环介导等温扩增技术原理
- 格式:ppt
- 大小:4.53 MB
- 文档页数:20
等温扩增是PCR的补充还是代替??来看看他们的优劣势!近年来,随着分子生物学技术的迅速发展,基于核酸检测的诊断方法已大量建立并广泛应用于人类疾病的实验室检测中,等温扩增技术便是其中一种,与其他的核酸扩增技术相比,等温扩增有快速、高效、特异的优点且无需专用的设备,所以它一经出现就被许多学者认为是一种有可能与PCR媲美的检测方法。
相信以等温核酸扩增技术为基础的诊断仪器和试剂盒的开发和应用会是未来一,二十年的方向。
本文总结了目前常见的等温核酸扩增技术:LAMP、NERA、NASBA、RCA、HDA、RPA和ERA。
同时对PCR和几种恒温核酸扩增技术进行了比较。
为了更好地有选择地开发利用这方面技术,现就这些等温扩增技术的原理、特点及应用进行简要总结。
聚合酶链式反应(PCR)聚合酶链式反应(PCR)是利用耐高温的DNA聚合酶(Taq 酶),将模板DNA,引物,脱氧核苷三磷酸(dNTP)和缓冲液等在不同温度间循环,从而达到双链DNA分离,引物粘合到模板上的互补区间,最后在DNA聚合酶作用下脱氧核苷三磷酸逐个添加到新合成的DNA 链上的过程。
PCR是利用DNA 在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。
基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。
环介导等温扩增 (LAMP )环介导等温扩增其扩增原理是基于DNA在65℃左右处于动态平衡状态,任何一个引物向双链DNA的互补部位进行碱基配对延伸时,另一条链就会解离,变成单链,在此前提下利用4种不同的特异性引物识别靶基因的6个特定区域,在链置换型DNA聚合酶的作用下,以外侧引物区段的3`末端末端为起点,与模板DNA互补序列配对,启动链置换DNA合成。
rpa等温扩增原理解析RPA(等温扩增)原理解析1. 引言RPA(等温扩增)是一种基于循环介导核酸回路的核酸扩增技术,与PCR(聚合酶链式反应)相比具有许多优势。
本文将深入探讨RPA的原理、应用以及对该技术的观点和理解。
2. RPA原理RPA的目标是在等温条件下扩增特定的核酸序列。
其主要原理基于两个关键组分:寡核苷酸引物和核酸酶。
引物包括一个引导引物(primer)和两个酶拆分引物(probe),它们都与目标序列互补。
在反应开始时,引物与DNA模板的目标序列结合形成引物-模板复合物。
外源的核酸酶通过切割酶拆分引物的作用将其离解,并释放出一个能够启动下一轮循环的寡核苷酸。
这种循环迭代的过程可以产生大量的目标序列。
3. RPA优势和应用- 等温条件:RPA在等温条件下进行,无需复杂的温度循环设备,可以在简单的实验条件下进行。
- 灵敏度:由于循环介导核酸回路的特点,RPA对目标序列的敏感性较高,可以在极低的起始DNA模板浓度下有效扩增。
- 速度:与PCR相比,RPA具有更快的扩增速度,通常在15-60分钟内完成。
- 特异性:RPA可以通过引物设计实现高度特异性的扩增,避免了非特定性的产物形成。
- 简单性:RPA反应体系简单,操作方便,不需要复杂的实验步骤和设备。
RPA技术已广泛应用于许多领域,包括:- 分子诊断:RPA可以用于检测和诊断致病微生物的核酸标记,从而实现快速和准确的病原体检测。
- 食品安全:RPA可用于检测食品中的致病微生物或污染物,保障食品安全。
- 环境监测:RPA技术可用于检测环境中的微生物污染、环境污染物等,为环境监测提供快速准确的方法。
- 法医学:RPA可用于快速鉴定和识别DNA样本,为法医学病例提供科学依据。
4. 对RPA的观点和理解RPA作为等温核酸扩增技术的代表,具有许多优势,使其在分子生物学和临床诊断领域得到广泛应用。
RPA不仅具有灵敏度高、特异性强等优点,还具有操作简单、快速扩增等特点,使其成为一种理想的核酸扩增技术。
lamp原理和应用情况
LAMP 原理:
环介导等温扩增法(loop-mediated isothermal amplification,LAMP),是一种新型的核酸扩增方法,其特点是针对靶基因的6个区域设计4种特异引物,在链置换DNA聚合酶(Bst DNA polymerasc)的作用下,60--65℃恒温扩增,15-60rain左右即可核酸扩增,效率可达109~10m个数量级,具有操作简单、特异性强、产物易检测等特点。
在DNA合成时,从脱氧核酸三磷酸基质(dNTPs) 中析出的焦磷酸根离子与反应溶液中的镁离子反应,产生大量焦磷酸镁沉淀,呈现白色。
因此,可以把浑浊度作为反应的指标,只用肉眼观察白色浑浊沉淀,就能鉴定扩增与否,而不需要繁琐的电泳和紫外观察。
由于LAMP反应不需要PCR 仪和昂贵的试剂,有着广泛的应用前景。
LAMP法的应用领域:
灵活运用能够简单、快速地进行基因扩增的特征,在各个领域得到广泛应用
食品领域:食物中毒致病菌的检测,食品的卫生管理,食物中毒的防止;
临床领域:病原菌、病毒的检测及鉴定,通过SNP多态性分型决定用药量;
农业领域:植物病害的早期发现及蔓延防止,转基因作物的检测;
环境领域:环境、水中病原微生物的检测;
工业领域:工业产品用大量DNA的生产成为可能;
畜牧业领域:雌雄性别判断,病原微生物的检测,遗传病的发现.。
转基因植物及其产品成分检测环介导等温扩增方法制定指南下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言近年来,随着转基因技术的飞速发展,转基因植物及其产品在农业生产中得到了广泛应用。
转基因植物及其产品成分检测环介导等温扩增方法制定指南1. 引言1.1 概述本篇文章旨在介绍转基因植物及其产品成分检测中的一种重要方法——环介导等温扩增,并制定相关操作指南。
转基因植物技术是现代生物技术领域的一个重要研究方向,通过引入外源基因改变植物的遗传特性,以实现对植物性状和品质的调控。
然而,随着转基因植物产品在市场上的广泛应用,对其合规性和安全性的检测也愈发重要。
目前,PCR技术是最常用于转基因植物及其产品成分检测的方法之一,但存在耗时长、复杂度高等问题。
相比之下,环介导等温扩增作为一种新兴的核酸扩增方法,在特异性、快速性、简便性以及成本效益上具有明显优势。
本文将详细介绍环介导等温扩增原理并制定相应操作指南,以期为广大科研工作者提供实验操作参考。
1.2 转基因植物简介转基因植物是通过人为手段将外源基因导入自然界中不存在的植物基因组中而产生的植物。
这些外源基因通过转化技术嵌入到植物细胞中,被遗传到下一代,并在整个生长过程中被表达出来。
转基因植物技术在农业、医药等领域具有广泛的应用前景,例如提高抗病虫害能力、改善产量和品质等。
然而,鉴别转基因植物及其产品成分的重要性日益凸显。
政府和国际组织对转基因食品进行严格管理与监控,以确保消费者的食品安全和权益。
因此,在有关立法和标签法规的约束下,开发可靠快速的检测方法是十分必要的。
1.3 环介导等温扩增方法简介环介导等温扩增(Loop-Mediated Isothermal Amplification, LAMP)作为一种新兴的核酸扩增方法,由于其高度特异性、高效率、简单操作以及成本效益受到了广泛关注。
该方法利用DNA引物和Bst DNA聚合酶在等温条件下完成扩增反应,无需复杂设备与复杂试剂制备流程,大大降低了实验操作的难度。
环介导等温扩增方法通过特异性引物对目标序列进行扩增,将其从复杂样本中快速准确地检测出来。
该方法具有传统PCR技术无法比拟的优势,如高特异性、高灵敏度、快速反应速度和便捷实施等。
环介导等温扩增技术及其在病原微生物检测中的应用循环介导温扩增技术(Cycling Primer Extension, CPE)是一种高效的分子生物学技术,主要用于基因、控制序列、表达调控物质和相关蛋白质之间的相互作用分析。
它常被应用于病原性微生物检测以及病毒基因分子变异分析等方面。
一、循环介导温扩增技术的原理循环介导温扩增技术是一种改良的PCR技术,它能将DNA模板扩增成上百万亿倍左右的数量,以满足分子生物学研究的需要。
该技术的基本原理是将待检测模板上特异性引物结合,并施加高温、低温及中间温度等三种温度环境,在低温下用引物扩增模板,并在特定温度中支配引物限制片段扩增,最后在v高温环境中扩增产物释放,从而通过三种温度环境积累构建双螺旋样的DNA桥梁而达到扩增的目的。
二、循环介导温扩增技术的优势(1)快速、灵敏:循环介导温扩增技术利用低温度和高温度振荡循环,大大提高了扩增速度,并且增强了信号效率,可以充分利用模板,进而提高检测灵敏度。
(2)省时省钱:循环介导温扩增技术使用到的耗材比PCR来得少,扩增速度更快,是一种省时省钱的技术。
(3)容易操作:CPE程序简单,操作过程相对PCR要简单,与实验室常规仪器一般可以完成,且实验室中的反应条件也相对简单,不存在PCR实验中的活性危险,也不存在贴壁细菌和操作技术考验棘手的问题。
三、循环介导温扩增技术在病原微生物检测中的应用(1)病毒检测:CPE技术可以快速灵敏地检测SARS-CoV-2病毒,从而帮助监测新型冠状病毒的传播趋势。
(2)细菌检测:CPE技术可以检测各种细菌产生的毒力因子,如真菌毒素和E. Coli有毒因子。
(3)NDM-1耐药基因及AMR的表型检测:NDM-1耐药基因和AMR 抗药菌的表型检测,可以快速确定环境中微生物的耐药基因断裂和AMR抗药菌表型,为后续的抗药策略的分析提供了依据。
四、总结循环介导温扩增技术灵活、方便,既可以用于病毒检测,也可以用于细菌检测,此外,它还可以用于耐药基因及抗药性表型的检测。
LAMP技术原理和引物设计LAMP技术(Loop-mediated isothermal amplification),中文称为环介导等温扩增技术,是一种于2000年由Eiken Chemical Co. Ltd.日本公司开发的基于异十四链聚合酶反应(Bst聚合酶)的异源DNA快速扩增技术。
LAMP技术通过引物设计和反应条件的优化,实现在等温条件下对目标DNA的高效扩增。
下面将分别介绍LAMP技术的原理和引物设计。
LAMP技术的核心原理是通过酶的协同作用,在等温条件下进行DNA的扩增。
它利用一种特殊的DNA聚合酶(Bst聚合酶),能够在不需要高温退火的情况下,具有高度特异性和高效率地进行DNA合成。
LAMP技术本身具有极高的扩增速度,优势在于其在等温下,不需要复杂的设备和严格的实验条件,可以简化扩增过程。
同时采用特殊设计的引物组合,能够提高扩增特异性。
1.初始化反应:将反应体系中的DNA片段与引物(包括2个外端引物和2个补体引物)结合;2. 引物扩增:引物与Bst聚合酶作用,反应体系中的DNA得到扩增;3.聚合物合成:一种特殊的引物结合到目标DNA的5'末端,通过内端引物和内部位点进行扩增;4.循环放大:扩增产物作为新的模板参与反应,进行连续循环扩增。
通过这种等温扩增的方法,LAMP技术可以在短时间内获得大量的目标DNA,且具有很高的扩增特异性和灵敏度,可以用于分子生物学、诊断医学和病原检测等领域。
引物设计:引物设计是LAMP技术成功应用的重要因素之一、LAMP技术使用了4个单链引物,包括2个外端引物(forward outer primer,F3和reverse outer primer,B3)和2个内端引物(forward inner primer,FIP和reverse inner primer,BIP)。
外端引物负责扩增DNA的初始段,内端引物负责扩增DNA的中间段。
在引物设计中,需要注意以下几个方面:1.引物的特异性:要求引物能够有高度特异地结合到目标DNA的区域,确保扩增的目标是准确的;2.引物的长度和碱基组成:引物的长度通常为20-24个碱基,碱基组成要尽量避免重复序列和形成组内结构,以保证扩增效率和特异性;3.引物的位置和方向:合理选择引物的位置和方向,以确保扩增产物的特异性和有效性;4.引物的浓度:引物的浓度需要进行优化,以获得最佳的扩增效果。