6
of
22
6
(1)③满足 a , b 1,0,1,2 ,且关于 x 的方程 ax + 2 x + b = 0有实数解得 有序数对 a , b 的个数为( B )
2
A.3
B.6
C.8
D.10
解析: 当 a = 0 时,方程为 2 x + b = 0 ,此时一定有解.
当b = 1, 0 ,1,2 时,满足条件的有序数对为 0, 1 , 0,0 , 0,1 , 0,2 .
2
第1课 第 (1) ③题 P2
7
of
22
7
小提示
与集合有关问题的解题方略 确定集合的代表元素;
看代表元素满足的条件;
根据条件列式求参数的值或确定集合元素的个数,但要注 意,检验集合中元素是否满足互异性.
第1课 小提示 P2
8
of
22
8
9 2 (2)若集合A = x R | ax 3 x + 2 = 0 中只有一个元素,则 a = 0或 . 8
2 2 2
问:它们是否为同一个集合?并说明理由. 解: 三个集合的代表元素互不相同,∴它们是互不相同的集合. 集合①
2
x | y = x + 1 的代表元素是 x ,它满足条件 y = x + 1 , ∴ x | y = x + 1 R ; 集合② y | y = x + 1 的代表元素是 y ,满足条件 y = x + 1 的 y 的取值
当 a 0 时,方程为一元二次方程,Δ = 4 4ab ≥ 0, 解得 ab ≤ 1. 当a 1,1,2时, 满足条件的有序数对为 1, 1 , 1,0 , 1,1 , 1,2 , 1, 1 , 1,0 , 1,1 , 2, 1 , 2,0 , 故使关于 x 的方程 ax + 2 x + b = 0 有实数解的有序数对 a , b 的个数 为13. 故选B.