同步发电机励磁系统与励磁调节器
- 格式:doc
- 大小:52.00 KB
- 文档页数:7
第一章 同步发电机励磁系统概述[ 摘 要 ] 本文阐述了同步发电机励磁系统的任务及发展,讨论了同步发电机的不同励磁方式及其特点,最后介绍了在发电机励磁控制系统的基本要求和相关技术。
[ 关键词 ] 同步发电机 励磁系统第一节 同步发电机励磁系统的任务和发展同步发电机的励磁系统一般由两部分组成。
一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称为励磁功率输出部分(或称为功率单元)。
另一部分用于在正常运行或发生事故时调节励磁电流,以满足运行的需要。
这一部分包括励磁调节器、强行励磁、强行减磁和自动灭磁等,一般称为励磁控制部分(或称为控制单元)。
不论在系统正常还是在故障情况下,同步发电机的直流励磁电流都需要控制,因此励磁系统是同步发电机的重要组成部分。
励磁系统不但与发电机及其相联的电力系统的运行经济指标密切相关,而且与发电机及其电力系统的运行稳定性能密切相关。
一.同步发电机励磁系统的任务(一)控制发电机的端电压维持发电机的端电压等于给定值是电力系统调压的主要手段之一,在负荷变化的情况下,要保证发电机的端电压为给定值则必须调节励磁。
由发电机的简化相量图(图1-1)可得:E U jI X q f f d=+ (1-1)式中: E q ——发电机的空载电势;U f ——发电机的端电压;I f ——发电机的负荷电流比例。
图1-1 同步发电机简化向量图式(1-1)说明,在发电机空载电势E q 恒定的情况下,发电机端电压U f 会随负荷电流I f 的加大而降低,为保证发电机端电压U f 恒定,必须随发电机负荷电流I f 的增加(或减小),增加(或减小)发电机的空载电势E q ,而E q 是发电机励磁电流I fq 的函数(若不考虑饱和,E q 和I fq 成正比),故在发电机运行中,随着发电机负荷电流的变化,必须调节励磁电流来使发电机端电压恒定。
为了表示励磁系统维持发电机端电压恒定的能力,采用了调压精度的概念。
同步发电机励磁调节及励磁系统实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
发电机励磁系统发电机励磁系统的组成励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。
励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。
尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。
同步发电机的励磁系统主要由功率单元和调节器(装置)两大部分组成。
其中励磁功率单元是指向同步发电机转子绕组提供直流励磁电流的励磁电源部分,而励磁调节器则是根据控制要求的输入信号和给定的调节准则控制励磁功率单元输出的装置。
由励磁调节器、励磁功率单元和发电机本身一起组成的整个系统称为励磁系统控制系统。
励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全稳定运行有很大的影响。
同步发电机励磁系统的形式1、直流发电机供电的励磁方式这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。
这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。
缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。
2、交流励磁机供电的励磁方式现代大容量发电机有的采用交流励磁机提供励磁电流。
交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。
交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。
为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。
这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。
发电机励磁系统原理一.励磁系统1.励磁系统基本原理同步发电机励磁电源一般采用直流电,励磁系统的作用主要就是供给发电机转子绕组的直流电源。
同步发电机励磁系统一般由励磁功率单元和励磁调节器两部分组成。
励磁功率单元包括整流装置及其交流电源,它向发电机的励磁绕组提供直流励磁功率;励磁调节器,感受发电机电压及运行工况的变化,自动地调节励磁功率单元输出励磁电流的大小,以满足系统运行要求。
整个励磁自动控制系统是由励磁调节器、励磁功率单元和发电机构成的一个反馈控制系统。
励磁系统大致可分为直流励磁机励磁系统和交流励磁机励磁系统以及自并励励磁(静止半导体励磁)系统。
2.励磁系统的任务1). 正常运行条件下,供给发电机励磁电流。
2). 根据发电机所带负荷的情况调整励磁电流,维持发电机机端电压。
3). 使并列运行的各同步发电机所带的无功功率得到稳定而合理的分配。
4). 增加并网运行发电机的阻尼转矩,以提高电力系统动态稳定性及输电线路的有功传输能力。
5). 电力系统发生短路故障造成发电机机端电压严重下降时,强行励磁,将励磁电压迅速提升到足够的顶值,以提高系统的暂态稳定性。
6). 发电机突然解列、甩负荷时,强行减磁,将励磁电流迅速降到安全值,以防止发电机电压过高。
7). 发电机内部发生短路故障时,快速灭磁,将励磁电流迅速减到零值,经减小故障损坏程度。
8). 不同的运行工况下,根据要求对发电机实行过励限制和欠励限制,以保证发电机机组的安全稳定运行。
3.励磁系统的励磁方式.1).直流励磁机励磁系统直流励磁机是用于供给发电机励磁的直流发电机,过去机组容量不大,采用由直流发电机组成的励磁系统,励磁机与发电机同轴旋转,由于直流励磁机具有电刷和整流子等接触部件,需定期更换电刷和换向器,特别是当其容量随发电机容量而增大时换向问题很难解决,一般只在单机容量100MW以下的机组上采用。
直流励磁机通常采用自并励式,是利用励磁机电枢旋转切割剩磁来实现建压的,电枢绕组内的电势电流是交变的,借助换向装置将电枢内的交流电变成直流电。
同步发电机励磁调节原理
同步发电机励磁调节原理是通过对励磁系统的电流、电压进行调节,控制发电机的励磁电压和励磁电流,从而控制发电机的输出电压和输出功率。
具体原理如下:
1. 励磁电压调节:通过调节励磁电压的大小,可以控制发电机的输出电压。
一般情况下,发电机的励磁电压是由励磁系统中的励磁电源提供的。
调节励磁电压的大小可以通过调节励磁电源的电压来实现,如使用电位器或自动电压调节器(AVR)来调节发电机的输出电压。
2. 励磁电流调节:通过调节励磁电流的大小,可以控制发电机的输出功率。
励磁电流一般由励磁系统中的励磁电源提供,并且通过励磁电阻进行调节。
通过增大或减小励磁电阻的阻值,可以调节励磁电流的大小,从而控制发电机的输出功率。
同时,还需要根据发电机输出的电压和功率信号,通过控制回路,将励磁系统的电压和电流进行反馈控制,使发电机的输出能够稳定在设定值。
综上所述,发电机的励磁调节原理是通过对励磁电压和电流进行调节,控制发电机的输出电压和输出功率。
同步发电机励磁系统与励磁调节器一般来说,与同步发电机励磁回路电压建立、调整以及必要时使其电压消失的有关元件和设备总称为励磁系统。
励磁系统包括发电机绕组,励磁电源,励磁装置及调节电压有关的其他设备。
同步发电机的励磁系统一般由两部分组成。
一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称为励磁功率输出部分。
另一部分用于在正常运行或发生事故时调节励磁电流或自动灭磁等以满足运行的需要,一般称为励磁控制部分或称之为励磁调节器。
励磁系统的主要作用:一、电力系统正常运行时,维持发电机或系统某点电压水平。
当发电机无功负荷变化时,一般情况下机端电压要发生相应变化,此时自动励磁调节装置应能供给要求的励磁功率,满足不同负荷情况下励磁电流的自动调节,维持机端或系统某点电压水平。
二、合理分配发电机间的无功负荷。
发电机的无功负荷与励磁电流有着密切的关系,励磁电流的自动调节,要影响发电机间无功负荷的分配,所以对励磁系统的调节特征有一定的要求。
三、在电力系统发生短路故障时,按规定的要求强行励磁。
四、提高电力系统稳定性。
五、快速灭磁,当发电机或升压变压器内部发生故障时,要求快速灭磁,以降低故障所造成的损害。
同步发电机的励磁方式一、直流发电机供电的励磁方式二、交流励磁机经整流供电的励磁方式三、静止电流供电的励磁方式。
励磁电流是通过励磁变压器、励磁电流器取自同步发电机机端或外部辅助电流。
励磁调节器的构成励磁自动调节指的是发电机的励磁电流根据机端电压的变化按预定要求进行调节,以维持端电压为给定值。
所以自动调节励磁系统可以看作为一个以电压为被调量的负反馈控制系统。
同步发电机的励磁调节方式可分为按电压偏差调节和按定子电流,功率因数的补偿调节两种。
下面主要介绍按电压偏差调节方式。
励磁调节器基本方框图为了调节同步发电机的端电压V f,,应测量端电压的变化值。
为了便于测量,设置了端电压变换机构,这样量测机构的输出电压k l V f 和V f 成正比例。
比较综合点的合成差电压△V=V2-k l V f 当端电压偏高时,△V为负,端电压偏低时,△V为正。
放大机构按照△V的大小和方向进行放大,通过执行机构使励磁电流向相应方向调整,从而控制发电机的电压值。
励磁调节器有机电型,电磁型和半导体型。
直至今日的数字式励磁调节器(微机励磁调节器)。
励磁回路中的整流电路一、三相桥式不可控整流电路。
三相桥式不可控整流电路六只整流元件全部采用二极管。
从二极管的单相导电性可知,共阴极组中只有阳极电位最高的那一相二极管导通,共阳极组中则只有阴极电位最低的那一相二极管导通,其余的二极管均因承受反向电压而截止。
输出直流电压Vd=1.35E lE l 为整流桥交流侧线电压有效值。
二、 三相桥式全控整流电路三相桥式全控整流电路的六只整流元件全部采用可控硅。
共阴极组的元件在各自的电源电压为正半周时导通。
导通条件为必须在其阴极承受正向电压期间在控制极上加触发脉冲。
三相桥式全控整流电路的工作可分为整流工作状态和逆变工作状态。
控制α≤90。
,三相桥式全控整流电路工作在整流状态,整流电路将交流变换为直流,以供给同步发电机转子绕组励磁。
所谓逆变工作状态,是指三相桥式全控整流电路的控制角α限制在90。
—180。
内,此时电路是将直流电能变为交流电能,并反馈回到交流电网中去。
在同步发电机的可控硅励磁系统中,利用逆变原理可将贮存在发电机转子绕组中的磁场能量变换为交流电能并回馈到交流电源,以迅速降低发电机的定子电势,实现快速灭磁,从而减轻事故情况下发电机的损坏程度。
半导体励磁调节器基本原理半导体励磁调节器由测量比较单元,综合放大单元,移相触发单元,可控整流等基本部分组成。
测量比较单元相当于变换机构与量测机构,综合放大单元和移相触发单元相当于放大机构,可控整流桥相当于执行机构。
可控硅整流装置既是整流元件又是执行元件。
测量比较单元是测量发电机电压的变化并转变为直流电压信号,再与给定的基准电压进行比较,给出发电机电压偏差信号。
测量比较单元输出的信号幅值较小,且变化缓慢灵敏度低,因此不能直接用于控制移相触发单元。
为了提高调节器的灵敏度,必须加以放大。
此外,为了实现电力系统对调节器的多功能要求,通常需要线形的综合测量比较,反馈及限制等直流信号并加以放大,以上这些任务都由综合放大单元完成。
综合放大单元一般采用直流运算放大器。
移相触发单元是将控制信号电压V k (即综合放大单元的输出电压)转换为一定区间内发出移相触发脉冲,并以此脉冲触发可控硅整流桥的可控硅,使其控制角α角随V k 的变化而变化,移相触发脉冲控制可控整流桥的输出电压,从而达到自动调节励磁的目的。
当发电机电压升高时,偏差电压△V 经综合放大得到控制电压V k ,使移相触发单元的输出脉冲电压V g 后移,导致可控整流桥的控制角α增大,即导通角减小,整流输出电压下降,减小发电机励磁,从而使发电机端电压随之下降。
反之,当发电机电压下降时,调节能使发电机增加励磁,时端电压上升。
三号发电机励磁系统简介三号机工作励磁系统采用交流励磁机—静止整流器的“三机”励磁系统。
改造后自动励磁调节器型号为WKKL—11型微机励磁调节器。
副励输出经两回全控整流后供给主励磁机励磁,主励输出经两回不可控整流后供给发电机励磁。
发电机的励磁调节是通过调节主励的励磁来达到的。
主励磁机的励磁调节有四种方式,一是A、B调节器以“双柜”方式的自动闭环调节,二是A、B调节器以“自动”方式的自动闭环调节,三是A或B调节器单柜以“自动”方式的自动闭环调节,四是A、B调节器以单柜或双柜以“手动”方式的手动开环调节,其中自动闭环调节能满足发电机包括强励及强减在内的发电机的所有励磁工况,手动开环仅能满足发电机的额定励磁工况,不满足发电机包括强励及强减的要求。
励磁调节方式切换开关AQK,BQK的位置决定调节器的调节方式。
励磁主整流装置由西安电力整流器厂生产,由整流屏Ⅰ,整流屏Ⅱ,切换屏,灭磁屏组成。
每个整流屏包括整流桥,信号回路,冷却风扇,空气开关及操作回路。
每个整流桥由18只整流二极管组成,每个桥臂由三个相同的整流二极管并联,每个整流管有阻容吸收换向过电压保护及串联快速熔断器构成的过流保护,信号电源中断,快熔熔断器熔断,冷却风扇故障后均能向中控室发信号;切换屏包括1G,2G,3G刀闸。
灭磁屏内装有灭磁开关及其操作回路。
FMB31型灭磁过压保护装置。
1ZK开关及1G刀闸,2ZK开关及2G刀闸分别为整流屏Ⅰ,整流屏Ⅱ的交流输入开关及直流输出刀闸,3G刀闸为来自备用励磁机的直流输入刀闸。
正常时,两台主整流装置并列运行,当有一台故障(包括风机故障)后,切除故障整流柜的IK开关及G刀闸,另一台主整流柜可带额定励磁运行,不保证强励。
一台主整流柜运行中出现故障,紧急降励磁至适当值后,倒备励运行。
四台机公用一套备用励磁系统。
备励使用电动直流发电机组。
灭磁开关采用DM4-2500/800-2型。
灭磁开关与非线形电阻配合后做发电机灭磁保护。
灭磁开关主要由电灭弧室、机架、操作机构和导电系统组成。
励磁系统使用FMB31型灭磁过压保护装置。
FMB31型灭磁过压保护装置主要元件是氧化锌(ZnO)压敏电阻经优化组合后串并联而成。
灭磁时,灭磁开关断开,将电流换到FR1回路中,转子励磁电流便以恒压方式迅速消耗在FR1中,从而使发电机迅速灭磁,减少了发电机事故危害。
在正常励磁时,FMK合闸,励磁电流经FMK送入励磁绕组LQ,此时电源电压一般在500v以下,非线形电阻FR2,FR3只有较小的漏电流,相当于开路状态。
FR1、FR2、FR3为非线形电阻 LQ为发电机转子绕组微机励磁调节装置简介计算机控制即是把被控制对象(过程)的有关参数进行采样和模数转换,并把转换后的数字量送给计算机。
计算机根据这些数字信息,按预定控制规律进行计算,并通过输出通道把计算结果转换成模拟量去控制被控对象,使被控量达到预期的目标。
微机励磁调节器主要特点:一、硬件简单,可靠性高。
二、硬件易实现标准化,便于生产。
三、显示直观。
四、控制规律,在不改变硬件环境的情况下,通过软件可方便的改变。
五、便于与上级计算机通讯。
WKKL—11型励磁调节器简介一、主要功能1、PID调节或比例调节可以选用励磁系统中采用的PID调节,输入量是机端电压的偏差。
电压偏差的比例调节是按电压偏离整定值(额定值)的大小成比例的改变励磁,以维护机端电压为恒定。
电压偏差的积分调节,是按积累的偏差调节励磁,调节结果使偏差很小。
完全积分调节可以使调节误差接近为零。
电压偏差的微分调节,是按预测的电压变化趋势进行调节,可以减小超调量,缩短调整时间,改善调节的动态品质,提高控制系统的稳定性。
在励磁控制系统中,应用PID调节可以达到,稳态时有较大的放大倍数,使机端电压接近恒定。
暂态时有较小的放大倍数,以避免超调的振荡。
2、两套调节器完全独立,可并联运行也可单独运行。
3、误强励检测及保护4、过流限流保护5、低励磁限制模块为了防止发电机励磁电流过多降低,而引起的静态稳定的破坏和发电机端部的过热,必须对发电机励磁电流的下限值加以限制。
6、设有调节器PT熔丝断或测量回路故障引起误强励的保护措施。
7、设有电力系统稳定器PSS模块。
在远距离输电系统中,励磁控制系统会减弱系统的阻尼能力,引起低频振荡,其原因为励磁调节器按电压偏差比例调节和励磁控制系统具有惯性。
为此,采用电力系统稳定器产生正阻尼转矩以抵消励磁控制系统引起的负阻尼转矩。
8、装置具有自复归功能,大大增强调节器的抗干扰能力9、两套调节器运行时,设有均流措施,以保护两套调节器均匀分担输出功率。
10、设有V/H2保护模块,防止在频率下降时发电机、主变压器饱和及发电机过电压。
因为磁通量与机端电压和频率的比值成正比,所以V f(v)/f t(H2)越大,发电机和变压器铁芯饱和越严重。
铁芯饱和,励磁电流就会增加,造成铁芯发热加剧,所以必须加以限制。
11、具有可控硅整流器失脉冲检测功能WKKL型微机励磁调节器具有两套完全相同的调节器A和B。
每套调节器的输入交流量有发电机量测PT副边的三相发电机电压。
直流信号有发电机转子电压,发电机转子电流及两套调节器输出电流。
除以上13个信号外,还有两个反映装置电源电压的信号,输入到调节器中,当微处理机采集数据时,先经采样保持,再由多路开关依次接同以上15个信号,模数转换成数字量读入,存放在存贮器中,供调节器使用。
(发电机组的参数通过测量部件由微机实时采集。
因为现场信号总是不断变化的,而A/D转换需要一定时间,所以需要把要转换的信号采样后保持一段时间,保证转换时间内采样点的函数值不变,以等待A/D转换器完成转换。
模/数(A/D)转换电路的作用是把采样输入的模拟信号量化为计算机所能接受的用0与1表示的数字量。