WL_04B微机励磁调节器的参数设定
- 格式:pdf
- 大小:165.93 KB
- 文档页数:3
GDF-2微机励磁控制器(GDF-IGBT)安装使用说明深圳市国立旭振电气技术有限公司一、概述GDF-系列励磁控制器只需要一键启动后,即可实现励磁控制全自动,无人值守运行!▲GDF-系列励磁控制器是2014最新版。
IGBT励磁控制技术为目前较为先进的直流控制技术,现在国内只有少数励磁制造厂家掌握并用于高端励磁控制系统(高压励磁控制系统),原因是技术要求高、制造成本高。
我们将IGBT技术首先用于无刷励磁发电机。
解决了可控硅励磁容易受中频干扰,在满负荷跳闸时失压,无法为向水机提供关机电源等难题。
▲电路板制造时采用元件贴片技术,大大减少了人工插件制作的错误。
解决或修正了旧版本的已知问题。
主要特别功能:1、并网后自动按设定的功率因数值运行。
2、IGBT模块智能控制,不受谐波干扰,可以在180V以下的励磁电压稳定运行。
3、励磁控制回路手动调试功能,方便用户对控制器检查、设置和对发电机充磁。
4、发电机电压恒定、电压快速恢复功能,防止过电压或低电压。
5、自动识别停机过程并进行可调整的灭磁频率控制。
6、“独立小电网运行”功能,通过软件设置可实现该功能,适合工厂自行组合小电网的柴油发电机组并列运行。
7、50HZ或60HZ运行频率适应功能。
8、防止发电机过负荷功能。
二、技术参数1. 适用范围:▲GDF-IGBT适用于励磁电流15A以下、励磁电压180V以下的无刷励磁发电机。
2. 输入信号:▲电流:串接发电机定子C相电流互感器电流,额定电流:5A。
▲电压:发电机A1、B1、N电压400V/230V,电网A2、B2电压400V。
▲并网识别:发电机出口断路器的辅助接点:常开接点。
3. 控制器输出:励磁输出电压串电流表后至发电机的励磁电机。
4. 环境温度: -10°C~+50°C 海拔:2500米以下地区5.外型尺寸:控制器(宽)305 mm×(高)146 mm×(深)240mm6. 开孔尺寸:(宽)264 mm×(高)124 mm(GDF系列全部相同)三、安装接线1、阅读理解接线原理图,按端子接线图接好外引连线。
励磁调节器试验所需参数
2.7 励磁调节器参数
型号:
励磁系统标称响应时间(倍/秒);允许强励持续时间(秒):
强励倍数:
高起始响应励磁电压响应时间(秒):
励磁系统稳态增益(倍):
励磁系统动态增益(倍):
说明:要求做励磁系统参数实测和PSS试验的电厂,“励磁系统稳态增
益”和“励磁系统动态增益”两项按励磁系统可达到的能力填写。
2.8 励磁系统传递函数框图:
励磁系统传递函数中各参数定义及初始设定范围
参数定义单位范围推荐值TR 测量环节时间常数s
KA 稳态增益pu
TA 积分时间常数s
TS 可控硅整流滞后时间常数s
ks 调差系数pu
Ukmax 调节器最大输出pu
Ukmin 调节器最小输出pu
2.9 PSS参数:
有无配置PSS:;厂家:
PSS型号: PSS抑制低频振荡范围:
3.0 PSS传递函数框图:
PSS传递函数一览表及设定范围
参数定义单位范围推荐值
PSS ON PSS投入pu Ks1 PSS增益pu Ks2 计算电功率积分的补偿系数pu Ks3 信号合成系数pu TW1,TW2 隔直时间常数s TW3,TW4 隔直时间常数s
s T1,T3 相位补偿环节的超前滞后时
间常数
s T2,T4 相位补偿环节的超前滞后时
间常数
s T5,T6 相位补偿环节的超前滞后时
间常数
T7 电功率积分时间常数s T8 斜坡跟踪滤波器时间常数s T9 斜坡跟踪滤波器时间常数s M 斜坡跟踪滤波器阶数
N 斜坡跟踪滤波器阶数
USmax PSS输出上限值pu USmin PSS输出下限值pu 说明:“*”根据现场试验后确定。
课程名称:电力系统分析综合实验指导老师:成绩:实验名称:同步发电机励磁控制实验实验类型:同组同学:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务2.了解自并励励磁方式和他励励磁方式3.熟悉三相全控整流、逆变的工作波形;观察出发脉冲及其相位移动4.了解微机励磁调节器的基本控制方式5.掌握励磁调节器的基本使用方法二、实验内容和原理同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成了一个闭环反馈控制系统,成为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。
实验用的励磁控制系统示意图如上图所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒UF (保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90︒;当正常停机或事故停机时,调节器使控制角α大于90︒,实现逆变灭磁。
三、主要仪器设备(1)WL-04B微机励磁调节器;(2)HGWT-03B微机准同期控制器;(3)TSG-03B微机调速装置(4)微机保护装置;(5)模拟实验台四、操作步骤与实验方法1.同步发电机起励实验同步发电机的起励有三种:恒UF方式起励,恒α方式起励和恒IL方式起励。
微机励磁调节器操作(运行)及维护规程一、正常开机操作1)发电机3000转/分,发电机具备升压条件。
2) 投入励磁调节器屏交直接工作电源。
3)合上控制箱交直接电源开关1DYK、2DYK。
4)投入控制箱PT投切开关QK。
5)注意:控制箱面板“开机工作”信号灯亮。
6)合上灭磁开关MK。
7)按“起励”键,发电机升压至预置值,再按“增”、“减”磁按钮,调整发电机电压至并网值,发电机并网运行。
8)按“增”、“减”磁按钮,调整发电机无功负荷。
二、正常退出操作1) 调整“减磁”键,将发电机无功减至可解列值,发电机解列。
2)按“逆变”按钮或跳开灭磁开关MK,使发电机降为零。
3)断开控制箱PT投切开关QK。
4)断开控制箱交直流电源开关1DYK,2DYK。
5)断开励磁调节器屏交直流工作电源。
三、正常巡检内容1)屏各表计显示是否正常,指示灯是否亮。
2)控制箱面板十六个数码显示是否正常。
3)控制箱面板“电压调节”、“本机正常”、“5V”、“+15V”、“-15V”、“24V”信号指示灯亮。
4)屏六只脉冲指示灯亮。
四、故障信号处理1)发“顶值限制”信号,是励磁电源超过强励倍数。
应检查发电机状态和系统状态,是否有短路或断路故障。
如无,则检查调节器的电流变换器、测量板、可控硅等器件,必要时退出调节器运行。
2)发“过励限制”信号,是励磁电流大于1.1倍额定值小于强励倍数值。
处理方法同上。
注意:故障消失后,此信号保持3分钟。
3)发“低励限制”信号,是机端电压过高或励磁电流太小,发电机进相运行。
调节器会自动增励磁退出进相工作点,在进相工作点附近可人为增退出进相。
如不能,则检查减磁键是粘连、测量板、可控硅等。
4)发“调变断线”信号,是励磁专用PT断线。
如果是双控制箱发信号,则为线路断线。
否则,为某一控制箱断线。
此时,检查PT 回路、测量板。
5)发“仪变断线”信号,是仪用PT断线。
检查方法同上。
6)发“系统无压”信号,是指系统电压低于85V或没有接入。
概述WDT-Ⅲ型电力系统综合自动化试验台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。
此系统除用于试验教学以外,另可用于本、专科生的课程设计试验,也可作为研究生、科研人员的产品开发试验,还可作为电力系统技术人员的培训基地。
试验装置“一次系统原理接线图”见附录一。
综合自动化实验教学系统由发电机组、试验操作台、无穷大系统等三大部分组成(如图1所示)。
图1 WDT-Ⅲ型电力系统综合自动化试验装置现场图1.发电机组它是由同在一个轴上的三相同步发电机(S N=2.5kV A,V N=400V,n N=1500r.p.m),模拟原动机用的直流电动机(P N=2.2kW,V N=220V)以及测速装置和功率角指示器组成。
直流电动机、同步发电机经弹性联轴器对轴联结后组装在一个活动底盘上构成可移动式机组。
具有结构紧凑、占地少、移动轻便等优点,机组的活动底盘有四个螺旋式支脚和三个橡皮轮,将支脚旋下即可开机实验。
2.试验操作台实验操作台是由输电线路单元、微机线路保护单元、功率调节和同期单元、仪表测量和短路故障模拟单元等组成。
其中负荷调节和同期单元是由“TGS-04型微机调速装置”、“WL-04B微机磁励调节器”、“HGWT-03微机准同期控制器”等微机型的自动装置和其相对应的手动装置组成。
(1)输电线路采用双回路远距离输电线路模型,每回线路分成两段,并设置中间开关站,使发电机与系统之间可构成四种不同联络阻抗,便于实验分析比较。
(2)“YHB-Ⅲ型微机线路保护”装置是专为实验教学设计,具有过流选相跳闸、自动重合闸功能,备有事故记录功能,有利于实验分析。
在实验中可以观测到线路重合闸对系统暂态稳定性影响以及非全相运行状况。
(3)“TGS-04型微机调速装置”是针对大、中专院校教学和科研而设计的,能做到最大限度地满足教学科研灵活多变的需要。
具有测量发电机转速、测量电网频率、测量系统功角、手动模拟调节、手动数字调节、微机自动调速以及过速保护等功能。
课程名称:电力系统分析综合实验指导老师:成绩:实验名称:电力系统暂态稳定实验实验类型:冋组冋学:一、实验目的和要求(必填) 二、实验内容和原理(必填)三、主要仪器设备(必填) 四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1. 通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。
2. 学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理措施3. 用数字式记忆示波器测出短路时电流的非周期分量波形图,并进行分析二、实验内容和原理电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。
在各种扰动中以短路故障的扰动最为严重。
正常运行时发电机功率特性为:E°U 0 sin r . "X1 ;短路运行时发电机功率特性为:E0U 0 sin - 2 -X2;故障切除发电机功率特性为;P二E o U o Sin、3 ;3X3对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。
而系统保持稳定条件是切除故障角S c小于S max, S max可由等面积原则计算出来。
本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。
同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。
这二种方法都有利于提高系统的稳定性。
三、主要仪器设备(1)WL-04B微机励磁调节器;(2)HGWT-03B微机准同期控制器;(3)TSG-03B微机调速装置(4)微机保护装置;(5)模拟实验台四、操作方法与实验步骤1. 单回路稳态非全相运行实验首先按照稳态对称运行实验中运行方式1的线路开关状态进行线路开关的合闸和分闸,调整发电机输出的有功、无功功率与稳态对称运行实验时一致,然后按以下步骤进行实验,比较其运行状态的变化。
WDT- ⅢC 型电力系统综合自动化试验平台性能指标1.设备的主要用途、功能及特点电力系统综合自动化试验台是一个自动化程度很高的多功能试验平台,它由发机电组、双回路输电路线及模型、无穷大电源等一次设备组成,通过中间开关站与单回、双回路线的组合,可构成发机电与无穷大系统之间有四种不同联络阻抗,供系统实验分析比较时使用。
每台原动机都配有微机自动调速装置与手动调速装置,并且有微机过速保护功能,每台发机电配有微机自动准同期装置与手动同期装置,输电路线还配微机过流保护与重合闸装置。
每套自动装置都有三种控制方式供选择,并且微机励磁的运行方式与运行参数可在线修改。
综合试验台具有各种微机自动装置与手动控制装置,便于学生进行比较实验。
电力系统综合自动化试验台是一个自动化程度很高的多功能试验平台。
有如下特点:系统由发机电组、输电路线单元、微机保护单元、负荷调节与同期单元、短路摹拟单元等组成,并能与电力系统微机监控实验系统相联,可扩展为 7+ 1 系统;系统结构紧凑、占地面积小、安装调试与检修方便快捷;模型参数可以调节,可摹拟不同参数的输电路线;实验系统安全可靠、操作方便灵便、物理现象直观,并有正规出版社的配套教材;综合试验台具有各种微机自动装置与手动控制装置,便于学生进行比较实验。
2.系统完成的教学实验打印报表,实现遥测、遥信、遥控、遥调等电力系统调度自动化功能,能完成下述实验:发机电启动与调整实验;(1)电力系统运行方式实验;(2)负荷调整实验。
(3)手动准同期并列实验;(4)半自动准同期并列实验;(5)全自动准同期并列实验;(6)各种信号波形观测。
(7)同控制角( )的励磁电压波形观测实验;(8)同步发机电起励实验;(9)控制方式及其相互切换实验;(10)逆变灭磁与跳灭磁开关灭磁实验;(11)伏赫限制实验;(12)第 2 页同步发机电强励实验;(13)欠励限制实验;(14)调差特性实验;(15)过励限制实验;(16)PSS 实验。
课程名称: 电力系统分析综合实验 指导老师: 成绩: 实验名称: 电力系统暂态稳定实验 实验类型: 同组同学: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1. 通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。
2. 学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理措施3. 用数字式记忆示波器测出短路时电流的非周期分量波形图,并进行分析 二、实验内容和原理电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。
在各种扰动中以短路故障的扰动最为严重。
正常运行时发电机功率特性为:11001sin X U E P δ=;短路运行时发电机功率特性为:22002sin X U E P δ=;故障切除发电机功率特性为;33003sin X U E P δ=;对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。
而系统保持稳定条件是切除故障角δc 小于δmax ,δmax 可由等面积原则计算出来。
本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,δmax 也不同,使对故障切除的时间要求也不同。
同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo 增加,使δmax 增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。
这二种方法都有利于提高系统的稳定性。
三、主要仪器设备(1)WL-04B 微机励磁调节器;(2)HGWT-03B 微机准同期控制器; (3)TSG-03B 微机调速装置 (4)微机保护装置; (5)模拟实验台 四、操作方法与实验步骤1. 单回路稳态非全相运行实验首先按照稳态对称运行实验中运行方式1的线路开关状态进行线路开关的合闸和分闸,调整发电机输出的有功、无功功率与稳态对称运行实验时一致,然后按以下步骤进行实验,比较其运行状态的变化。
电力系统综合自动化实验台及其教学应用基金项目:本文系广东省大学生创新实验资助项目(1184510025)、广东工业大学校级精品课程《电力系统分析》资助项目(406096043)、高教研究基金项目(2010D06、“电气与控制广东省实验教学示范中心”实验教学改革项目、2010 年度广东工业大学教育教学改革项目(2010 Y002)的研究成果。
电力系统是一个大规模、时变的复杂系统,在国民经济中起着非常重要的作用。
电力系统数字仿真也已成为电力系统研究、规划、运行、设计和教学等各方面不可或缺的工具,特别是电力系统新技术的开发研究、新装置的设计和参数的确定更是需要通过仿真来确认。
[1] 但是在电力教学中采用数字仿真手段来研究电力系统的各种理论,存在的主要问题是物理概念不够直观,学生只能通过仿真曲线和实验数据来认知现象和理论,难于培养对电力系统运行的感性认识。
[2]WDTBI型电力系统综合自动化试验台是为了适应现代化电力系统对宽口径、复合型高级技术人才的需要而研制的电力类专业新型教学实验系统。
该实验台把真实的电力系统缩小到实验室中,是真实电力系统的缩影,方便学生直接观察各种现象的物理过程,便于学生获得明确的物理概念。
[3]一、电力系统综合自动化试验台的技术特点在广东工业大学投入使用的WDTBI电力系统综合自动化实验台是由华中科技大学电力自动化技术研究所开发的一项高科技产品。
该实验台主要由模拟发电机、模拟变压器、模拟输电线路、模拟负荷和调节、控制、测量、保护等模拟装置组成,可以模拟电力系统各种实时运行状态,反映电力系统的动态特性,帮助学生把课本上学到的知识和实际系统对应起来,另外可以帮助学生熟悉电力系统的结构、特点及各种设备的操作,提高学生分析问题和解决问题的能力。
该套实验装置的外形如图1 所示。
为了使操作方便,实验台采取发电机通过输电线路与无穷大系统联接,构成“单机―无穷大”系统的工作方式,而这无穷大系统由市电承担,很容易实现。
同类型机组励磁调节器PID参数设置探讨袁训奎【摘要】为充分发挥同步发电机励磁系统作用,必须合理整定励磁调节器参数。
对因励磁调节器参数整定不当引起的事故和异常现象进行分析,提出了处理措施。
%In order to fully play the generator excitation system's function, its PID parameters must be set appropriately. Accidents and abnormality caused by error PID parameters' setting were analyzed. Further, treatment measures were proposed.【期刊名称】《山东电力技术》【年(卷),期】2012(000)005【总页数】3页(P25-26,29)【关键词】同步发电机;励磁系统;参数设置【作者】袁训奎【作者单位】山东电力集团公司电力科学研究院,山东济南250002【正文语种】中文【中图分类】TM340 引言同步发电机励磁系统在保证机端电压稳定、控制机组无功功率分配、提高并联机组运行稳定性及改善电力系统运行条件等方面起着十分重要的作用。
为保障机组的安全稳定运行,必须合理整定励磁调节器控制、保护、限制等环节的参数。
励磁调节器参数的整定,除应保证本机组励磁系统具有良好的性能指标外,还应考虑与同类型机组的一致性。
1 励磁调节器参数设置不当引发问题及处理1.1 机组解列石横发电厂装有四台单元式300 MW无刷励磁汽轮发电机组,四台励磁调节器为SAVR型微机励磁调节器。
变电站采用3/2接线,共8串10回,1、2、3、4 号发电机分别接在第 1、3、5、7 串。
2005年5月16日19:40,4号发电机组突然跳闸,G盘报“失磁”、“励磁开关跳闸”、“发变组保护装置报警”信号,汽机跳闸、锅炉MFT。
WL -04B 微机励磁调节器的参数设定牛祖蘅;李宁【期刊名称】《实验科学与技术》【年(卷),期】2015(000)006【摘要】正确设定微机励磁调节器的保护、限制功能单元的参数对实验的正常进行有着重要的作用。
三峡大学开设的电力系统综合自动化实验采用的是“WDT -III 型电力系统综合自动化实验台”,该实验台使用的是 WL -04B 微机励磁调节器。
该文对该励磁调节器的各功能单元及其参数设定在实验教学时应注意的问题进行了分析,并对参数设定原则进行了探讨和说明。
%Right setting about protection and limit functions of microprocessor excitation adjuster is important to the experiment.The integrated automation experiment of power system was offered by Three Gorges University.And WDT -III integrated automation labora-tory table of power system which uses WL -04B excitation system is used.This paper analyzes the considerable problems in setting the parameters of function units of microprocessor excitation adjuster for experiments.And the principle of parameters setting is proposed and then researched.【总页数】3页(P250-252)【作者】牛祖蘅;李宁【作者单位】三峡大学电气与新能源学院,湖北宜昌 443002;三峡大学电气与新能源学院,湖北宜昌 443002【正文语种】中文【中图分类】TP319,TP391.7【相关文献】1.微机型励磁调节器在电厂中的合理应用 [J], 邢学赢2.WL-06B型双微机励磁调节器在发电机特性试验中的应用 [J], 田波3.8098单片微机电液调速器和励磁调节器 [J], 徐桂英;王永骥4.WL—03双微机励磁调节器运行分析 [J], 李文清5.WLT—1型微机励磁调节器替代 KFD—3型励磁调节器的尝试 [J], 李英龙;刘松林因版权原因,仅展示原文概要,查看原文内容请购买。
同步发电机励磁控制系统实验摘要:本课题主要针对如何提高和维持同步发电机运行地稳定性, 是保证电力系统安全、经济运行,及延长发电机寿命而进行地同步发电机励磁方式, 励磁原理, 励磁地自动控制进行了深入地解剖. 发电机在正常运行时,负载总是不断变化地, 而不同容量地负载, 以及功率因数地不同, 对发电机励磁磁场地作用是不同地, 对同步发电机地内部阻抗压降也是不一样地. 为了保持同步发电机地端电压稳定,需要根据负载地大小及负载地性质调节同步发电机地励磁电流,因此, 研究同步发电机地励磁控制具有十分重要地应用价值. 本课题主要研究同步发电机励磁控制在不同状态下地情况, 同步发电机起励、控制方式及其相互切换、逆变灭磁和跳变灭磁开关灭磁、伏赫实验等. 主要目地是是同学们加深理解同步发电机励磁调节原理和励磁控制系统地基本任务;了解自并励励磁方式和它励励磁方式地特点;了解微机励磁调节器地基本控制方式.关键词:同步发电机;励磁控制;它励第一章文献综述1.1概述向同步发电机地转子励磁绕组供给励磁电流地整套装置叫做励磁系统. 励磁系统是同步发电机地重要组成部分, 它地可靠性对于发电机地安全运行和电网地稳定有很大影响. 发电机事故统计表明发电机事故中约1/3 为励磁系统事故, 这不但影响发电机组地正常运行而且也影响了电力系统地稳定, 因此必须要提高励磁系统地可靠性, 而根据实际情况选择正确地励磁方式是保证励磁系统可靠性地前提和关键. 我国电力系统同步发电机地励磁系统主要有两大类一类是直流励磁机励磁系统, 另一类是半导体励磁系统. b5E2RGbCAP1.2同步发电机励磁系统地分类与性能1.2.1直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源, 供给发电机转子回路地励磁电流.其中直流发电机称为直流励磁机. 直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流, 形成有碳刷励磁. 直流励磁机励磁系统又可分为自励式和它励式. 自励与他励地区别是对主励磁机地励磁方式而言地, 他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机地电压增长速度,因而减小了励磁机地时间常数, 他励直流励磁机励磁系统一般只用在水轮发电机组上. p1EanqFDPw 采用直流励磁机供电地励磁系统, 在过去地十几年间, 是同步发电机地主要励磁系统. 目前大多数中小型同步发电机仍采用这种励磁系统.长期地运行经验证明,这种励磁系统地优点是:具有独立地不受外系统干扰地励磁电源, 调节方便,设备投资及运行费用也比较少. 缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷地维护工作量大且检修励磁机时必须停主机,很不方便. 近年来, 随着电力生产地发展, 同步发电机地容量愈来愈大, 要求励磁功率也相应增大, 而大容量地直流励磁机无论在换向问题或电机地结构上都受到限制. 因此,直流励磁机励磁系统愈来愈不能满足要求. 目前, 在100MW及以上发电机上很少采用. DXDiTa9E3d1.2.2半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后, 作为供给同步发电机励磁电流地直流电源. 半导体励磁系统分为静止式和旋转式两种. RTCrpUDGiT1.2.2.1 静止式半导体励磁系统静止式半导体励磁系统又分为自励式和它励式两种1)自励式半导体励磁系统自励式半导体励磁系统中发电机地励磁电源直接由发电机端电压获得经过控制整流后,送至发电机转子回路, 作为发电机地励磁电流,以维持发电机端电压恒定地励磁系统, 是无励磁机地发电机自励系统.最简单地发电机自励系统是直接使用发电机地端电压作励磁电流地电源, 由自动励磁调节器控制励磁电流地大小,称为自并励可控硅励磁系统,简称自并励系统.自并励系统中,除去转子本体极其滑环这些属于发电机地部件外, 没有因供应励磁电流而采用地机械转动或机械接触类元件,所以又称为全静止式励磁系统. 下图为无励磁机发电机自并励系统框图, 其中发电机转子励磁电流电源由接于发电机机端地整流变压器ZB 提供, 经可控硅整流向发电机转子提供励磁电流, 可控硅元件SCR由自动励磁调节器控制.系统起励时需要另加一个起励电源. 5PCzVD7HxA 无励磁机发电机自并励系统地优点是:不需要同轴励磁机,系统简单,运行可靠性高;缩短了机组地长度, 减少了基建投资及有利于主机地检修维护;由可控硅元件直接控制转子电压, 可以获得较快地励磁电压响应速度;由发电机机端获取励磁能量, 与同轴励磁机励磁系统相比,发电机组甩负荷时,机组地过电压也低一些.其缺点是:发电机出口近端短路而故障切除时间较长时, 缺乏足够地强行励磁能力对电力系统稳定地影响不如其它励磁方式有利. 由于以上特点, 使得无励磁机发电机自并励系统在国内外电力系统大型发电机组地励磁系统中受到相当重视. jLBHrnAILg (2)它励式半导体励磁系统它励式半导体励磁系统包括一台交流主励磁机JL 和一台交流副励磁机FL,三套整流装置. 两台交流励磁机都和同步发电机同轴,主励磁机为100HZ中频三相交流发电机, 它地输出电压经过硅整流装置向同步发电机供给励磁电流. 副励磁机为500HZ中频三相交流发电机, 它地输出一方面经可控硅整流后作为主励磁机地励磁电流,另一方面又经过硅整流装置供给它自己所需要地励磁电流. 自动调励地装置也是根据发电机地电压和电流来改变可控硅地控制角, 以改变励磁机地励磁电流进行自动调压. xHAQX74J0X 它励式半导体励磁系统地优点是:系统容量可以做得很大, 励磁机是交流发电机没有换向问题而且不受电网运行状态地影响. 缺点是:接线复杂, 有旋转地主励磁机和副励磁机,启动时还需要另外地直流电源向副励磁机供给励磁电流. 这种励磁系统多用于10万千瓦左右地大容量同步发电机. LDAYtRyKfE1.2.2.2旋转式半导体励磁系统在它励和自励半导体励磁系统中, 发电机地励磁电流全部由可控硅<或二极管)供给, 而可控硅<或二极管)是静止地故称为静止励磁.在静止励磁系统中要经过滑环才能向旋转地发电机转子提供励磁电流. 滑环是一种转动接触元件随着发电机容量地快速增大,巨型机组地出现, 转子电流大大增加, 转子滑环中通过如此大地电流, 滑环地数量就要增加很多. 为了防止机组运行当中个别滑环过热,每个滑环必须分担同样大小地电流. 为了提高励磁系统地可靠性取消滑环这一薄弱环节, 使整个励磁系统都无转动接触地元件,就产生了无刷励磁系统, 如图4 所示. Zzz6ZB2Ltk副励磁机FL是一个永磁式中频发电机, 其永磁部分画在旋转部分地虚线框内.为实现无刷励磁, 主励磁机与一般地同步发电机地工作原理基本相同,只是电枢是旋转地.其发出地三相交流电经过二极管整流后, 直接送到发电机地转子回路作励磁电源,因为励磁机地电枢与发电机地转子同轴旋转, 所以它们之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁. 主励磁机地励磁绕组JLLQ是静止地, 即主励磁机是一个磁极静止, 电枢旋转地同步发电机. 静止地励磁机励磁绕组便于自动励磁调节器实现对励磁机输出电流地控制, 以维持发电机端电压保持恒定. 无刷励磁系统地优点是:取消了滑环和碳刷等转动接触部分.缺点是:在监视与维修上有其不方便之处. 由于与转子回路直接连接地元件都是旋转地, 因而转子回路地电压电流都不能用普通地直流电压表、直流电流表直接进行监视, 转子绕组地绝缘情况也不便监视, 二极管与可控硅地运行状况,接线是否开脱, 熔丝是否熔断等等都不便监视,因而在运行维护上不太方便. dvzfvkwMI1 1.3同步发电机励磁系统地发展史由于电力系统运行稳定性地破坏事故, 会造成大面积停电, 使国民经济遭受重大损失,给人民生活带来重大影响,因此, 改善与提高电力系统运行地稳定性意义重大.早在20世纪40 年代,有电力系统专家就强调指出了同步发电机励磁地调节对提高电力系统稳定性地重要作用, 随后这方面地研究工作一直受到重视. 研究主要集中在2 个方面: 一是励磁方式地改进, 二是励磁控制方式地改进. rqyn14ZNXI在励磁方式方面, 世界各大电力系统广泛采用可控硅静止励磁方式, 因为这种无旋转励磁机地可控硅自并励方式具有结构简单、可靠性高及造价低廉等优点。
摘要作发电机运行的同步电机。
是一种最常用的交流发电机。
在现代电力工业中,它广泛用于水力发电、火力发电、核能发电以及柴油机发电。
由于同步发电机一般采用直流励磁,当其单机独立运行时,通过调节励磁电流,能方便地调节发电机的电压。
若并入电网运行,因电压由电网决定,不能改变,此时调节励磁电流的结果是调节了电机的功率因数和无功功率。
本次实验在加深理解同步发电机准同期并列原理,掌握准同期并列条件的基础上,研究手动准同期和自动准同期的调整并列过程;分析合闸冲击电流的大小的影响因素;分析正弦整步电压波形的变化规律以及滑差频率fs,开关时间tyq的整定原则。
关键词:同步发电机,准同期并列ABSTRACTSynchronous motor for the generator running. Is one of the most common alternator. In modern power industry, it is widely used in hydroelectric power, thermal power, nuclear power and diesel power generation. As the DC excitation synchronous generator is generally used when the standalone run-time, by adjusting the excitation current, can easily adjust the generator voltage. If the grid operation, voltage from the power grid because of the decision can not be changed, then adjust the excitation current results in the regulation of the motor power factor and reactive power.Better understanding of this experiment in the same period in parallel quasi-synchronous generator works, master the conditions of quasi-parallel over the same period, based on prospective study of manual and automatic synchronizing over the same period of adjustment tied process; analysis of the impact of closing the current size of the factors; analysis of the whole sine step changes of voltage waveform and the slip frequency fs, the switching time tyq tuning principles.Key Words:Synchronous generator, synchronizing parallel目录一.绪论 (1)1.1 课题的背景 (1)1.2 发电机的发展概况 (1)1.3 实验主要目的 (3)1.4实验的主要要求: (3)1.5 WDT-ⅢC型电力系统综合自动化试验台 (3)1.6 直流电机 (4)1.7试验操作台 (5)二. 准同期并列的基本原理 (7)2.1系统的基本原理 (7)2.2 准同期的并列条件 (7)2.3 试验台一次系统原理接线图 (9)2.4无穷大系统 (9)三准同期并列研究 (10)3.1机组启动与建压 (10)3.2观察与分析 (10)3.3手动准同期 (11)四.实验结果 (16)4.1 实验波形 (16)结论 (18)参考文献 (19)致谢 (20)一.绪论1.1 课题的背景进入八十年代末、九十年代初,随着我国改革开放不断发展,我国的电机行业的部分企业开始引进先进工业国的同步发电机,有的按生产许可证方式进行技术引进,有的引进软件技术(或生产技术),有的按合作生产方式引进国外的先进技术,其先后有德国西门子公司的IFC5和IFC6系列、德国AEG公司的DKBH系列、英国彼特普公司E系列、美国马拉松公司的MP系列发电机、英国的斯坦福公司BC、HC系列等发电机,这些发电机的绝缘等级为F级或H级,采用隐极式或整体凸级结构,其技术经济指标较先进,可靠性较高,其制造工艺水平较先进,这些产品的引进,对提高我国的同步发电机水平和制造工艺水平有较大的促进作用。
EXC9000调节器参数设置1、COMM1控制码:输入参数:菜单选择输出参数:Data1[0]:“0000”――修改运行参数,不写入EEPROM。
“1000”――修改运行参数,并写入EEPROM。
“2000”――读入EEPROM数据为运行参数。
“3A00”――请求发送录波数据。
A=0,发送本命令前到本命令时刻止记录的录波数据。
A=1,发送由IPC触发或阶跃试验记录的录波数据。
“40BC”――阶跃试验。
先上跃后下跃,间隔由B值(秒)确定。
C为阶跃量(%)。
“50AA”――修改单个运行参数,不保存,AA=参数编码(序号)。
2、电压放大系数Kavr输入参数:Kavr=?(倍)输出参数:Data1[1]=1000*Kavr3、PID调节器参数T1、T2传递函数:W(S)=(1+T1S)/(1+T2S)输入参数:T1=?(秒),T2=?(秒)输出参数:Data1[2]=1000*T1Data1[3]=1000*T24、PSS隔直参数Tq传递函数:W(S)=TqS/(1+TqS)输入参数:Tq=?(秒)输出参数:Data1[4]=1000*Tq5、PSS放大系数Kpss输入参数:Kpss=?(倍)输出参数:Data1[5]=1000*Kpss6、PSS第一级参数T1、T2传递函数:W(S)=(1+T1S)/(1+T2S)输入参数:T1=?(秒),T2=?(秒)输出参数:Data1[6]=1000*T1Data1[7]=1000*T27、PSS第二级参数T3、T4传递函数:W(S)=(1+T3S)/(1+T4S)输入参数:T3=?(秒),T4=?(秒)输出参数:Data1[8]=1000*T3Data1[9]=1000*T48、电流放大系数Kair输入参数:Kair=?(倍)输出参数:Data1[14]=1000*Kair9、恒IL调节参数T1、T2传递函数:W(S)=(1+T1S)/(1+T2S)输入参数:T1=?(秒),T2=?(秒)输出参数:Data1[15]=1000*T1Data1[16]=1000*T210、PI调节器参数Kp、Ti(用于过励限制)传递函数:W(S)= Kp+1/(TiS)输入参数:Kp=?,Ki=?输出参数:Data1[17]=100*KpData1[18]=1000*Ti11、电压预置值输入参数:ug=? (%)输出参数:data1[20]=100*ug12、过励限制值输入参数:I=? (%)输出参数:data1[21]=100*I13、强励限制值输入参数:I=? (%)输出参数:data1[22]=100*I14、最大电流允许时间输入参数:t=? (秒)输出参数:data1[23]=1000*t15、V/HZ限制值输入参数:V=? (%)输出参数:Data1[24]=100*V16、欠励限制值k、b欠励限制:Q=k*P-b输入参数:k=?, b=?输出参数:Data1[25]=1000*kData1[26]=1000*b17、空载励磁电流系数值Kilo空载励磁电流系数=额定空载励磁电流/额定励磁电流输入参数:Kilo=?输出参数:Data1[28]=1000*Kilo18、功率系数值Kpow功率系数值*功率测量值=功率显示值调整Kpow,使功率显示值=按PT、CT变比计算的实际输入有功或无功功率。