激光热处理
- 格式:ppt
- 大小:1.71 MB
- 文档页数:21
激光热处理中实际光束热作用的快速分析本文通过探讨激光热处理的实际光束热作用,讨论激光热处理的快速分析及其应用,旨在指导实际应用。
激光热处理是指在熔融和改变表面结构和外形的同时,使用激光能量对工件进行热处理的一种方法。
激光热处理是一种非常有效的加工方法,具有良好的热处理表面,低噪声,节能和环保等特点。
激光热处理实际上是将激光能量转换为热能,然后将这种热能转化为冷能,再将冷能转化为工件表面的加工变化,使其具有良好的加工性能。
实际上,激光热处理的光束热作用是指将激光束聚焦到激光热处理表面,使表面温度升高。
一般来说,激光热处理要求被处理表面位处极小的温度范围内,这样才能实现理想的加工结果。
因此,激光热处理的关键是实现正确的光束热作用,以便改善处理的表面性能。
激光热处理的快速分析是指在激光加工过程中,通过实时追踪光束加工区域的温度变化,确定光束的热作用以及加工质量的高低的过程。
可以采用实时表面温度测量、光束能量测量、反射热激励、热均匀度测量等技术,来完成这一分析。
目前,人们已经使用这些技术来研究激光热处理过程中表面温度变化、光束形状和能量等内容,评估加工过程中加工质量的好坏。
这些快速分析方法在实际应用中非常有效。
可以有效地提高激光热处理的表面处理质量,提高处理速度,减少生产成本等。
此外,可以应用快速分析技术来研究激光热处理中的表面形貌及其变化,以及激光热处理与加工工艺、加工工具和工件材料等多种因素之间的关联。
有助于更好地控制加工参数以及激光热处理的瞬时表象。
总之,激光热处理的实际光束热作用及其快速分析是激光热处理行业探索的重要课题,在工业应用中具有重要意义。
通过分析,可以有效地改善激光热处理过程,精确控制表面质量,从而提高激光热处理的效率和质量,为实际应用提供可靠的参考依据。
激光热处理原理“热处理”是指通过加热于金属材料,以多种方式改变金属材料的组织或性质的方法。
尽管激光热处理技术在诱导表面组织的变化方面类似于现有的高频热处理(感应淬火,Induction Hardening)方法,但激光热处理方法有更多优点,例如,经激光热处理后,母材的尺寸变化几乎为零,且因构成更致密的组织而使表面硬度变得更高,无需另行冷却工程。
激光热处理技术还能针对所需的部分进行选择性热处理,如三维形状的机械配件及模具产品、模切刀的刀刃末端部分等。
同时,通过采用高温计(Pyrometer)实时测量和控制母材的表面温度,可在大批/小批生产工程中获得稳定的热处理质量。
经激光热处理后,表面硬度会根据母材含碳量的不同而有所不同,通常保持在 >53~65Hrc的水平,有效硬化深度约为0.8~1.5mm,硬化幅度按激光功率调整为几毫米至几十毫米。
到2000年初为止,主要用于激光热处理工程的激光器为二氧化碳(CO2)激光器,但目前随着多种高功率激光器的开发,对金属材料的吸收率更高的高功率激光器更受青睐,包括半导体激光器、碟片激光器、光纤激光器等。
激光热处理技术作为一种替代高频热处理(Induction Hardening)的技术,不仅适用于汽车产业领域,如冲压模具、注塑模具、汽车配件等,还适用于造船、钢铁、机械、电子产业等广泛领域,且其适用范围逐渐扩展至需经局部性热处理而提升产品硬度及强度的多个领域。
就激光金属热处理技术的基本原理而言,通过将高能量密度的激光束照射到金属材料的表面上,将母材温度急剧上升至母材快要达到熔融温度时为止,并重新急剧冷却之,由此诱导其表面的组织变化。
照射到母材表面上的激光束会转换为热能,使母材表面加热,并通过利用母材的热传导特性重新使其降温(自猝灭,Self-Quenching),最终提升材料的硬度及强度。
优点·仅对所需的部分进行局部性热处理·实时监测和控制母材的温度,提升热处理质量·采用适合不同热处理对象的多种激光束,提升工作灵活性及生产效率·以自猝火(Self-quenching)效果尽量减少产品变形,获得非常稳定、均匀的热处理效果·无论产品的生产量、大小、重量,都能获得稳定的热处理效果适用产品汽车、电子、造船、航空零部件、注塑/冲压磨具、道具、大型涡轮机、齿轮螺纹、刀刃及各种工具类等济南欧威激光有限公司,是韩国(株)EUROVISION LASER CO.,LTD 在中国的全资子公司,公司坐落于人杰地灵的山东省济南市,公司成立于2016年6月,在汽车、钢铁、电子、半导体、医疗等整个产业领域致力于开发和推广多种激光应用技术。
激光热处理对铝合金组织和晶粒生长的影响研究引言:铝及其合金是广泛应用于工业生产和日常生活的重要材料之一。
近年来,随着科技的不断进步和工业对材料性能要求的提高,对于铝合金的研究日益重要。
激光热处理作为一种新的表面处理方法,在改善铝合金材料性能方面显示出巨大的潜力。
本文将研究激光热处理对铝合金组织和晶粒生长的影响。
一、激光热处理对铝合金组织的影响1. 显微组织变化激光热处理对铝合金的显微组织具有显著的影响。
通过激光热处理,铝合金材料的晶粒尺寸可以得到有效控制和调节。
实验研究表明,随着激光功率的增加,铝合金材料的晶粒尺寸逐渐减小,晶界清晰度提高。
这种细化效应对于改善材料的力学性能和表面质量具有重要意义。
2. 相变行为除了晶粒尺寸的控制,激光热处理还会引起铝合金中相变行为的变化。
例如,在某些激光功率下,铝合金中的析出相含量会发生明显的变化。
这种相变行为的调控可以改变材料的硬度、强度和耐腐蚀性能。
这一研究结果对于铝合金在不同工业领域的应用有重要意义。
二、激光热处理对铝合金晶粒生长的影响1. 晶粒生长动力学激光热处理对铝合金晶粒生长动力学有一定的影响。
实验研究发现,通过激光热处理可以促进铝合金晶粒的再结晶行为,进而改善材料的塑性变形能力。
此外,激光热处理还可以调控晶粒的取向分布,进一步提高材料的力学性能。
2. 晶粒界面的特性激光热处理对铝合金晶粒界面的特性也具有一定的影响。
研究表明,激光热处理可以降低晶界能量,提高晶界的稳定性和力学强度。
这种改善晶界特性的效果对于材料的抗拉伸、疲劳和断裂行为具有重要影响。
总结:激光热处理对铝合金组织和晶粒生长具有明显的影响。
通过激光热处理可以控制和调节铝合金的晶粒尺寸、相变行为和晶粒界面特性。
这种表面处理方法为铝合金材料的应用提供了新的途径,有助于改善材料的力学性能、表面质量和耐腐蚀性能。
然而,目前对于激光热处理对铝合金组织和晶粒生长的影响研究还存在一些问题,例如对于激光功率、扫描速率和材料成分等参数的优化调控仍然需要进一步探索。
激光热处理技术在光学器件制造中的应用研究引言:随着现代科技的快速发展,光学器件作为光学系统的重要组成部分,正扮演着越来越重要的角色。
为了满足不断增长的需求,提高光学器件的性能和可靠性成为了制造业的重要课题之一。
作为一种高精度、高效率的材料加工技术,激光热处理技术逐渐引起了光学器件制造领域的关注。
本文将重点研究激光热处理技术在光学器件制造中的应用,并讨论其优势、挑战以及未来发展方向。
一、激光热处理技术的基本原理及分类:1.1 基本原理:激光热处理技术利用激光束的局部聚焦能量,通过光热转换作用改变材料的性质。
激光束聚焦在器件表面时,高能量的光子会与物质相互作用,导致材料的加热和相应的结构变化。
通过控制激光能量、扫描速度和聚焦形式等参数,可以实现对材料的局部加热、熔化、退火或淬火。
1.2 分类:根据处理方式和所使用的激光类型,激光热处理技术可以分为几个主要类别。
常见的包括激光刻蚀、激光熔化、激光退火、激光淬火等。
每种类型的激光热处理技术在光学器件制造中都有其特定的应用和优势。
二、激光热处理技术在光学器件制造中的应用:2.1 光学薄膜的热处理:光学薄膜的制备是光学器件制造过程中的关键步骤之一。
传统的方法使用真空沉积过程,但往往会导致薄膜的性能不稳定。
激光热处理技术可以通过调节激光的能量和扫描速度,实现对薄膜的精确控制,使得薄膜的表面光学性能更加均匀一致。
2.2 光学元件的表面改性:光学元件的表面性质直接影响其光学性能。
激光热处理技术可以对光学元件的表面进行微观调控,实现表面硬化、熔化、退火等处理,从而改善光学元件的光学透过率、抗刮伤性以及耐腐蚀性。
2.3 光学器件连接与封装:光学器件的连接与封装是关键的步骤,直接影响器件的性能和可靠性。
激光热处理技术可以通过局部加热的方式,实现光学器件的精确连接与封装。
与传统的焊接方法相比,激光热处理技术无需接触,避免了表面损伤和应力引起的失配问题。
三、激光热处理技术在光学器件制造中的优势:3.1 高精度:激光热处理技术可以实现对光学器件的高精度加工、表面改性和连接,保证了器件的几何形态、表面质量和尺寸精度的一致性。
激光表面热处理技术的特点激光表面热处理技术是利用聚焦后高能量的激光束由激光加工系统在数控控制下,对金属表面指定部位以106℃/s的加热速度作用于材料表面,使激光作用区温度急剧上升形成奥氏体,或表面熔化形成熔凝状态。
并利用材料自身的自冷作用使其迅速发生相变,形成马氏体淬硬层的过程。
激光表面热处理技术包含激光熔凝和激光淬火。
激光表面热处理的特点:1.激光表面处理后硬度层的深度依照零件材料成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~1.5mm范围之间。
激光熔凝处理时硬度层深度可达1.5-2mm。
2.对表面粗糙度要求高的齿轮、大型轴类零件、模具、刀片、轴承座、阀门进行激光表面处理,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。
3.激光表面热处理通过数控精确控制激光加工轨迹,可以对任意尺寸的工件局部表面处理。
4.由于激光处理后组织位错密度高,淬火层为细针状马氏体,激光加热区与基体的过渡层很窄,不影响处理部位以外的基体组织和性能。
淬火层具有很高硬度的同时又具有一定的韧性,这是其它表面热处理方式很难实现的,得到了耐磨性与韧性的完美结合。
5.由于激光表面处理的加热和冷却速度比较快,热影响区很小,所以激光热处理前后工件的变形几乎可以忽略,适合高精度要求的零件表面处理。
6.激光相变硬化的硬度一般要比常规淬火方法得到的高15%左右。
江苏中科四象激光科技有限公司地处于江苏省丹阳市高新技术园区,是国内第一家专业从事高功率全固态激光器研发、生产和销售的高新技术企业。
公司由中科院半导体研究所和江苏天坤集团有限公司共同注资一亿元人民币于2010年9月组建成立,主要产品有高功率全固态激光器、激光焊接、激光熔覆等成套激光加工设备。
公司致力于争创国际一流品牌,生产一流产品,提供一流服务,产品主要应用于汽车、船舶以及航空航天等领域零部件的焊接和大型风机轴承等重型零部件的表面热处理(激光淬火)以及修复(熔覆)表面强化等工艺中。
激光热处理原理及应用激光热处理(Laser heat treatment)是利用激光器产生的高能量、高密度的激光束对材料进行加热处理的一种表面强化技术。
它通过瞬间的激光照射,使材料表面局部区域迅速加热到很高的温度,然后通过传热作用将高温局部含能量较高的物质重新排序,从而改变材料的微观结构和性能。
激光热处理的原理主要包括吸收过程、传热过程和相变过程三个方面。
首先是吸收过程。
激光束照射到材料表面时,会引起表面的光源吸收,激光能量被转化为热能。
此过程与激光在材料中的反射、散射以及折射有关。
材料的吸收率与其波长、光束形状、入射角度、材料本身的吸收特性等因素都有关系。
其次是传热过程。
激光光束在材料表面产生的热能会通过传热方式向材料内部传导,使得局部区域温度升高。
传热方式包括传导、对流和辐射三种形式。
当激光能量较大时,传热速度远远大于材料的热损失速率,就会导致局部区域温度升高。
最后是相变过程。
当局部区域温度达到材料的熔点或显著高于材料的临界温度时,相变就会发生。
相变过程包括熔化、淬火和回火等,由于瞬时的高温和快速的冷却速率,可以改变材料的晶体结构、显微组织和力学性能。
激光热处理技术广泛应用于金属、陶瓷、半导体等领域。
其中,金属材料是应用最广泛的对象。
在金属材料领域,激光热处理可以实现以下几个方面的应用。
首先,激光热处理可以改善金属材料的硬度和耐磨性。
通过瞬时的高温和快速的冷却,可以使金属材料的晶粒细化,减少缺陷和夹杂物的数量,从而显著提高材料的硬度和耐磨性。
其次,激光热处理可以改善金属材料的抗腐蚀性能。
通过调控激光加工参数和选择合适的加工介质,可以在金属表面形成致密的氧化膜或硬化层,提高金属材料的抗腐蚀性能。
再次,激光热处理可以改善金属材料的疲劳性能。
通过激光热处理抑制晶界腐蚀、消除内应力和缺陷,可以提高金属材料的疲劳寿命,延缓疲劳裂纹的扩展。
此外,激光热处理还可以修复金属材料的损伤。
通过局部加热和快速冷却,可以消除材料中的应力和缺陷,使损伤区域重新呈现良好的性能。
热处理中的激光热处理技术热处理技术是金属材料加工过程中的重要一环,而激光热处理技术则是其中的一个重要分支。
激光热处理技术采用激光束对金属表面进行点状、线状或面状的高温加热处理,以改变材料结构和性能,增强材料的耐磨、抗腐蚀、抗疲劳及强度等特性。
本文将重点探讨激光热处理技术在金属材料加工中的应用及其进展情况。
一、激光热处理技术原理激光热处理技术原理主要是利用激光束的高能量浓度和短脉冲宽度,对金属材料表面进行短暂的高温处理,以改善材料性能,提高工件的耐磨性、硬度和强度等。
激光在照射金属表面时,会引起金属表面温度的瞬间升高,然后在时间尺度为纳秒到微秒级别内,温度会快速降至原来的温度。
这种非常快速的热处理过程能够使金属材料的结构和物理性能发生变化。
二、激光热处理技术在金属材料加工中的应用1. 表面熔覆激光熔覆技术是激光热处理技术中最常用的一种。
表面熔覆可以在工件表面形成一个大约数毫米深度的熔层,增强材料抗磨损、腐蚀和抗氧化能力。
与传统热处理技术相比,激光熔覆使用的热源是点状的,这样就可以限制热影响区域,并且生成的熔池也更加浅、狭窄。
因此,可以熔覆硬质合金、陶瓷等材料,以增加零件金属表面的硬度和耐磨性。
2. 相变处理相变处理通过控制激光热处理时的温度梯度分布来实现。
这种方法是通过调整材料加热的速率和冷却速率来改变材料的结构和性质。
相变处理可以增加工件表面的硬度和强度,同时降低其疲劳极限和延展性。
3. 快速凝固处理快速凝固是一种最常用于合金制造的激光热处理方法,可以通过快速固化使合金达到非常高的强度和硬度。
通常,通过射入激光束来制造固态晶体和非晶体的薄片,以达到高强度、高硬度和低热导率的效果。
4. 表面改性表面改性主要是通过改变材料的表面形态和结构来增强材料的性能。
例如,可以使用激光热处理技术在材料表面形成微米级别的凹凸和纹路,以增加其表面摩擦系数和润滑性能。
三、激光热处理技术的进展激光热处理技术已经成为金属材料加工过程中不可或缺的一环。