选用适合于氧化铝陶瓷使用的结合剂的因素
- 格式:docx
- 大小:12.24 KB
- 文档页数:1
论文题目:氧化铝陶瓷的制备与应用学院:材料科学与工程学院专业班级:材料化学2班学号:********姓名:王杰日期:2011-10-19氧化铝陶瓷的制备与应用摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。
Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material.关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant氧化铝陶瓷是一种用途广泛的陶瓷。
因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。
[1]1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。
实验名称:氧化铝陶瓷的制备结构陶瓷的制备通常由所需起始物料的细粉,加入一定的结合剂,根据合适的配比混合后,选择适当的成型方法,制成坯体。
坯体经干燥处理后,进行烧结而得到。
坯体经烧结后,宏观上的反映为坯体有一定程度的收缩,强度增大,体积密度上升,气孔率下降,物理性能得到提高。
实验目的:1.选用氧化铝粉体,通过干法成型,制备氧化铝陶瓷。
2.选用合适的烧结助剂,促进氧化铝陶瓷的烧结,加深对陶瓷烧结的理解。
3.熟悉陶瓷常用物理性能的测试方法实验原理:氧化物粉体经成型后得到的生坯,颗粒间只有点接触,强度很很低,但通过烧结,虽在烧结时既无外力又无化学反应,但能使点接触的颗粒紧密结成坚硬而强度很高的瓷体,其驱动力为粉体具有较高的表面能。
但纯氧化铝陶瓷的烧结需要的温度很高,为在较低的温度下完成烧结,需要向体系中加入一定的助烧剂,使其能在相对较低的温度下出现液相而实现液相烧结。
本实验中,采用向氧化铝粉体中加入适量的二氧化硅粉体以促进烧结,而达到氧化铝陶瓷烧结的目的。
实验仪器:天平、烧杯、压力机、模具、游标卡尺、电炉等实验步骤:1.配料。
将氧化铝、二氧化硅粉体按97:3的比例混合均匀,并外加入5%的水起结合作用。
2.制样。
称取适量混合好的粉体,倒入模具内,压制成型。
并量尺寸,计算生坯的体积密度。
3.干燥。
将成型好的生坯充分干燥。
4.烧结。
将干燥后的生坯置于电炉内,在1500℃的条件下保温3小时。
5.检测。
测量烧后试样的尺寸,计算其体积密度。
计算烧结前后线变化率。
氧化铝陶瓷的制备实验报告1.实验目的2.实验仪器3.实验数据记录及数据处理起始物料的配比;结合剂的加入量;烧结前后试样的体积密度及质量变化;烧结前后的线变化率。
4.思考题:1)助烧剂的作用机理是什么?2)常用体积密度的测试方法有哪几种?。
浅析磷酸二氢铝在氧化铝泡沫陶瓷过滤板上作用机理作者:王霞来源:《佛山陶瓷》2016年第12期摘要:本文以煅烧α-氧化铝、高岭土、硅微粉、长石粉等为基础粉料配方,以磷酸二氢铝溶液为粘结剂制备泡沫陶瓷浆料。
简述了磷酸二氢铝溶液制备技术,研究了磷酸二氢铝溶液含量及浓度对氧化铝泡沫陶瓷浆料上浆性能、坯体干燥性能及烧结后成分和晶相组成的影响。
结果表明:密度1.35 g/cm3的磷酸二氢铝溶液,加入量在25~30%,可制备出具有较好粘性和触变性的陶瓷浆料、较高强度的干燥坯体及结合牢固的产品晶相组成,适合应用于氧化铝泡沫陶瓷过滤板。
关键词:氧化铝泡沫陶瓷;磷酸二氢铝;性能;制备;机理1 引言氧化铝泡沫陶瓷具有的三维网状结构使其被广泛应用于铝及铝合金熔体过滤领域。
虽然其在环保、化工、能源、石油、生物陶瓷及催化剂载体等领域也在不断尝试应用,但由于泡沫陶瓷自身强度低、易掉渣、尺寸精度不高等特性,限制了其在诸多领域的推广应用。
目前,国内氧化铝泡沫陶瓷过滤板厂家针对的市场领域依然是铝及铝合金熔体过滤,且暂时还未能研究出相关产品取代其市场应用。
因此,随着铝及铝合金加工业的精密化发展,氧化铝泡沫陶瓷也将得到进一步的发展与应用。
泡沫陶瓷的制备方法有多种,如发泡法、有机泡沫体浸渍法、溶胶凝胶法等,其中有机泡沫浸渍法具有设备少、制造成本低、工艺过程简单等优点,被广泛应用于泡沫陶瓷生产厂家[1]。
泡沫陶瓷是具有三维网状结构的多孔陶瓷体,是以多孔聚氨酯海绵为骨架,经上浆、干燥、烧制等工艺制备而成,去除三维网络结构的有机前驱体,便形成一种开口气孔率高(80~90%)、密度小(0.3~0.5 g/cm3)、比表面积大、压力损失小的网架结构多孔体[2]。
磷酸二氢铝因其具有固化温度低、粘结强度高、高温结构稳定等特性,被选作配制泡沫陶瓷浆料粘结剂。
针对磷酸铝胶黏剂的制备应用,已经被广泛研究[3-5]。
但用作泡沫陶瓷的磷酸二氢铝的相关研究报道却很少,本文主要针对磷酸二氢铝在泡沫陶瓷生产过程中的作用机理进行了探讨研究。
第二部分项目第一节特种陶瓷特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。
在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。
一、分类特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。
按照化学组成划分有:氧化物陶瓷氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。
氮化物陶瓷氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
碳化物陶瓷碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
硼化物陶瓷硼化物陶瓷:硼化锆、硼化镧等。
硅化物陶瓷硅化物陶瓷:二硅化钼等。
氟化物陶瓷氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
硫化物陶瓷硫化物陶瓷:硫化锌、硫化铈等。
其他还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。
例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。
此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。
近年来,为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。
为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,高温陶瓷,高韧性陶瓷,铁电陶瓷,压电陶瓷,电解质陶瓷,半导体陶瓷,电介质陶瓷,光学陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。
耐火材料结合剂的6大结合机理及选用原则耐火材料结合剂的结合机理结合剂的种类不同,其结合散状耐火原料的机理也有所区别。
常见耐火材料结合剂的结合机理主要有以下几种:1水化结合即在常温下通过结合剂与水发生水化反应生成的水化产物而产生结合作用。
水泥类结合剂一般都是水化结合机理,如铝酸钙水泥遇水后发生水解和水化反应生成六方片状或针状CAH10(CaO·Al2O3·10H2O)、C2AH8(CaO·Al2O3·H2O)和立方粒状C3AH6(3CaO·Al2O3·6H2O)晶体和氧化铝凝胶体,形成凝聚一结晶网而产生结合。
2化学结合通过结合剂与硬化剂(促凝剂)之间的反应,或者结合剂与耐火原料在常温或高于常温而低于烧结温度的范围内发生反应生成具有结合作用的化合物而产生结合。
气硬性结合剂和部分热硬性结合剂属于这种结合机理,例如水玻璃结合剂与氟硅酸钠硬化剂发生反应生成的水溶胶SiO2·nH2O经脱水形成硅氧烷(Si-O-Si)网络结构而产生结合强度;磷酸二氢铝结合剂加MgO硬化剂时,在常温下即可发生脱水和交联反应而产生结合强度。
3缩聚结合借助于催化剂或交联剂,结合剂发生缩聚反应形成网络状结构而产生结合强度。
例如甲阶酚醛树脂加酸作催化剂或受热时都可产生缩聚反应。
4陶瓷结合通过耐火原料或耐火原料与加入的烧结助剂在高温下形成的液相而产生结合。
陶瓷结合实际上是一种由液相烧结而产生的结合。
在耐火材料坯体中,耐火度较低的原料或耐火原料与助烧剂发生反应首先产生粘性液相使散状原料粘结在一起,随温度的提高,依靠液一固相反应生成具有更高熔融温度的新物相而产生坚固的结合。
5粘着结合借助于吸附作用、扩散作用和静电作用等物理作用而将散状耐火原料结合在一起。
吸附作用有物理吸附和化学吸附,是依靠分子间的相互作用力一一范德华力而产生结合;扩散作用是在分子热运动的作用下,结合剂与被结合物的分子发生相互扩散,在界面上形成扩散层从而产生结合:静电作用,即若结合剂与被结合物的界面存在着双电层,双电层的静电引力可产生结合作用。
氧化铝陶瓷为何要加添助剂?
氧化铝陶瓷有许多可圈可点的优势,例如高硬度,耐高温,耐磨、抗氧化等等,广泛应用于各工业领域。
然而,氧化铝自身阳离子电荷多,半径小,离子键强的特点,导致其晶格能较大,扩散系数低,烧结温度高。
一般纯氧化铝陶瓷的烧结温度在1700℃以上,这样高的烧结温度在工业上较难普遍实现,而且不利于降低成本,同时结构上也会有存在较多的缺陷,对氧化铝陶瓷的材料力学性能不利,为了促进氧化铝陶瓷致密化,降低烧结温度,一般在原料里引入添加剂来降低其烧结温度或改善其烧结性能。
添加剂的类型和特征添加剂的作用机理与其离子半径和化合价有关。
根据作用机理的不同,根据作用机理的不同,可以把添加剂分为2类:第一类是生成液相,这类添加剂如SiO2、MgO、CaO、SrO、BaO等碱土金属氧化物,在晶界形成低熔点的玻璃相,促进烧结,电性能良好,适于制备电子陶瓷;第二类是生成固溶体,这类添加剂如Cr2O3、Fe2O3、TiO2、MnO等,它们与氧化铝基体形成置换固溶体,降低烧结温度,同时降低陶瓷的体积电阻率,适于有力学要求的场合。
第一类示例:氧化铝陶瓷基片
第二类示例:氧化铝结构件
生成液相添加剂的作用机理:第一类添加剂多为立方密堆积、NaCl型晶体结构。
由于晶体结构的差异,它们在Al2O3中的“溶解度”极小,通过杂质聚集在晶界处的方式,减少了它们在基体中的含量,随着烧结的继续进行,晶界数量和面积减少,晶界处杂质的浓度相对增加,使晶界处的共溶。
总结:Al2O3基陶瓷材料增韧方法介绍
Al2O3基陶瓷材料以其优异的耐磨性、耐高温、耐腐蚀、硬度高,且化学稳定性强等特点,具有广阔的应用前景。
然而其缺点是韧性低,容易发生脆断,因此,提高氧化铝陶瓷材料的韧性是其能够在各个领域中进一步推广应用的前提。
图1 Al2O3基陶瓷材料
氧化铝陶瓷常见的增韧方法主要有颗粒弥散增韧、相变增韧、晶须增韧、原位生长增韧、复合协同增韧等方式。
一、颗粒弥散增韧
颗粒弥散增韧主要是在Al2O3陶瓷基体中加入高弹性模量的非金属或具有延性的金属作为第二相粒子,高弹性模量颗粒在基体材料拉伸时阻止横向截面的收缩。
要达到和基体相同的横向收缩,必须增加纵向拉应力,使材料强化。
增加外界拉应力就使材料消耗更多的能量,因此具有增韧效果。
颗粒弥散增韧Al2O3基陶瓷材料主要分为金属颗粒增韧和非金属颗粒增韧。
1、金属颗粒增韧
Al2O3基陶瓷材料可以通过添加金属颗粒相提高其力学性能,颗粒弥散相可以引入延性金属相。
目前,延性金属相也被证明是一种很有前途的增韧方法,添加的金属颗粒主要包括Al、Ni、Ag、Cu、Fe等。
金属颗粒增韧主要利用裂纹尖端未断裂的颗粒在裂纹上下表面起桥联作用,一方面阻止裂纹的张开而减小裂纹尖端的应力强度因子,另一方面因裂纹扩展而使颗粒发生塑性变形,消耗裂纹尖端的能量,达到增韧的目的。
选用适合于氧化铝陶瓷使用的结合剂的因素
氧化铝陶瓷的成型方法有很多,生产中应根据制品的形状选择成型方法,而不同的成型方法需选用的结合剂不同。
那么,在为氧化铝陶瓷选择结合剂的时候,具体要考虑哪些因素呢?
目前市场的结合剂可分为润滑剂、增塑剂、分散剂、表面活性剂等,为满足成型需要,通常采用多种有机材料的组合。
在选择氧化铝陶瓷结合剂的时候,首先要求它能被粉料润湿,而只有当粉料的临界表面张力或表面自由能比结合剂的表面张力大时,才能很好地润湿。
其次,好的结合剂易于被粉料充分润湿,且内聚力大。
当结合剂被粉料润湿时,在相互分子间发生引力作用,结合剂与粉料间发生一次结合,同时,在结合剂分子内,由于取向、诱导、分散效果而产生内聚力。
虽然水也能把粉料充分润湿,但水易挥发,分子量较小,内聚力小,对于氧化铝陶瓷才说并不是好的结合剂。
另外,氧化铝陶瓷所用结合剂的分子量大小要适中。
随着分子量增大,结合能力增强;但当分子量过大时,围内聚力过大而不易被润湿,且易使坯体产生变形。
为了帮助分子内的链段运动,此时要适当加入增塑剂,在其容易润湿的同时,使结合剂更加柔软,便于成形。
除此之外,为保证氧化铝陶瓷的质量,还需要防止从结合剂、原材料和配制工序混人杂质,使产品产生有害的缺陷。
因此要选用能够易于飞散除去以及不含有害无机盐和金属离子的有机材料,才能确保产品质量。