画法几何 点的投影(1)
- 格式:ppt
- 大小:1.30 MB
- 文档页数:30
第一部分《画法几何》复习大纲一.投影的基本知识1.投影法的分类投影法可分为中心投影法和平行投影法两类。
(1)中心投影法:投射中心距投影面为有限远,即投射线从投射中心发出的投影法,称中心投影法(2)平行投影法:投射中心距投影面为无限远,即投射线相互平行时的投影法,称平行投影法。
平行投影法又分为斜投影法和正投影法两种。
投射线与投影面倾斜,称为斜投影法;投射线与投影面垂直,称为正投影法。
2.土木工程常用的几种投影图土木工程常用的投影图有多面正投影图、轴测投影图、标高投影图及透视投影图。
1)多面正投影图多面正投影图由物体在两个或两个以上相互垂直的投影面上的正投影所组成。
这种图的特点是度量性好,表达完整准确,作图简便,是工程上应用最广泛的投影图。
但它缺乏立体感,需要掌握一定的投影知识才能看懂。
2)轴测投影图轴测投影图是用平行投影法将物体连同确定其空间位置的直角坐标体系,沿不平行于任一坐标平面的方向,将其投射在单一投影面上所得的图形。
轴测投影图可在一个投影面上反映出形体的长、宽、高三个向度。
因此,这种投影图的特点是具有一定的立体感,缺点是作图较费时,且不能完整、唯一地表达物体的形状和大小,因此多用作辅助图样。
3)标高投影图标高投影图是物体在某一投影面(通常是水平投影面)上标有高度的正投影图,它是假想用一组高差相等的水平面截割山地表面,将所得不同高程的等高线投射在水平投影面上。
标高投影多用来表达地形及复杂曲面。
4)透视投影图透视投影图是用中心投影法将物体投射到单一投影面上所得到的图形。
这种图的优点是形象逼真、直观性强,因此常用于设计方案的比较或展示中。
缺点是作图较为复杂,且不能反映物体表面的真实形状和大小。
3.三面投影及其投影特性(1)一般情况下根据形体的三面投影,就可确定其形状和大小,其中正面投影反映形体的长和高;水平投影反映形体的长和宽;侧面投影反映形体的宽和高。
(2)因为三个投影表示的是同一形体,作投影图时,形体与各投影面的相对位置保持不变,展开后就有:正面投影与水平投影长度相等且对正;正面投影与侧面投影高度相等且平齐;水平投影与侧面投影宽度相等。
第二章点、直线和平面的投影§2—1 点的投影§2-2 直线的投影§2-3 平面的投影返回§2—1 点的投影一、点在三投影面体系中的投影二、点的投影和坐标三、两点的相对位置返回HVXO Z YWa'aa"Aa xa za y点的正面投影:a ’、b b ’’、c c ’’……点的水平投影:a 、b 、c c …………点的侧面投影:a "、b b "" 、c c "" ……一、点在三投影面体系中的投影1. 点的三面投影HVXO ZWa'aa"Aa xa z a yHa'a a"VWX OZY WY H2.2.点的三面投影的展开Ha'aa"VW XOZY WY Ha xaya za yHVXOZWa'a a"Aa xa z a y1. 点的正面投影和水平投影的连线垂直于OX 轴(aa aa’’⊥OX)2. 点的正面投影和侧面投影的连线垂直于OZ 轴(aa aa””⊥OZ)3. 点的水平投影到OX 轴的距离等于侧面投影到OZ 轴的距离(aax=a aax=a””az)3. 点在三投影面体系中的投影ZY HXY WOa'a"a已知点A 的正面投影a ’和水平投影a ,求其侧面投影a ”。
1. a 1. a’’a ⊥OX ;2. a OX ; 2. a’’a ” ⊥OZ ;3. OZ ; 3. aax=a aax=a aax=a””az 例:Ha'aa"VW XOZ Y WY Ha xaya za y(x A ,z A )(x A ,y A )(y A ,z A )HV XO ZYWa'a a"a ya xa zxyzA1.点的坐标X A (Oax) = Aa (Oax) = Aa”” ————点到W 投影面的距离;Y A (Oay (Oay) = Aa ) = Aa ) = Aa’’ ——————点到V 投影面的距离;Z A (Oaz (Oaz) = Aa ) = Aa ) = Aa ——————点到H 投影面的距离。
第2章点、直线、平面的投影复习思考题答案复习思考题:2.1 简述为什么不能用单一的投影面来确定空间点的位置?答:因为投影不具有可逆性。
从投影不能确定点的空间位置。
2.2 为什么根据点的两个投影便能作出其第三投影?具体作图方法是怎样的?答:因为点的任意两个投影的坐标已经标识了空间坐标情况,故可以通过点的两个投影作出第三个投影。
作图方法是:(1)点的正面投影和水平投影的连线垂直于OX轴(a′a丄OX),即长对正;(2)点的正面投影和侧面投影的连线垂直于OZ轴(a′a"丄OZ),即高平齐;(3)点的水平投影到OX轴的距离等于点的侧面投影到OZ轴的距离(a" az =a ax ),即宽相等。
2.3如何判断重影点在投影中的可见性?怎么标记?答:重影点在投影中的可见性根据点的坐标值大小来判断。
坐标值大者可见,反之不可见。
不可见点加()标识。
2.4空间直线有哪些基本位置?答:空间直线与投影面的位置关系有倾斜、垂直、平行。
2.5如何检查投影图上点是否属于直线?答:检查投影图上点是否属于直线可以采用定比法或者第三面投影法。
2.6什么是直线的迹点?在投影图中如何求直线的迹点?答:空间直线与投影面的交点称为迹点。
在投影图中利用迹点是属于投影面上的点的特征及属于直线上的点的投影特征(从属性)求解。
2.7试叙述直角三角形法的原理,即直线的倾角、线段的实长、与其直线的投影之间的关系。
答:以线段在某个投影面上的投影为一直角边,以线段的两端点到这个投影面的距离差为另一直角边,作一个直角三角形,此直角三角形的斜边就是所求线段的实长,而且此斜边和投影的夹角,就等于线段对该投影面的倾角。
2.8两直线的相对位置有几种?它们的投影各有什么特点?答:两直线的相对位置关系有平行、相交、交叉。
两直线在空间相互平行,则它们的同面投影也相互平行。
两直线在空间相交,则它们的同面投影也相交,而且交点符合空间点的投影特性。
两直线在空间交叉,则它们的同面投影可以平行或相交,而且交点不符合空间点的投影特性。