第十一章核磁共振波谱分析
- 格式:ppt
- 大小:568.00 KB
- 文档页数:26
第七章 原子吸收光谱法基本要求:掌握以下基本概念:共振线、特征谱线、锐线光源、吸收线轮廓、通带、积分吸收、峰值吸收、灵敏度和检出限, 掌握原子吸收的测量、AAS 的定量关系及定量方法, 了解AAS 中的干扰及火焰法的条件选择, 通过和火焰法比较,了解石墨炉法的特点。
重点:有关方法和仪器的基本术语。
难点:AAS 的定量原理,火焰法的条件选择。
参考学时:4学时部分习题解答10、用标准加入法测定一无机试样溶液中镉的浓度。
各试液在加入镉标准溶液后,用水稀释至50mL ,测得其吸光度如下表所示。
求镉的浓度。
解:设镉的浓度为c x μg/ml加入镉标的浓度c 0分别为:c 0 = 0, A x = 0.0422.0501011=⨯=c μg/ml A 1 = 0.080 4.0501022=⨯=c μg/ml A 2 = 0.116 8.0501043=⨯=c μg/ml A 3 = 0.190 按标准加入法作图得:c x = 0.22 μg/ml11、用原子吸收光谱法测定自来水中镁的含量(用mg ·L -1表示)。
取一系列镁标准溶液(1μg ·mL -1)及自来水水样于50mL 容量瓶中,分别加入5%锶盐溶液2mL 后,用蒸馏水稀释至刻度。
然后与蒸馏水交替喷雾测定其吸光度,其数据如下表所示。
计算自来水中镁的含量。
解:吸光度(A )—标准溶液含镁量(μg )的标准曲线线性回归得x yˆ0484.00427.0ˆ+= γ=0.9999将A=0.135代入得自来水样中含镁量为1.91μg 。
∴ 自来水中镁的含量为095.02091.1=μg ·mL -1 即 0.095mg ·mL -1 12、某原子吸收分光光度计倒线色散率为1nm/mm ,狭缝宽度分别为0.1nm, 0.2mm, 1.0mm ,问对应的通带分别是多少?解:W = D ·S已知:D = 1nm/mm, S 1 = 0.1mm, S 2 = 0.2mm, S 3 = 1.0mm通带:W 1 = D ·S 1 = 1×0.1 = 0.1nmW 2 = D ·S 2 = 1×0.2 = 0.2nm W 3 = D ·S 3 = 1×1.0 = 1.0nm第八章紫外-可见分光光度法基本要求:掌握紫外一可见吸收光谱的特征及其产生的原因,了解有机化合物的电子跃迁类型及饱和烃、不饱和烃、羰基化合物、苯和单取代苯的特征吸收,了解影响紫外一可见吸收光谱的因素,共轭烯烃、α、β一不饱和羰基化合物的λmax的估算以及UV-Vis在定性和结构分析中的应用,掌握Lambert-Beer定律及其物理意义,偏离Lambert-Beer定律的原因,了解显色反应及显色条件的选择,掌握光度测量条件的选择原则,了解多组分分析、光度滴定、酸碱离解常数的测定、双波长光度法以及配合物的组成和K稳测定等方面的应用及其特点。
核磁共振波谱分析原理
核磁共振波谱分析(NMR)是一种基于核磁共振现象的分析
技术,用于确定分子结构和化学环境。
原理很简单:原子核具有自旋,当这些原子核处于外加磁场中时,会存在基态和激发态之间的能级差。
当外加磁场的强度等于能级差时,原子核会发生能级间的跃迁,而产生共振吸收信号。
核磁共振波谱分析基于这个原理,首先将样品置于强磁场中,使各个原子核的自旋方向与强磁场方向发生共线。
然后通过施加射频脉冲,使部分自旋发生共振吸收,从而产生强度较大的共振信号。
这些信号会被NMR仪器接收并处理,最终转换成
核磁共振波谱。
在核磁共振波谱图上,横轴表示共振频率,纵轴表示吸收强度。
通过对波谱图的分析,可以确定不同核的化学位移,从而推断其所处的化学环境和分子结构。
同时,核磁共振波谱还可以提供有关化学键长、化学键角和空间构型等信息。
核磁共振波谱分析在有机化学、生物化学、材料科学等领域有着广泛的应用。
它是一种无损分析方法,可以用来鉴定化合物、研究反应动力学、分析混合物等。
同时,核磁共振波谱分析还可以用来定量分析样品中不同核的含量,并通过不同核之间的耦合情况推断化学结构。
总之,核磁共振波谱分析是一种非常有用的分析技术,可以提供丰富的化学信息,对于科学研究和实际应用具有重要意义。