调研)在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值是________.解析:由y =x 2得y ′=2x ,切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.由y =x 3得y ′=3x 2,切线方程为y -x 32=3x 22(x -x 2),即y =3x 22x -2x 32,由⎩⎪⎨⎪⎧2x 1=3x 22,x 21=2x 32,得x 1x 2=43. 答案:43二、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).12.(2018·启东中学高三月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a ,因为f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线, 则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6, 所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,g ′(-1)=0,切线方程为y =9; 当x 0=1时,g ′(1)=12,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11,①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9.所以y =f (x )与y =g (x )的公切线是y =9.②由f ′(x )=12得-6x 2+6x +12=12,解得x =0或x =1.在x =0处,y =f (x )的切线方程为y =12x -11;在x =1处,y =f (x )的切线方程为y =12x -10;所以y =f (x )与y =g (x )的公切线不是y =12x +9.综上所述,y =f (x )与y =g (x )的公切线是y =9,此时k =0.1.函数的单调性与导数的关系 函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )为这个区间上的增函数; (2)若f ′(x )<0,则f (x )为这个区间上的减函数; (3)若f ′(x )=0,则f (x )在这个区间上是常数函数. 2.由函数的单调性与导数的关系可得的结论(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0.当x ∈(a ,b )时,①f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; ②f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b )上单调递增(减)的充分条件.判断函数单调性的三种方法[解] f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x = 1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ 1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在1-a2a,+∞上单调递增.[方法技巧]导数法研究函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)得出结论:当f ′(x )>0时,函数f (x )在(a ,b )内单调递增;当f ′(x )<0时,函数f (x )在(a ,b )内单调递减.[提醒] 讨论含参函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] 已知函数f (x )=4+x -ln x -2,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,求函数f (x )的单调区间.[解] 对f (x )求导得f ′(x )=14-a x 2-1x,由曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.所以f (x )=x4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2, 令f ′(x )=0,解得x =-1或x =5,因x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 所以函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5). [方法技巧] 用导数求函数单调区间的三种类型及方法f ′(x )>0(<0)可解 先确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间f ′(x )=0可解先确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间f ′(x )>0(<0)及f ′(x )=0不可解先确定函数的定义域,当不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时,求导并化简,根据f ′(x )的结构特征,选择相应基本解析:依题意得f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x,令f ′(x )>0,解得x >2,所以f (x )的单调递增区间是(2,+∞).答案:(2,+∞)2.[考点一]下列函数中,在(0,+∞)上为增函数的是________.(填序号) ①f (x )=sin 2x ; ②f (x )=x e x; ③f (x )=x 3-x ; ④f (x )=-x +ln x .解析:对于①,f (x )=sin 2x 的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z); 对于②,f ′(x )=e x(x +1),当x ∈(0,+∞)时,f ′(x )>0, ∴函数f (x )=x e x在(0,+∞)上为增函数; 对于③,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33, ∴函数f (x )=x 3-x 在⎝ ⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞上单调递增; 对于④,f ′(x )=-1+1x =-x -1x,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +lnx 在区间(0,1)上单调递增.答案:②3.[考点二](2018·盐城中学月考)函数f (x )=x -ln x 的单调减区间为________. 解析:函数f (x )的定义域为(0,+∞),f ′(x )=1-1x =x -1x .令f ′(x )=1-1x =x -1x<0,得0<x <1.则函数f (x )=x -ln x 的单调减区间为(0,1).答案:(0,1)4.[考点一]已知函数f (x )=ln x -ax (a ∈R),讨论函数f (x )的单调性. 解:f (x )的定义域为(0,+∞),f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.由①②知,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.5.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b ,由已知可得⎩⎪⎨⎪⎧f =a +1=c ,g=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6. ∴函数f (x )+g (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,-a 2,⎝ ⎛⎭⎪⎫-a6,+∞;单调递减区间为⎝⎛⎭⎪⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.考点贯通抓高考命题的“形”与“神”已知函数的单调性求参数的取值范围[例1](1)若f(x)在区间(1,+∞)上为增函数,求a的取值范围;(2)若f(x)在区间(-1,1)上为减函数,求a的取值范围;(3)若f(x)的单调递减区间为(-1,1),求a的值.[解] (1)因为f′(x)=3x2-a,且f(x)在区间(1,+∞)上为增函数,所以f′(x)≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].(2)因为f(x)在区间(-1,1)上为减函数,所以f′(x)=3x2-a≤0在(-1,1)上恒成立,即a≥3x2在(-1,1)上恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即a的取值范围为[3,+∞).(3)因为f(x)=x3-ax-1,所以f′(x)=3x2-a.由f′(x)=0,得x=±3a3(a≥0).因为f(x)的单调递减区间为(-1,1),所以3a3=1,即a=3.[方法技巧]由函数的单调性求参数取值范围的方法(1)可导函数在区间(a,b)上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围,注意检验等号成立时导数是否在(a,b)上恒为0.(2)可导函数在区间(a,b)上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,即f′(x)max>0(或f′(x)min<0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f(x)在区间I上的单调性,区间I上含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而求出参数的取值范围.比较大小或解不等式[例2] (1)若0<x 1<x 2<1,则下列各式中关系正确的序号是________. ①e x 2-e x 1>ln x 2-ln x 1;②e x 2-e x 1<ln x 2-ln x 1; ③x 2e x 1>x 1e x 2;④x 2e x 1<x 1e x 2.(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________. (3)(2017·江苏高考)已知函数f (x )=x 3-2x +e x-1e x ,其中e 是自然对数的底数.若f (a-1)+f (2a 2)≤0,则实数a 的取值范围是________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x ex-1=0.根据函数y =e x 与y =1x的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x-ln x在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故①②错;构造函数g (x )=exx,则g ′(x )=x e x -e x x 2=e x x -x 2,故函数g (x )=exx在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故③正确,④错误.(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). (3)由f (x )=x 3-2x +e x-1ex ,得f (-x )=-x 3+2x +1e x -e x=-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0,所以f (a -1)≤-f (2a 2)=f (-2a 2),所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12. [答案] (1)③ (2)(-∞,-1)∪(1,+∞) (3)⎣⎢⎡⎦⎥⎤-1,12[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x x ′;(4)f ′(x )+f (x )→[e xf (x )]′; (5)f ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x e x ′.⎣⎢⎡⎦⎥⎤14,13上单调递增,则实数a 的最大值为________. 解析:对函数f (x )求导得f ′(x )=1x -2ax -4=-2ax 2+4x -1x(x >0).依题意,得f ′(x )≥0在⎣⎢⎡⎦⎥⎤14,13上恒成立,即2ax 2+4x -1≤0在⎣⎢⎡⎦⎥⎤14,13上恒成立,所以a ≤12⎝ ⎛⎭⎪⎫1x 2-4x =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x -22-4恒成立,因为1x ∈[3,4],所以a ≤-32,即实数a 的最大值为-32.答案:-322.[考点二]函数f (x )的导函数f ′(x )的图象是如图所示的一条直线l ,l 与x 轴的交点坐标为(1,0),则f (0)与f (3)的大小关系为____________.解析:由题意知f (x )的图象是以x =1为对称轴,且开口向下的抛物线,所以f (0)=f (2)>f (3).答案:f (0)>f (3)3.[考点一]若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是____________.解析:因为f ′(x )=3x 2-12,由f ′(x )>0,得函数的增区间是(-∞,-2)及(2,+∞),由f ′(x )<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3.答案:(-3,-1)∪(1,3)4.[考点二](2018·苏州中学检测)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.解析:由题意得,函数的定义域是R ,且f (-x )=(-x )3+(-x )=-(x 3+x )=-f (x ),所以f (x )是奇函数, 又f ′(x )=3x 2+1>0,所以f (x )在R 上单调递增,所以f (mx -2)+f (x )<0可化为:f (mx -2)<-f (x )=f (-x ),由f (x )递增知:mx -2<-x ,即mx +x -2<0,则对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,等价于对任意的m ∈[-2,2],mx +x -2<0恒成立,所以⎩⎪⎨⎪⎧-2x +x -2<0,2x +x -2<0,解得-2<x <23,即x 的取值范围是⎝⎛⎭⎪⎫-2,23.答案:⎝⎛⎭⎪⎫-2,235.[考点二]已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.解析:令g (x )=f (x )-3x +15,则f (x )<3x -15的解集即为g (x )<0的解集.又g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以g (x )<g (4),故x >4.所以f (x )<3x -15的解集为(4,+∞).答案:(4,+∞)1.(2018·前黄中学期中考试)函数f (x )=x ln x 的单调减区间是________. 解析:函数f (x )=x ln x 的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x )=ln x +1<0得0<x <1e ,所以函数f (x )=x ln x 的单调减区间是⎝ ⎛⎭⎪⎫0,1e . 答案:⎝ ⎛⎭⎪⎫0,1e 2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)解析:f ′(x )=32x 2+a ,当a >0时,f ′(x )>0,即a >0时,f (x )在R 上单调递增,由f (x )在R 上单调递增,可得a ≥0.故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.答案:充分不必要3.(2018·阜宁中学模拟)若函数f (x )=⎪⎪⎪⎪⎪⎪e x2-a e x (a ∈R)在区间[1,2]上单调递增,则实数a 的取值范围是________.解析:设g (x )=e x 2-a e x ,则g ′(x )=e x2+ae x .①当a >0时,g ′(x )>0,g (x )在R 上单调递增,且g (ln 2a )=0,依题意知ln 2a ≤1,解得0<a ≤e22.②当a =0时,f (x )符合题意.③当a <0时,令g ′(x )=0,解得x =ln -2a .当x <ln -2a 时,g ′(x )<0,g (x )在(-∞,ln -2a )上单调递减,当x >ln -2a 时,g ′(x )>0,g (x )在(ln -2a ,+∞)上单调递增,故当x =ln -2a 时,g (x )取得最小值,又g (ln -2a )>0,所以g (x )>0恒成立,所以依题意知ln -2a ≤1,解得-e 22≤a <0.综上,所求a 的取值范围是⎣⎢⎡⎦⎥⎤-e 22,e 22. 答案:⎣⎢⎡⎦⎥⎤-e 22,e 224.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.解析:∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).答案:(1,2)[练常考题点——检验高考能力]一、填空题1.(2018·南通高三期初测试)已知函数f (x )=ln x +2x,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析:由f (x )=ln x +2x ,得f ′(x )=1x+2xln 2>0,x ∈(0,+∞),所以f (x )在(0,+∞)上单调递增.又由f (x 2+2)<f (3x ),得0<x 2+2<3x ,所以x ∈(1,2).答案:(1,2)2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是________.解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518.答案:⎣⎢⎡⎭⎪⎫518,+∞3.(2018·苏州模拟)已知定义在R 上的函数f (x )满足:f (x )+f ′(x )>1,f (0)=4,则不等式e xf (x )>e x+3(其中e 为自然对数的底数)的解集为________.解析:设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x ) -e x,因为f (x )+f ′(x )>1,所以f (x )+f ′(x ) -1>0,所以g ′(x )>0,所以y =g (x )在定义域R 上单调递增.因为e xf (x )>e x+3,所以g (x )>3,又因为g (0)=e 0f (0)-e 0=3,所以g (x )>g (0),所以x >0,即x ∈(0,+∞).答案:(0,+∞)4.(2018·靖江诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系是________.解析:因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b .答案:b >a >c5.若函数f (x )=x +bx(b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是________.(填序号)①(-2,0);②(0,1);③(1,+∞);④(-∞,-2).解析:由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,∴当1-b x2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意.答案:④6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f xx>0,则对于任意的a ,b ∈(0,+∞),当a >b 时,下列不等式成立的是________.(填序号)①af (a )<bf (b );②af (a )>bf (b ); ③af (b )>bf (a );④af (b )<bf (a ). 解析:由f ′(x )+f x x>0得xfx +f x x>0,即[xfx x>0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ).答案:②7.若幂函数f (x )的图象过点⎝⎛⎭⎪⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________. 解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x(x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝ ⎛⎭⎪⎫-x +1x max=83,∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为_________________________.解析:由题图可知,⎩⎪⎨⎪⎧f x >0,x ∈,+∪-∞,-,f x <0,x ∈-1,,不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧fx >0,x 2-2x -3>0或⎩⎪⎨⎪⎧fx <0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(-1,1)∪(3,+∞).答案:(-∞,-1)∪(-1,1)∪(3,+∞)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案:⎝ ⎛⎭⎪⎫-19,+∞二、解答题11.已知函数f (x )=x 3+ax 2+b (a ,b ∈R).试讨论f (x )的单调性. 解:f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0, 所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减. 12.(2018·宿迁期初测试)已知函数f (x )=e x-ax -1. (1)求函数f (x )的单调增区间.(2)若f (x )在定义域R 内单调递增,求实数a 的取值范围.(3)是否存在实数a ,使得函数f (x )在区间(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,请说明理由.解:(1)易知f ′(x )=e x-a .若a ≤0,则f ′(x )=e x-a >0恒成立,即f (x )在R 上单调递增;若a >0,令e x-a >0,得e x>a ,即x >ln a ,此时f (x )的单调增区间为(ln a ,+∞).(2)要使f (x )在R 内单调递增,只要f ′(x )≥0在R 上恒成立,即e x-a ≥0⇒a ≤e x在R 上恒成立,又因为e x>0,所以a ≤0,即实数a 的取值范围是(-∞,0].(3)假设存在a 满足条件.由题意知e x -a ≤0在(-∞,0]上恒成立,所以a ≥e x在(-∞,0]上恒成立. 因为e x在(-∞,0]上为增函数,所以a ≥1.同理可知e x-a ≥0在[0,+∞)上恒成立,所以a ≤e x在[0,+∞)上恒成立,所以a ≤1. 综上,a =1.函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近的其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.2.函数的极大值函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.3.函数的极值极小值点和极大值点统称为极值点,极小值和极大值统称为极值.[例1] x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1); ②函数f (x )有极大值f (-2)和极小值f (1); ③函数f (x )有极大值f (2)和极小值f (-2); ④函数f (x )有极大值f (-2)和极小值f (2).[解析] 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.[答案] ④。