钻削加工与钻头
- 格式:ppt
- 大小:2.35 MB
- 文档页数:30
中等专业学校2023-2024-1教案教学内容1、台式钻床台式钻床简称台钻(图2-4-2),是一种小型机床,安放在钳工台上使用,多为手动进钻,其钻孔直径一般在12~15 mm。
台式钻床主要用于加工小型工件上的各种孔钳工中用得最多。
2、立式钻床立式钻床简称立钻(图2-4- 3),是万能性通用机床,一般用来钻中小型工件上的孔,其规格用最大钻孔直径表示。
常用的立式钻床有25 mm、35 mm、40 mm、50 mm等几种。
立式钻床工作台和主轴箱可以在立柱上垂直移动,可用于钻孔、扩孔、铰孔、划端面、钻沉座孔(锪)、攻螺纹等作业,借助于夹具也可以进行镗孔。
教学内容3、摇臂钻床摇臂钻床有一个能绕立柱旋转的摇臂(图2-4- 4)。
主轴箱可在摇臂上做橫向移动,并可随摇臂沿立柱上下做调整运动,因此,操作时能很方便地调整到需钻削的孔的中心,而工件无须移动。
在各类具备钻孔功能的机床中,摇臂钻床由于操作方便、灵活,适用范围广,具有典型性。
特别适用于单件或批量生产带有多孔大型零件的孔加工。
(二)钻床的型号表达(1) Z5135型立式钻床,其型号含义如图2-4-5所示。
教学内容(2) Z3050型摇臂式钻床,其型号含义如图2-4- 6所示。
板书设计钻床及常见孔加工一、钻床二、钻床的型号表达三、总结1.台式钻床四、巩固2.立式钻床五、作业3.摇臂钻床教后札记中等专业学校2023-2024-1教案教学内容麻花钻通常直径范围为0.25~80mm。
麻花钻的工作部分有两条螺旋形的沟槽。
1.麻花钻的结构麻花钻由工作部分、柄部和颈部组成。
如图2-4- 7所示。
(1)工作部分麻花钻的工作部分分为:切削部分、导向部分。
①切削部分麻花钻的切削部分有两条主切削刃、两条副切削刃和一条横刃。
麻花钻的钻心直径为(0.125~0. 15)D(D为钻头直径)。
两条主切削刃在与它们平行的平面上投影的夹角称为顶角(2p),如图2-4- 8所示。
标准麻花钻的顶角2φ= 118°。
精心整理1 钻小孔的精孔钻钻削直径在(2~16)mm的内孔时,可将钻头修磨成图7-1所示的几何形状,使其具有较长的修光刃和较大的后角,刃口十分锋利,类似铰刀的刃口和较大的容屑槽,可进行钻孔和扩孔,使孔获得较高的加工精度和表面质量。
钻孔或扩孔时,进给要均匀。
对钻削碳钢时加工精度可达IT(6~8),表面粗糙度可达Ra(3.2~1.6)μm。
采用的切削用量:Vc =(2~10)m/min,f=(0.08~0.2)mm/r。
冷却润滑液为乳化液或植物油。
2 半孔钻工件上原来就有圆孔,要扩成腰形孔,这就需要钻半孔了。
若采用一般的钻头进行钻削,会产生严重的偏斜现象,甚至无法钻削加工。
这时可将钻头的钻心修整成凹形,如图7-2所示,突出两个外刃尖,以低速手动进给,即可钻削。
实际钻削时,还会遇到超过半孔和不超过半孔的情况,由于两者的切削分力情况不同,必须对半孔钻的几何参数作必要的修正,若条件可能的话,使用相应的钻套,就更好了。
3 平底孔钻平底又分平底解体4通孔和平底盲孔,如图7-5(b)、(c)所示。
这时,可把麻花钻磨成两刃平直且十分对称的切削刃,并把前角修磨成3°~8°,后角为2°~3°特别是后角不能大,大了以后不仅引起“扎刀”,而且孔底面呈波浪形,重则会造成钻头折断事故。
若钻削盲孔时,应把钻心磨成如图7-5(c)所示的凸形钻心,以便钻头定心,使钻削平稳。
4 薄板钻在(0.1~1.5)mm厚的薄钢板、马口铁皮、薄铝板、黄铜皮和紫铜皮上钻孔,不能用普通钻头,否则钻出的孔就会出现不圆、成多角形、孔口飞边、毛刺很大,甚至薄板扭曲变形,孔被撕破。
大的薄板很难固定在机床上,若用手握住薄板钻孔,当用普通麻花钻的钻尖刚钻透时,钻头失去定心的能力,工件发生抖动,刀刃突然多切,扎入薄板,切削力急增,易使钻头折断或手扶不住,造成事故。
图7-6所示的薄板钻,钻时钻尖先切人工件,起定心作用,两个风力的外尖迅速把中间切离,得到所要求的孔用它钻薄板的干净利落,安全可靠。
第九章钻削加工钻床是加工内孔的机床,是用钻头在实体材料上加工孔,主要用于加工外形复杂,没有对称旋转轴线的工件,如杠杆、盖板、箱体、机架等零件上的单孔或孔系。
钻孔属粗加工。
·钻削加工的工艺特点(1)钻头在半封闭的状态下进行切削的,切削量大,排屑困难。
(2)摩擦严重,产生热量多,散热困难。
(3)转速高、切削温度高,致使钻头磨损严重。
(4)挤压严重,所需切削力大,容易产生孔壁的冷作硬化。
(5)钻头细而悬伸长,加工时容易产生弯曲和振动。
(6钻孔精度低,尺寸精度为IT13~IT10,表面粗糙度Ra为12.5~6.3μm。
·钻削加工的工艺范围钻削加工的工艺范围较广,在钻床上采用不同的刀具,可以完成钻中心孔、钻孔、扩孔、铰孔、攻螺纹、锪埋头孔和锪凸台端面等,如图所示。
在钻床上钻孔精度低,但也可通过钻孔----扩孔----铰孔加工出精度要求很高的孔(IT6~IT8,表面粗糙度为1.6~0.4μm),还可以利用夹具加工有位置要求的孔系。
在钻床上加工时,工件固定不动,刀具作旋转运动(主运动)的同时沿轴向移动(进给运动)。
第一节钻床钻床的主要类型有:台式钻床、立式钻床、摇臂钻床、铣钻床和中心孔钻床等。
钻床的主参数一般为最大钻孔直径。
一、立式钻床立式钻床是钻床中应用较广的一种,其特点是主轴轴线垂直布置,且位置固定,需调整工件位置,使被加工孔中心线对准刀具的旋转中心线。
由刀具旋转实现主运动,同时沿轴向移动作进给运动。
因此,立式钻床操作不便,生产率不高。
适用于单件小批生产中加工中小型零件。
·立式钻床的传动原理主运动:单速电动机经齿轮分级变速机构传动;主轴旋转方向的变换,靠电动机正反转实现进给运动:主轴随同主轴套筒在主轴箱中作直线移动。
进给量用主轴每转一转时,主轴的轴向移动量来表示二、台钻台式钻床简称台钻,其实质上是一种加工小孔的立式钻床,结构简单小巧,使用灵活方便,适于加工小型零件上的小孔。
钻孔直径一般小于15mm。
一、钻头刃口修磨和强化对钻削加工的改善钻头在进行孔加工过程中会有不同程度的磨损,对钻头的材质和磨损情况进行分析,在改善钻削加工时,对钻头刃口进行修磨和强化,可有效改善钻头在加工过程中的磨损情况,提高钻头的性能和使用寿命。
vip汽车设计网孔加工在金属切削加工中占有重要地位,一般约占机械加工量的1/3。
其中钻孔约占22%~25%,其余孔加工约占11%~13%。
由于孔加工条件苛刻的缘故,孔加工刀具的技术发展要比车、铣类刀具迟缓一些。
近年来,随着中、小批量生产对生产效率、自动化程度以及加工中心性能要求的不断提升,刀具磨锋技术、多轴数控刀具刃磨设备的发展带动了孔加工刀具的发展,其中最典型的就是在机械生产中已应用多年、使用最为广泛的整体结构的钻头修磨技术逐渐成熟起来。
通过对钻头刃口的修磨和强化改善钻削加工条件,要从钻头的结构特点和实际使用情况中寻求解决方法。
vip汽车设计网钻头的特点vip汽车设计网1.钻头的材质分为高速钢和硬质合金,高速钢主要采用高速钢W系、Mo系材料;硬质合金采用钨钛类(YG)、钨钛钴类(YT)材料。
比较有代表性的如表1中所列W18Gr4V、YG6和YT14。
vip汽车设计网vip汽车设计网图1 钻头的基本结构2.麻花钻的基本形状和结构并没有太大的改变(见图1)。
vip汽车设计网3.麻花钻切削刃的几何角度之间具有一定的特点和关联性。
如图2所示,主偏角为Kr,刃倾角为λs,前角为λs,后角为αf,锋角为2φ(传统为118°)。
vip汽车设计网表1 高速钢和硬质合金材料的物理力学性能vip汽车设计网vip汽车设计网其中,钻头螺旋型结构具有如下特点:vip汽车设计网(1)主偏角Kr在锋角2φ确定后也随之确定。
vip汽车设计网(2)由于钻头切削刃的刀尖(钻头直径处)为切削刃的最低点,从结构可知钻头切削刃的刃倾角λs为负。
vip汽车设计网(3)在钻头螺旋槽形状结构影响下,刃部前角λs由钻头外径的韧带处向钻心方向逐渐变小。
钻孔加工五大关键问题钻头作为孔加工中常见的刀具,被广泛应用于机械制造中,特别是对于冷却装置、发电设备的管板和蒸汽发生器等零件孔的加工等,应用面尤为广泛和紧要。
一、钻削的特点钻头通常有两个主切削刃,加工时,钻头在回转的同时进行切削。
钻头的前角由中心轴线至外缘越来越大,越接近外圆部分钻头的切削速度越高,向中心切削速度递减,钻头的旋转中心切削速度为零。
钻头的横刃位于回转中心轴线相近,横刃的副前角较大,无容屑空间,切削速度低,因而会产生较大的轴向抗力。
假如将横刃刃口修磨成DIN1414中的A型或C型,中心轴线相近的切削刃为正前角,则可减小切削抗力,显著提高切削性能。
依据工件形状、材料、结构、功能等的不同,钻头可分为很多种类,例如高速钢钻头(麻花钻、群钻、扁钻)、整体硬质合金钻头、可转位浅孔钻、深孔钻、套料钻和可换头钻头等。
二、断屑与排屑钻头的切削是在空间狭窄的孔中进行,切屑必需经钻头刃沟排出,因此切屑形状对钻头的切削性能影响很大。
常见的切屑形状有片状屑、管状屑、针状屑、锥形螺旋屑、带状屑、扇形屑、粉状屑等。
钻削加工的关键——切屑掌控当切屑形状不适当时,将产生以下问题:①细小切屑堵塞刃沟,影响钻孔精度,降低钻头寿命,甚至使钻头折断(如粉状屑、扇形屑等)。
②长切屑缠绕钻头,拦阻作业,引起钻头折损或阻拦切削液进入孔内(如螺旋屑、带状屑等)。
如何解决切屑形状不适当的问题:①可分别或联合接受增大进给量、断续进给、修磨横刃、装断屑器等方法改善断屑和排屑效果,除去因切屑引起的问题。
②可使用专业的断屑钻头打孔。
例如:在钻头的沟槽中加添设计的断屑刃将切屑打断成为更简单清除的碎屑。
碎屑顺畅地沿着沟槽排出,不会发生在沟槽内堵塞的现象。
因而新型断屑钻获得了比传统钻头流畅很多的切削效果。
同时短碎的铁屑使冷却液更简单流至钻尖,进一步改善了加工过程中的散热效果和切削性能。
而且由于新增的断屑刃穿了钻头的整个沟槽,经过多次修磨之后仍旧能够保持其形状和功能。
3.2 切削过程的基本规律一、切削力切削力的来源与分解:(1)切削力的来源:变形抗力和摩擦阻力 切削力是所有切削力的合力,为空间交变力。
(2)切削力的几何分力(车削外圆为例)主切削力F c (垂直于基面主运动方向上的分力) 进给力F f (基面内进给方向上的分力) 背向力F p (基面内沿吃刀方向上的分力)总切削力的分解和切削功率: (1)总切削力的分解22222f P C D C F F F F F F ++=+=r F pF D κcos =r FD fFκsin =cf c p F F F F 0.6)~(0.10)7.0~15.0(==(2)切削功率4106⨯=cFc Pc v 单位:kwFc ——切削力,单位:N ;vc ——切削速度,单位:m/min 。
影响切削力的因素:(1)工件材料:材料成分、组织和力削性能是影响切削力的主要因素。
强度、硬度、塑性、韧性越大切削力越大;(2)切削用量:影响最大的是ap ,其次是f ,切削速度νc 最小,Fc 与c 是1:1,f 影响70~80%,νc 影响积屑瘤的存在,有积屑瘤时F 明显减小。
(3)刀具几何角度:γ0增大,刃口锋利、切削变形小,摩擦小,切削力减小;αo 增大、摩擦减小,切削力减小;Kr 增大Fp 减小;正λs ,Fp 减小Ff 增大。
(4)其它因素:切削液使用润滑条件好,切削力减小,刀具磨损后切削力剧增。
二、切削热与切削温度切削热的来源与传散:(1)切削热来源于:切削层材料弹、塑性变形—变形热刀具前、后刀面的摩擦—摩擦热,三个切削变形区是三个主要热源区。
(2)切削热的传散:通过刀具、切屑、工件和周围介质(如:空气、切削液等)散热。
切削温度及其影响因素:(1)切削温度取决于切削热的产生与传热的综合因素,切削温度太高,工件产生热变形,加工精度下降,刀具寿命降低。
(2)影响切削温度的因素:切削用量、工件材料、刀具几何角度、其它条件。
(3)切削量中影响最大的是切削速度νc ,其次是f , ap 影响最小。
钻削与钻头的基本概念关键字:钻削钻头锪沉孔锪锥孔锪孔口平面图1 锪孔用各种钻头进行钻孔、扩孔或锪孔的切削加工。
钻孔是用麻花钻、扁钻或中心孔钻等在实体材料上钻削通孔或盲孔。
扩孔是用扩孔钻扩大工件上预制孔的孔径。
锪孔是用锪孔钻在预制孔的一端加工沉孔、锥孔、局部平面或球面等,以便安装紧固件。
钻削方式主要有两种:①工件不动,钻头作旋转运动和轴向进给,这种方式一般在钻床、镗床、加工中心或组合机床上应用;②工件旋转,钻头仅作轴向进给,这种方式一般在车床或深孔钻床上应用。
麻花钻的钻孔孔径范围为0.05~100mm,采用扁钻可达125mm。
对于孔径大于100mm的孔,一般先加工出孔径较小的预制孔(或预留铸造孔),而后再将孔径镗削到规定尺寸。
图2 麻花钻的钻削要素钻削时,钻削速度v是钻头外径的圆周速度(米/分);进给量f是钻头(或工件)每转钻入孔中的轴向移动距离(mm/r)。
图2是麻花钻的钻削要素,由于麻花钻有两个刀齿,故每齿进给量af=f/2(mm/齿)。
切削深度ap有两种:钻孔时按钻头直径d的一半计算;扩孔时按(d-d0)/2计算,其中d0为预制孔直径。
每个刀齿切下的切屑厚度a0=afsinKr,单位为mm。
式中Kr为钻头顶角的一半。
使用高速钢麻花钻钻削钢铁材料时,钻削速度常取16~40米/分,用硬质合金钻头钻孔时速度可提高1倍。
钻削过程中,麻花钻头有两条主切削刃和一条横刃,俗称“一尖(钻心尖)三刃”,参与切削工作,它是在横刃严重受挤和排屑不利的半封闭状态下工作,所以加工的条件比车削或其他切削方法更为复杂和困难,加工精度较低,表面较粗糙。
钻削钢铁材料的精度一般为IT13~10,表面粗糙度为Ra20~1.25µm,扩孔精度可达IT10~9,表面粗糙度为Ra10~0.63µm。
钻削加工的质量和效率很大程度上决定于钻头切削刃的形状。
在生产中往往用修磨的方法改变麻花钻头切削刃的形状和角度以减少切削阻力,提高钻削性能,中国的群钻就是采用这种方法创制出来的。