镁合金材料超塑性的研究进展
- 格式:pdf
- 大小:224.25 KB
- 文档页数:4
医用镁合金材料研究进展
首先,医用镁合金材料在骨修复方面具有广阔的应用前景。
镁合金具有与人体骨组织相近的密度和弹性模量,能够减少骨折部位的应力集中,促进骨骼的愈合。
此外,镁离子能够刺激骨细胞的增殖和分化,促进骨组织的再生。
因此,医用镁合金材料可用于制作骨修复植入物,如骨板、骨螺钉和骨融合器,用于治疗骨折、骨缺损和骨关节疾病等。
其次,医用镁合金材料在心血管介入治疗领域也有广泛的应用。
镁合金具有良好的生物相容性和血液相容性,能够避免血栓形成和血管狭窄。
同时,镁离子能够抑制平滑肌细胞的增殖,防止血管再狭窄。
因此,医用镁合金材料可用于制作血管支架、血管球囊扩张器和血栓滤器等,用于治疗冠心病、脑血管疾病和外周动脉疾病等。
此外,医用镁合金材料还可用于制作生物可降解的内固定器械。
传统的内固定器械一般采用不可降解的金属材料,需要手术后二次手术进行拆除。
而医用镁合金材料可以在人体内逐渐降解,避免了二次手术的痛苦和风险。
因此,医用镁合金材料可用于制作骨钉、骨螺钉和骨板等内固定器械,用于骨折和骨缺损的治疗。
然而,医用镁合金材料仍然存在一些挑战和问题。
首先,镁合金材料的腐蚀性较大,容易在体内产生气体和腐蚀产物,影响材料的稳定性和生物相容性。
其次,镁离子的释放速率过快可能导致组织刺激和炎症反应。
此外,医用镁合金材料的力学性能和加工性能还需要进一步改进和提高。
综上所述,医用镁合金材料在骨修复、心血管介入治疗和内固定器械等方面具有广阔的应用前景。
随着相关技术的不断进步和完善,相信医用
镁合金材料将在未来的医学领域发挥重要作用,为疾病的治疗和康复提供更好的选择。
镁合金研究报告
镁合金是一种轻质高强度材料,在航空、汽车、电子、医疗等方面有广泛的应用前景。
然而,镁合金材料还存在着一些问题,如易腐蚀、低韧性等,因此需要进行进一步的研究。
本文将从镁合金的研究现状、制备方法、性能改进等方面进行讨论。
一、镁合金的研究现状
(1)制备方法的研究:包括溶液处理、机械制备、热加工、复合材料制备等。
(2)合金化的研究:利用添加其他元素来改善镁合金的力学性能、耐腐蚀性能等。
(3)力学性能的研究:包括强度、延展性、硬度、耐蚀性等的研究。
(4)应用研究:应用于航空、汽车、电子、医疗等领域。
二、制备方法
制备镁合金的方法有多种,以下是比较常见的几种方法:
(1)溶液处理:利用化学法将钠、铝、锂等元素在高温下溶解于镁中,从而实现镁合金化的方法。
(2)机械制备:通过机械研磨、球磨等方法,将两种或多种金属粉末混合制备而成。
(3)热加工:通过加热、压力等方法,将镁合金加工成所需要的形状。
(4)复合材料制备:通过利用纤维增强材料制备出具有高强度、高韧性的复合材料。
三、性能改进
为了改善镁合金材料的性能,可以采用以下方法:
(2)热处理:通过加热、冷却等方法,改善镁合金的力学性能、韧性和耐蚀性等。
(3)表面处理:对镁合金材料进行氧化、涂层等表面处理,提高其抗腐蚀性。
四、结论。
镁合金研究现状及发展趋势镁合金是一种具有很高应用潜力的轻金属材料,具有低密度、高比强度、良好的机械性能以及优异的导热性能等特点,广泛应用于航空、汽车、电子等领域。
本文将对镁合金研究现状及发展趋势进行分析。
镁合金的研究现状主要表现在以下几个方面:首先,镁合金的合金化研究得到了广泛关注。
镁合金的低强度和低塑性是其在一些领域应用受限的主要原因,因此对镁合金进行合金化改性成为研究的重点。
通过添加合适的合金元素,如锌、铝、锆等,可以有效提高镁合金的强度和塑性,提高其综合性能。
其次,镁合金的热处理研究逐渐深入。
热处理是改变镁合金微观组织和提高其力学性能的重要方法。
目前,研究者们对镁合金的时效处理、固溶处理、稳定化处理等进行了广泛研究,并通过优化热处理工艺,提高了镁合金的强度、塑性和耐腐蚀性能。
此外,镁合金的表面处理研究也受到了广泛关注。
镁合金的表面活性、氧化倾向性和易腐蚀性是其应用受限的主要障碍。
目前,研究者们通过电化学氧化、化学镀、溶液渗硅等方法,改善了镁合金的表面性能,并提高了其耐腐蚀性、耐磨损性以及附着力等性能。
镁合金的发展趋势主要有以下几个方面:首先,镁合金的含量逐渐增加。
由于镁合金的低密度和良好的机械性能,具有很高的轻量化潜力,因此将镁合金应用于航空、汽车等领域,可以有效减轻重量,提高能源利用效率。
其次,镁合金的合金化方法将更加多样化。
目前的镁合金大多采用铸造方法制备,但铸造合金化有一定的局限性,不能满足特殊应用的需求。
因此,未来的研究重点将更加注重新型合金制备方法,如粉末冶金、堆积成形、等离子体喷涂等。
此外,镁合金的结构设计将更加系统化。
随着对镁合金研究的深入,研究者们发现材料的微观组织和结构对其性能具有重要影响。
因此,在今后的研究中,将更加注重镁合金的晶粒尺寸、晶界结构和取向等方面的设计和控制,以进一步提高材料的性能。
综上所述,镁合金的研究现状正朝着合金化、热处理和表面处理等方向深入发展,未来的发展趋势将更加注重轻量化、多样化的合金化方法以及系统化的结构设计。
镁合金板材超塑性成形性能及变形失稳文章研究了轧制AZ31B镁合金板材的超塑性与变形失稳,对镁合金板材进行了超塑性拉伸试验和超塑性凸模胀形试验。
通过对AZ31B镁合金进行超塑性单向拉伸(初始应变比?籽00)实验,研究其在不同加载途径下变形过程中板平面内的两主应变(?着1,?着2)的分布和最小截面处的应变路径变化。
结果表明:在一定变形速度与温度下,工业态AZ31B镁合金板材具有优良的超塑性;在变形温度为573K中温条件下的超塑性成形性合乎成形零件的基本要求。
标签:AZ31B镁合金;超塑性;成形性能;变形失稳Abstract:The superplasticity and deformation instability of rolled AZ31B magnesium alloy sheet were studied in this paper. The superplastic tensile test and the bulging test of superplastic convex die were carried out on the magnesium alloy sheet. The superplastic uniaxial tensile test (initial strain ratio ρ00)were carried out on AZ31B magnesium alloy. The distribution of two principal strains (?著1,?着2)and the variation of strain path at the minimum cross section in the plate plane during different loading paths are studied. The results show that the industrial AZ31B magnesium alloy sheet has excellent superplasticity at a certain deformation rate and temperature,and the superplastic formability at a deformation temperature of 573K meets the basic requirements of forming parts.Keywords:AZ31B magnesium alloy;superplasticity;formability;deformation instability目前,工业中的铝、钛等合金零件的生产多使用超塑性成形工艺,而超塑性成形工艺较少用于镁合金零件的生产过程。
镁合金研究现状及发展趋势摘要:镁合金作为21世纪的绿色环保工程材料之一,近年来已成为学术界的一个研究热点。
本文主要综述了镁合金的研究进展和应用,介绍了耐热、耐蚀、阻燃和高强高韧等高性能镁合金材料的最新发展。
还介绍了镁合金成型技术的研究成果,最后展望了高性能镁合金的发展前景。
关键词:镁合金;高强高韧;成型技术;应用1.引言镁(Mg)是地球上储量最为丰富的元素之一,在陆地、湖泊和海洋中都广为分布,例如,其在地壳表层金属矿资源中的含量达2.3%,仅次于占8.1%的铝和5%的铁,居第三位;海水中的镁含量达到2.1×1015吨,可以认为是取之不尽、用之不竭的元素[1]。
此外,我国的白云石矿储量、菱镁矿以及原镁的产量位列世界镁资源储量首位[2]。
同时,随着当前钢铁行业中铁矿石等资源的日趋紧张,开发和利用镁作为替代材料是必然的趋势。
被誉为“二十一世纪绿色金属结构工程材料”的镁合金是目前所知金属结构材料中最轻的,与其他同类材料相比,它具有密度小,比强度、比刚度较高,可以回收再利用且机加工性能优异,阻尼减震性好,电磁屏蔽效果佳等一系列优点,因此在交通运输(如汽车、摩托车、自行车等工业)、航空航天、武器装备、计算机通讯和消费电子产品等领域具有广阔的应用前景[3],但其使用量与铝合金和塑料相比还相当少[4]。
目前,从全球镁合金研发状况看,发展方向如图1所示[5],我国在镁合金材料的应用研究与产业化方面也己取得重大进展,形成了从高品质镁材料生产到镁合金产品制造的完整产业链,为我国实现由镁资源大国向镁应用强国的跨越奠定了坚实的基础。
图1 镁合金的研发方向[5]Fig. 1 Directions of Mg alloy development2.镁合金的特点及分类通过在纯镁中添加其他化学元素,可显著改善镁的物理、化学和力学性能。
但镁合金同时存在着显著的缺点,下面对镁合金的优缺点进行简要的阐述。
2.1镁合金的优点[6 ~ 8]1)密度小、质量轻。
2 AZ31B镁合金的超塑性力学特征及变形机制2.1 引言目前,超塑成形主要用于航空工业中的铝、钛等合金零件的生产,很少用于镁合金零件的生产。
由于镁金属的密排六方结构,其室温塑性加工性能较差,超塑成形对于镁合金的应用显得十分重要。
随着镁合金研究和应用的进一步发展,在节能环保的新工业时代,超塑性镁合金的应用将会日益增加,这对工业态(commercial)镁合金而言,意义尤其重大。
镁合金细晶超塑性变形及控制机理已有大量的相关报道,而对具有非典型等轴细晶的工业态(commercial)变形镁合金超塑性的研究较少,因此有必要对工业态(commercial)变形镁合金超塑变形的微观机制作深入研究。
本章对工业态热轧AZ31B镁合金板材的超塑性力学特征和变形机制进行了研究。
试验用热轧AZ31B镁合金板材超塑性拉伸试样的原始组织平均晶粒尺寸约为17.5μm,且组织不均匀,不具有典型等轴细晶组织。
超塑性拉伸试验在重庆钢铁股份有限公司钢铁研究所物理实验室的HT-9102电脑伺服控制材料试验机上进行,高温拉伸试验的温度范围为673~763K,应变速率范围为1×104-~1×103-1-s。
试验测定工业态轧制AZ31B镁合金超塑性变形应变速率敏感性指数m值,流动应力σ和延伸率δ等数据,以及厚向异性指数r、应变强化指数n等成形性能参数。
并寻求轧制AZ31B镁合金板材最佳超塑性变形温度和应变速率,以获得其超塑性最佳变形条件。
采用XL30-TMP扫描电镜对拉伸后试样的断口及超塑性变形轴剖面的空洞进行观察和分析。
旨在为其工业应用打下一定的理论基础。
2.2 AZ31B镁合金超塑性高温拉伸试验2.2.1 试验材料和试样本文研究的实验用材料为工业态热轧AZ31B镁合金板材。
其制备过程为:选取工业态镁合金AZ31B铸锭(化学成分见表2.1),铣面后坯料厚度尺寸为40mm。
坯料的加热温度为733~743K,保温时间6小时;轧制工艺制度:开轧温度为723~733K,热轧道次变形量为15~20%,在轧制过程中采用测温仪测量坯料温度,当温度低于573K时就返回加热炉再加热,使温度达到703~723K,保温时间为1小时。
高强塑积镁稀土合金的研究进展李扬欣;曾小勤【摘要】镁稀土合金通常具有优良的室温和高温力学性能,良好的高温蠕变性能和耐腐蚀性等,已成为越来越受瞩目的镁合金研究体系,并在航空航天、电子通讯、汽车等领域得到了广泛应用.目前为止,国内外所研发的镁合金大多表现出了"强度与塑性匹配性较差"这样一个特点.本文综述了高强塑积镁稀土合金的研究进展,尤其是含长周期堆垛有序结构相(long period stacking ordered phase,LPSO相)的Mg-RE-X系合金的研究现状,未来研发高强塑积镁稀土合金亟待解决的三大关键科学问题为:(1)多维度结构单元的形成机制及其微纳力学行为;(2)基于多晶取向相关与界面应变协调的强韧化机制;(3)高强塑积镁稀土合金组织与性能的演变规律与调控机制.【期刊名称】《航空材料学报》【年(卷),期】2018(038)004【总页数】10页(P封2,1-9)【关键词】镁稀土合金;强塑积;长周期堆垛有序结构(LPSO)相;结构单元【作者】李扬欣;曾小勤【作者单位】上海交通大学材料科学与工程学院轻合金精密成型国家工程研究中心,上海 200240;上海交通大学材料科学与工程学院金属基复合材料国家重点试验室,上海 200240;上海交通大学材料科学与工程学院轻合金精密成型国家工程研究中心,上海 200240;上海交通大学材料科学与工程学院金属基复合材料国家重点试验室,上海 200240【正文语种】中文【中图分类】TG146.2+2镁合金是实际应用中最轻的金属结构材料。
与铝合金、钢铁等结构材料相比,镁合金具有比强度更高、资源更丰富、轻量化潜力更显著的优点,被誉为“21世纪绿色工程材料”[1-2]。
镁和稀土是我国两种重要的优势战略性资源,镁和稀土结合可以创造出性能优异的轻质高强结构材料,即镁稀土合金。
国内外研究表明,高强度镁合金的发展历史几乎就是高性能镁稀土合金的发展历史。
镁合金在大变形和高应变率下塑性变形研究进展Research and Prog ress of Plastic Deformation o f M ag nesium A lloy sat H igh S train Rate and Large Deformation宁俊生1,范亚夫2,彭秀峰1(1烟台大学物理系,山东烟台264005;2中国兵器工业集团第五二研究所烟台分所,山东烟台264000)NING Jun-sheng1,FAN Ya-fu2,PENG Xiu-feng1 (1Phy sics Department of Yantai U niversity,Yantai264005,Shandong,China;2Yantai Branch of No.52Institute o f China Ordnance Industrie s Group,Yantai264000,Shandong,China)摘要:介绍了强应变塑性大变形下镁合金研究现状。
重点综述了在较高应变率及冲击载荷作用下关于镁合金变形的研究情况,同时也比较详细地综述了在不同温度、不同载荷作用下镁合金塑性变形特征及其物理机制。
最后简要介绍了几个描述材料在较高应变率和冲击载荷作用下变形行为的数学表示式,并就镁合金作为结构材料的研究说明了作者的一些看法。
关键词:镁合金;塑性大变形;高应变率;冲击载荷中图分类号:TG146.22 文献标识码:A 文章编号:1001-4381(2007)09-0067-07A bstract:Study about micro-structural changes of m ag nesium alloy s under large strains and severe plastic defo rmatio n w ere introduced.A ttention is concentrated on the research about the plastic de-fo rm ation of magnesium alloy s unde r impact loading and high strain rate.Meanw hile,the pro perties and phy sical mechanism s of plastic defo rmatio n of magnesium alloys under different lo ads and over a wide rang e of tem peratures we re review ed.Finally,sev eral fo rmula for describing the behaviors of magnesium alloy s under dy namic loading at hig h strain rate w as summ arized briefly,and so me sugges-tions on the study of m ag nesium alloy s used as structural m aterials were o ffered.Key words:magnesium alloy;larg e plastic defo rmatio n;hig h strain rate;impact loading 随着对镁合金研究的不断深入,镁合金优越的综合性能逐渐为人们所认识。
镁合金材料的创新技术轻量化和高性能的突破探索近年来,随着全球对环境保护和能源危机的日益关注,轻量化和高性能材料在各个领域中扮演着愈发重要的角色。
镁合金作为一种优秀的轻质结构材料,因其优异的物理性能和广泛的应用领域备受瞩目。
然而,其在实际应用中仍面临着一些挑战。
为了克服这些挑战并推动镁合金的发展,科学家们不断探索创新技术,致力于实现轻量化和高性能的突破。
一、合金强化技术的应用合金强化技术是提高材料强度和硬度的关键方法之一。
在镁合金的应用中,合金强化技术可以有效改善其低强度和差韧性的缺点。
常见的合金强化技术包括固溶强化、析出强化和织构强化等。
固溶强化是通过合金化元素的溶解提高了镁合金的强度。
例如,铝、锌、锶等元素可与镁形成固溶体,增强了镁合金的机械性能。
在发展镁合金材料时,科学家们通过合理控制合金化元素的含量和合金化工艺,达到了显著提高材料强度和韧性的效果。
析出强化是利用细小的析出相均匀地分布在基体中,阻碍位错的滑动和移动,从而提高材料的强度。
常见的析出相包括硬质的Mg17Al12相和Mg2Si相等。
通过合理的热处理和时效处理,镁合金中形成的析出相能有效提高材料的硬度和强度。
织构强化是通过控制材料的晶粒取向和组织结构来提高材料的力学性能。
通过热轧、挤压等变形加工工艺,可以使镁合金的晶粒获得优化的取向,从而提高其强度和塑性。
此外,通过合适的热处理,还能生成织构结构,进一步提高材料的高温强度和韧性。
二、表面处理技术的创新镁合金的应用范围广泛,需要具备良好的耐腐蚀性和表面功能化。
然而,镁合金本身易受腐蚀,尤其在湿热环境下更为明显。
为了解决这一问题,科学家们提出了多种表面处理技术,如阳极氧化、电化学沉积、激光表面处理等。
阳极氧化是一种常用的表面处理方法,通过在镁合金表面形成致密的氧化层,提高材料的耐腐蚀性和表面硬度。
电化学沉积是将金属或合金沉积在镁合金表面,形成一层保护层,提高镁合金的耐腐蚀性和摩擦性能。
激光表面处理是利用激光在材料表面进行局部熔化和再凝固,形成微细晶粒和弥散相,从而提高镁合金的表面硬度和耐磨性。
镁合金塑性变形机制及动态再结晶研究进展李立云;曲周德【摘要】This paper reviews the mechanism of plastic deformation in magnesium and its alloy at room temperature and dy-namic recrystallization behavior at high temperature, summarizes the research development of the plastic deformation mecha-nism of magnesium alloy and dynamic recrystallization. The results show that the process parameters, processing technology and alloy elements can affect the plastic forming process of magnesium alloy, twin can effectively promote the basal slip;as an important mechanism of grain refinement mechanism, the dynamic recrystallization can effectively start the prism surface of grain boundary sliding, thus to improve the plasticity of magnesium alloy. It points out that it is the important development di-rection of magnesium alloy to optimize the process parameters, research and develop the new technology, refine the grain size.%综述镁及镁合金在室温下塑性变形机制和高温下动态再结晶行为,总结镁合金塑性变形机制和动态再结晶的研究进展. 结果表明:工艺参数、加工工艺、合金元素等均能影响镁合金的塑性成形过程,孪生能有效促进非基面滑移,动态再结晶作为一种重要的晶粒细化机制能有效启动晶界处的棱柱面滑移,提高镁合金的塑性. 指出优化工艺参数,研发新型工艺,细化晶粒尺寸是变形镁合金发展的重要方向.【期刊名称】《机械研究与应用》【年(卷),期】2015(028)006【总页数】3页(P197-199)【关键词】镁合金;塑性变形机制;动态再结晶【作者】李立云;曲周德【作者单位】天津职业技术师范大学天津市高速切削与精密加工重点实验室,天津300222;天津职业技术师范大学天津市高速切削与精密加工重点实验室,天津300222【正文语种】中文【中图分类】TG146.20 引言镁合金以其低密度、高比强度和比刚度、良好的减震性和导热性、绝佳的电磁屏蔽性、易切削、易回收等优点,被誉为“21世纪绿色工程结构材料”[2]。
高性能镁合金的材料研究与应用前言高性能镁合金因其轻量、强度高等特点,在航空、汽车、电子、机械等行业中有着广泛的应用。
本文旨在对高性能镁合金材料的研究与应用进行介绍。
一、高性能镁合金的基本特性(一)密度低、比强度高镁合金的密度仅为铝合金的2/3,但是其强度却比铝合金高,因此,镁合金拥有比强度高的特点。
(二)耐腐蚀性强镁合金在常温下具有良好的耐腐蚀性,尤其是在海水、湖水等含氯离子的环境中能表现出更高的耐腐蚀性。
(三)易加工性好镁合金材料易于加工成各种形状,包括群状、管状、板状等多种形式。
(四)成型性好镁合金可以通过压铸、锻造等方法制造出各种复杂的零件。
二、高性能镁合金的应用(一)航空航天领域航空航天行业需要轻量化材料,以降低飞机的净重,提高燃油效率。
镁合金是一种轻量化材料,其应用在航空航天中有着广泛的应用。
比如在机身和引擎上的零部件制造中,使用镁合金材料可以减轻重量,提高效率。
(二)汽车工业在汽车行业,轻量化是一项重要的技术。
镁合金不仅可以有效地减轻汽车重量,提高燃油效率,而且易于加工成各种形状,加工成本也相对较低。
同时,与钢铁和铝合金相比,镁合金材料具有更好的耐腐蚀性和成型性。
(三)电子工业镁合金在电子工业中也有着广泛的应用。
在制造电脑外壳、摄像头外壳等方面可以大量使用镁合金材料。
(四)机械制造业在机械制造业中,常用到的金属材料是钢铁、铝合金等材料,但是这些材料具有较高的密度,增加了制造成本,降低了效率。
而镁合金具有密度低、比强度高的优势,可以有效地降低机械制造业的制造成本,提高效率。
三、高性能镁合金的发展趋势(一)技术创新随着科学技术的不断发展,高性能镁合金材料也在不断创新。
新材料的出现可以进一步提高镁合金的密度、耐腐蚀性等特性,为其未来的应用提供更多可能性。
(二)生态环保生态环保已经成为了新时代社会发展的重要方向。
镁合金可以有效地减轻重量,减少燃料消耗,降低碳排放,而且适当地回收利用可有效减少废弃物的数量,这些都是生态环保中的关键问题。
X射线衍射分析在镁合金塑性成形研究中的应用现状摘要:X射线衍射分析在镁合金塑性成形中已经得到了广泛的应用,这里综述了X射线衍射分析在变形镁合金物相分析以及晶体取向分析等方面的应用,最后展望了X射线衍射分析在镁合金塑性成形,尤其是精密塑性成形中的广阔的应用前景。
关键字:X射线衍射分析,镁合金,塑性成形,物相分析,晶体取向分析科技与经济的发展,要求材料工业必须处于领先地位。
为提高材料性能、挖掘材料潜力、扩大材料应用范围及研制新材料,人们越来越把注意力集中到研究材料的微观性质上,因为任何材料的宏观性能都是由其微观组织结构决定的。
常规的光学金相法近年来虽有重大改进,但其分辨率受光波衍射的限制,只能提供微米数量级的形貌图象,不能把显微形貌、成分和结构分析有机地结合起来。
然而,应用现代分析测试仪器和方法,就能精确地在材料微观尺度的区域内同时取得显微形貌、成分和结构及性能等各方面的信息,进行综合分析,确切地鉴定材料的组织结构本质。
材料现代测试分析技术是关于材料成分、结构、微观形貌与缺陷等的现代分析、测试技术及其有关理论基础的科学。
它不仅包括材料(整体的)成分、结构分析,也包括材料表面与界面分析、微区分析、形貌分析等诸多内容。
此外,材料现代测试分析技术还有助于创立新的理论,发明新的技术和方法。
科学技术上的重大成就和科学研究新领域的开辟,往往是以测试方法和仪器的突破为先导,“在诺贝尔物理和化学奖中,大约有四分之一是属于测试方法和仪器创新的”。
材料分析是通过对表征材料的物理性质参数及其变化(称为测量信号或特征信息)的检测实现的。
即材料分析的基本原理是指测量信号与材料成分、结构等的特征关系。
此外,通过采用各种不同的测量信号(相应地具有与材料的不同特征关系)形成了各种不同的材料分析方法[1]。
基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代测试分析方法的重要组成部分,其中,X射线衍射分析(XRD)已逐步发展成为一种极其重要的材料现代测试分析方法并广泛应用于金属材料、无机非金属材料和有机材料的结构以及性能研究当中。