大一上学期微积分期末试卷
- 格式:docx
- 大小:31.66 KB
- 文档页数:6
数学试题热工二班温馨提示:各位同学请认真答题,如果您看到有的题目有种似曾相识的感觉,请不要激动也不要紧张,沉着冷静的面对,诚实作答,相信自己,你可以的。
祝你成功!一、填空题(共5小题,每题4分,共20分)1、 求极限22lim(1)(1)......(1)n n x x x →∞+++= (1x <) 2、 曲线y=(2x-1)e x 1的斜渐近线方程是( )3、 计算I=dx e x e x x ⎰-+2241sin ππ=( ) 4、 设y=xe x 1sin 1tan ,则'y =( ) 5、 已知()()()100210000ln 1212xy x t t t ⎡⎤=++-+⎢⎥⎣⎦⎰dt ,求()()x y 1001 二、选择题(共5小题,每题4分,共20分) 6、设()0()ln 1sin 0,1,1lim x x f x x A a a a →⎛⎫+ ⎪⎝⎭=>≠-求20()lim x f x x →=( )A.ln a B.Aln a C2Aln a D.A7、函数1.01().12x x x f x e e x -≤<⎧=⎨-<≤⎩的连续区间为( )A.[)0,1 B.[]0,2 C.[)(]0,11,2⋃ D(]1,2 8、()f x 是连续函数,()F x 是的()f x 原函数下列叙述正确的是( )A.当()f x 是偶函数时,()F x 必是偶函数B.当()f x 是奇函数时,()F x 必是偶函数C.当()f x 是周期函数时,()F x 必是周期函数D.当()f x 是单调增函数时,()F x 必是单调增函数9、设函数()f x 连续,则下列函数中必为偶函数的是( ) A.20()x f t dt ⎰ B.20()xf t dt ⎰ C[]0()()x t f t f t --⎰dt D.[]0()()xt f t f t +-⎰dt10、设函数y=()f x 二阶导数,且()f x 的一阶导数大于0, ()f x 二阶导数也大于0,x 为自变量x在0x 处得增量,y 与dy 分别为()f x 在点0x 处的增量与微分,若x >0,则( )A.0<dy < y B.0<y <dyC.y <dy <0 D.dy < y <0三、计算,证明题(共60分)11、求下列极限和积分 (1)222220sin cos (1)ln(1tan )lim x x x x x x e x →--+(5分)(2)0π(5分)(3)x →∞(5分)12.设函数()f x 具有一阶连续导数,且"(0)f (二阶)存在,(0)f=0,试证明函数'(0),0()(),0f x F x f x x x⎧=⎪=⎨≠⎪⎩是连续的,且具有一阶连续导数。
《微积分(一)上》期末考试试卷 (分级卷样卷)一、填空题(每小题3分,六个小题共18分);1. 极限 111)2(lim -→-x x x = e /1 .2. 设x x f 3sin ln )(+=π,则微分=)(x df xdx 3cos 3 .3. 定积分=+⎰-dx x x 222sin cos ππ)( π .4. 设函数)(x y y =由方程组⎩⎨⎧+==)1ln(arctan 2t y t x 确定,则 =22dx y d )1(22t + . 5. 不定积分⎰=xdx x arctanC x x x +-+2a r c t a n 212.6. 方程 1+='-''x y y 的通解为____ x xe C C x22221--+ _____.二、单项选择题(每小题3分,四小题共12分)(将正确选项前的字母填入题中的括号内)7. 设函数)(x f y =的导函数在),(+∞-∞上连续。
于是[ D ] A .若有常数a ,使得a x f x =+∞→)(lim ,则 0)(lim ='+∞→x f x ;B .若0)(lim ='+∞→x f x ,则有常数a ,使得 a x f x =+∞→)(lim ;C .若)(x f '是偶函数,则)(x f 是奇函数;D .若)(x f '是奇函数,则)(x f 是偶函数;8. 当0→x 时,下列变量中为无穷小量的是 [ A ] A . xx 1sinB .x xsin 1 C .x -1 D .)cos 1ln(x +9.若⎰+=C x F dx x f )()(, 则⎰=+dx x f )12([ B ]A.C x F ++)12(2B.C x F ++)12(21 C.C x F +)(21 D. C x F +)(210.若一阶线性齐次微分方程0)(=+'y x p y 的一个特解为x y 2cos =,则该方程满足初值条件2)0(=y 的特解为 [ D ]x A 2sin 2. x B sin 2. x C cos 2. x D 2cos 2. 三、(每小题6分,三个小题共18分) 11. 求极限 )1ln(tan lim2x x x x x +-→解:原式3tan lim xxx x -=→22031sec limxx x -=→xx xx x x 22coscos 1lim3cos 1lim+-=→→3132/lim222==→xx x12. 设方程1ln =+y e xy x 确定了函数)(x y y =,求=x dx dy解:于1ln =+y e xy x 两边对x 求导,得0/ln ='+++'y y e y e y y x xx ; 代入0=x ,同时代入e y =,解出 )1()0(e e y +-='13. 求定积分 ⎰+=411xdx I解:作代换x t =,⎰⎰+=+=2141121ttdt xdx I ⎰+=+-=21)32ln1(2)111(2dt t四、(每小题6分,三个小题 共18分)14. 设函数21cos)1(sin )(--=x x x x x f ,确定其间断点,并指明间断点的类型。
微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
微积分期末试卷选择题(6X2)1•设f(x) 2cosx,g(x) (1严在区间(0,—)内()。
2 2A f (x)是增函数,g (x)是减函数Bf (x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x 0时,e2x cosx与sinx相比是()A高阶无穷小E低阶无穷小C等价无穷小D同阶但不等价无价小13、x = 0 是函数y = (1 -sinx)紺勺()A连续点E可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 nA X n ( 1)nB X n si n -n n 21 1C X n-(a 1)D X n cosa n5、若f "(x)在X0处取得最大值,则必有()A f /(X。
)o Bf /(X。
)oCf /(X。
)0且f''( X o)<O Df''(X o)不存在或f'(X o) 0、4)6、曲线y xe x( )A仅有水平渐近线E仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD一、填空题1、d ) = -^― dxx +12、求过点(2,0 )的一条直线,使它与曲线y= -相切。
这条直线方程为:x2x3、函数y=二一的反函数及其定义域与值域分别是:2x+14、y=匹的拐点为:2 ,5、若lim X2a2,则a,b的值分别为:1 x+ 2x-3x1 In x 1 ;2 y x3 2x 2x;3 y也厂,©1)^ 4©0)lim (x 1)(x m) 5 解:原式=x 1 (x 1)(x 3) m 7 b limU 」2 x 1 x 3 4 7,a 6 1、 2、 、判断题 无穷多个无穷小的和是无穷小 lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、若f(X)在X o 处取得极值,则必有 f(x)在X 0处连续不可导( )5、 (x) 在 0,1 f '(x) 0令 A f'(0) f'(1),C f(1) f (0),则必有 A>B>C()1~5 FFFFT 二、计算题 1用洛必达法则求极限 x im 01e x2解:原式=lim x 0 1 x lime x2( 2x x 0J 2x 31 lim e xx 02 若 f (x)(x 3 10)4,求f ''(0) 解: 4( x 3 24x f'(x) f ''(x) f ''(x) 0 3 2 2 , 3 10) 3x 12x (x.3 3 2 3(x 10) 12x 3 (x 10) 3x 10)33 . 3 34 , 3 224x (x 10)108x (x 10)4I o 2 3 求极限 lim(cos x)xx 04 ,2I ncosx解:原式=lim e xx 05 tan3xdx2=sec x tan xdx tan xdx6 求xarctanxdxQ lim p Incosxx 0x2原式e2I>解:In y5ln3x11 Jx 1cosxI>yy1 5 3 11y 2 x 212(x 1)12(x 2)1cosx(sin x)tanxlim lim xx x 0 x x 0 x2224Incosxlim / e x 0解:原式=tan2xtanxdx2(sec x 1)tanxdx=tan xd tan x=tan xd tan xsin x , dxcosx1 . dcosxcosx= -ta n2x In cosx c解:原式=1 arcta nxd(x 2)1(x 2 arcta nx2 22arcta nx四、证明题。
《微积分A 》期末试卷(A 卷)班级 学号 姓名 成绩一、求解下列各题(每小题7分,共35分) 1设,1arctan 122---=x x x x y 求.y '2 求不定积分.)ln cos 1sin (2dx x x xx⎰++ 3求极限.)(tanlim ln 110x x x ++→ 4 计算定积分,)(202322⎰-=a x a dxI 其中.0>a 5 求微分方程.142+='-''x y y 的通解. 二、完成下列各题(每小题7分,共28分)1 设当0→x 时,c bx ax e x---2是比2x 高阶的无穷小,求c b a ,,的值. 2求函数)4()(3-=x x x f 在),(+∞-∞内的单调区间和极值.3 设)(x y y =是由方程组⎪⎩⎪⎨⎧=--+=⎰01cos sin )cos(20t t y du t u x t所确定的隐函数,求.dx dy 4 求证:.sin sin42222⎰⎰ππππ=dx xxdx xx.三、(8分)设)(x y 在),0[+∞内单调递增且可导,又知对任意的,0>x 曲线)(x y y =,上点)1,0(到点),(y x 之间的弧长为,12-=y s 试导出函数)(x y y =所满足的微分方程及初始条件,并求)(x y 的表达式. 四、(8分)过点)0,1(-作曲线x y =的切线,记此切线与曲线x y =、x 轴所围成的图形为D ,(1) 求图形D 的面积;(2) 求D 绕x 轴旋转一周所得旋转体的体积.五、(7分)求证:方程010cos 042=++⎰⎰-xt xdt e dt t 有并且只有一个实根.六、(8分)一圆柱形桶内有500升含盐溶液,其浓度为每升溶液中含盐10克。
现用浓度为每升含盐20克的盐溶液以每分钟5升的速率由A 管注入桶内(假设瞬间即可均匀混合),同时桶内的混合溶液也以每分钟5升的速率从B 管流出。
第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1. =→xx x 1sin lim 0___0_____.2. 设1)1(lim )(2+-=∞→nx xn x f n ,则)(x f 的间断点是___x=0_____.3. 已知(1)2f =,41)1('-=f ,则12()x df x dx -== _______.4. ()ax x '=_______.5. 函数434)(x x x f -=的极大值点为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.2. 设对任意的x ,总有)()()(x g x f x ≤≤ϕ,使lim[()()]0x g x x ϕ→∞-=,则lim ()x f x →∞______.A.存在且一定等于零B. 存在但不一定等于零C.不一定存在D. 一定存在. 3. 极限=-→xx x xe 21lim0________.A. 2eB. 2-eC. eD.不存在.4. 设0)0(=f ,1)0(='f ,则=-+→xx f x f x tan )2()3(lim0________.A.0B. 1C. 2D. 5.5. 曲线221xy x=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求20sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)求21lim(cos )x x x +→. 五、(请写出主要计算步骤及结果,8分.)确定常数,a b , 使函数2(sec )0()0x x x x f x ax b x -⎧>=⎨+≤⎩处处可导.六、(请写出主要计算步骤及结果,8分.)设21()arctan ln(1)2f x x x x =-+,求dy .dy=arctanxdx七、(请写出主要计算步骤及结果,8分.) 已知2326x xy y -+=确定y 是x 的函数,求y ''. 八、(请写出主要计算步骤及结果,8分.)列表求曲线523333152y x x =-+的凹向区间及拐点.九、证明题(请写出推理步骤及结果,共6+6=12分.)1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内至少存在一点ξ,使()f ξξ=.2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:至少存在一点)1,0(∈ξ,使得3'()()0f f ξξξ+=.第一学期期末考试参考答案与评分标准一、填空题(3×5=15)1、02、 0x = 3 、4- 4、()1ln 1ax a x x a x -⋅+ 5、3x = 二、单项选择题(3×5=15)1、C2、C3、A4、B5、D三、(8×1=8)220000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822x x x x x x x x e x e x x x e xxe x →→→→----=-=+==L L L L L L L L L 分分分 四、(8×1=8)()200ln cos 1lim1sin cos lim 112lim (cos )268x x x x x x x xx e ee +→++→→-⋅--===L L L L L L L L L 分分分五、(8×1=8)因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。
完整版)大一期末考试微积分试题带答案第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置。
答错或未答,该题不得分。
每小题3分,共15分。
)1.XXX→0sinx/x = ___1___.2.设f(x) = lim(n-1)x(n→∞) / (nx+1),则f(x)的间断点是___x=0___.3.已知f(1)=2,f'(1)=-1/4,则df-1(x)/dx4x=2.4.(xx)' = ___1___。
5.函数f(x)=4x3-x4的极大值点为___x=0___。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分。
)1.设f(x)的定义域为(1,2),则f(lgx)的定义域为___[ln1,ln2]___。
2.设对任意的x,总有φ(x)≤f(x)≤g(x),使lim[g(x)-φ(x)] = a,则limf(x) x→∞ = ___存在但不一定等于零___。
3.极限limex/(1-2x) x→∞ = ___e___。
4.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
5.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
三、(请写出主要计算步骤及结果,8分。
)4.设f(x)=(ex-sinx-1)/(sinx2),f'(x)=(ex-cosx)/sinx2,lim(x→sinx/2)f(x) = lim(x→sinx/2)(ex-sinx-1)/(sinx2) =___1/2___。
四、(请写出主要计算步骤及结果,8分。
)1.lim(x→0)(cosx1/x)x = ___1___。
五、(请写出主要计算步骤及结果,8分。
)确定常数a,b,使函数f(x)={x(secx)-2x。
x≤a。
ax+b。
x>a}处处可导。
因为f(x)处处可导,所以f(x)在x=a处连续,即a(sec(a))-2a=lim(x→a)(ax+b),得到a=1/2.根据f(x)在x=a处可导,得到a(sec(a))-2=lim(x→a)(ax+b)/(x-a),得到b=-1/2.六、(请写出主要计算步骤及结果,8分。
大一数学微积分期末模拟试题练习一、选择题。
(每题4分,总分20分) 1、下列函数为基本初等函数的是( )。
x x A tan 2y +=、 32y x B =、 x C +=1y 、 )1ln(y 2x D +=、2、)(0,2)(),(sin 1cos x x x x x x απαα时,则当设→<=-( )。
A 、比x 高阶的无穷小 B 、比x 低阶的无穷小 C 、与x 同阶但不等价无穷小 D 、与x 等价无穷小3、将半径为R 的球加热,如果球的半径伸长R ∆,则用微积分表示球的体积增加的近似值V ∆是( )。
R R A ∆534π、 R R B ∆24π、 24R C π、 R R D ∆π4、4、曲线432)4()3()2)(1(y ----=x x x x 的拐点是( )。
A 、(1,0)B 、(2,0)C 、(3,0)D 、(4,0) 5、已知函数)(x y y =在任意点x 处的增量a x xy y ++∆=∆21,且当0→∆x 时,a 是x ∆的高阶无穷小,π=)0(y ,则y(1)等于( )。
π2、A π、B 4πe C 、 4ππe D 、二、填空题。
(每题4分,总分20分) 1、=+⎰-dx x xx12)1(ln 。
2、点(2,1,0)到平面0543=++z y x 的距离d = 。
3、=-=-∞→-)1)1((lim )()1(nf n ex y x f n y x 确定,则由方程设函数 。
4、函数==⋅=)0(02)()(2n xf n x x x f 阶导数处得在 。
5、设函数)(x y y =是微分方程的解02=-'+''y y y ,且在0=x 处)(x y 取值得极值3,则=)(x y 。
三、计算题。
(每题10分,总分30分)1、求dx x ⎰-22sin 1π40sin )]sin(sin [sin lim2x xx x x -→、求极限3、求方程的通解:0)cos 2()1(2=-+-dx x xy dy x四、解答题。
微积分期末试题及答案一、选择题(每题4分,共20分)1. 函数y=x^3-3x+2的导数是()。
A. 3x^2 - 3B. x^3 - 3xC. 3x^2 - 3xD. 3x^2 + 3x答案:A2. 极限lim(x→0) (sin x/x)的值是()。
A. 0B. 1C. 2D. -1答案:B3. 曲线y=x^2在点(1,1)处的切线方程是()。
A. y=2x-1B. y=2x+1C. y=x+1D. y=x-1答案:A4. 若f(x)=x^2+3x-2,则f'(-1)的值是()。
A. 0B. 2C. -2D. 4答案:C5. 定积分∫(0 to 1) (2x-1)dx的值是()。
A. 1/2B. 1C. 3/2D. 2答案:B二、填空题(每题4分,共20分)1. 若f(x)=ln(x),则f'(x)=______。
答案:1/x2. 函数y=e^x的原函数是______。
答案:e^x3. 曲线y=x^3与直线y=2x+1在x=1处的交点坐标是______。
答案:(1,3)4. 函数y=x^2-4x+4的极小值点是______。
答案:x=25. 定积分∫(0 to 2) x dx的值是______。
答案:4三、计算题(每题10分,共30分)1. 求函数y=x^2-6x+8的极值点。
答案:函数y=x^2-6x+8的导数为y'=2x-6,令y'=0,解得x=3。
将x=3代入原函数,得到极小值点为(3,-1)。
2. 求定积分∫(0 to 3) (x^2-2x+1)dx。
答案:首先求出原函数F(x)=1/3x^3-x^2+x,然后计算F(3)-F(0)=1/3*27-9+3-0=6。
3. 求曲线y=x^3在点(1,1)处的切线方程。
答案:首先求导得到y'=3x^2,将x=1代入得到y'|_(x=1)=3,切线方程为y-1=3(x-1),即y=3x-2。
四、证明题(每题10分,共30分)1. 证明:若f(x)在[a,b]上连续,则∫(a to b) f(x)dx存在。
一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.10lim 2xx -→=_________。
(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。
(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。
0()()()lim ()x f a x f a A f a x-∆→+∆-'=∆0()(0)()lim(0)x f tx f B tf x→-'=0000()()()lim2()t f x t f x t C f x t→+--'=0()()()lim()x f x f a D f a a x→-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。
(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。
()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dx φ=⎰⎰二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ=。
3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。
4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。
微积分期末试卷
1兀、
.设f(x)=2cos x,g(x)=(—)sin x在区间(0,)内()。
22
A f(x)是增函数,g(x)是减函数
B f(x)是减函数,g(x)是增函数
C二者都是增函数
口二者都是减函数
2、T0时,e2x-cos x与sin x相比是()
A高阶无穷小B低阶无穷小C等价无穷小D同阶但不等价无价小
3、x0是函数y(1x的()
A连续点B可去间断点C跳跃间断点D无穷型间断点
4、下列数列有极限并且极限为1的选项为()
I n冗
AX=(-1)n-—BX=sinn-n n n2
II
CX=(a>1)D X=cos—
n n n
n a
5、若f"(x)在X处取得最大值,则必有()0
A'(X)=oB f X)<o
00
C f X)=0且''(X)<0D''(X)不存在或'(X)=0
0000
6、曲线y=xe(x2)()
A仅有水平渐近线B仅有铅直渐近线
C既有铅直又有水平渐近线D既有铅直渐近线
1~6DDBDBD
一、填空题
1、()=-^―d x
x
1相切。
这条直线方程为:x 2、求过点(2,0)的一条直线,使它与曲线y=
2x
3、函数y=,^的反函数及其定义域与值域分别是:
2x+1
4、y=&X的拐点为:
5、若lim-:ax>"=2,则a/的值分别为:
x-1X2+
x
2y—x3-2x2;3y=log--,(0,1),R;4(0,0)21-x
(x-1)(x+m)x+m1+m
lim=lim==2
5解:原式=彳-1(x-1)(x+3)x-1x+34
m=7b=—7,a=6
二、判断题
1、无穷多个无穷小的和是无穷小()
2、limsi吧在区间(-如+8)是连续函数()
x f 0x
3、f”(x )一定为的拐点()0
4、若f(X)在x 处取得极值,则必有f(x)在x 处连续不可导()00
5、设函数f (x)在[0,1]
上二阶可导且
f '(x )<0令A =f '(0),B =f '(1),C =f (1)-f (0),则必有A>B>C()
1~5FFFFT
三、计算题
-1
1用洛必达法则求极限lim x 2e x
2
x f 0
e
x
2e x 2(-2x -
3)1.一
解:原式=lim 丁=lim =lim e x 2
=+8
x f 0x f 0
-
2x -
3
x f 0
x 2
2若f (x )=(x 3+10)4,求"(0)
解:
f '(x )=4(x 3+10)3•3x 2=12x 2(x 3+10)3
f "(x )=24x -(x 3+10)3+12x 2・3•(x 3+10)2•3x 2=24x •(x 3+10)3+108x 4(x 3+10)2
・•.f "(x )=0
3求极限
lim(cos x )x 2x f0
44,
解:原式lim e ;2历
cos x
=e x —0x 2
1n cos x
x —0
4In cos x
lim_In cos x =lim x ―0x
2
x —0x 2
1 (-sin x ) =lim cos x x —0
x
=lim x —0
一tan x =lim x =-2x —o x 2
4求y =(3x -1);:士
1
的导数
x -2 解:I 〃y = —In3x —1+—Inx —1一
y ,1=5
y 3 3
31
—十
2 11
3x 一12x 一12
2Inx-2
J tan 3xdx
5
解:原式J tan 2x tan xdx =J(sec 2x -1)tan xdx
=J sec 2x tan xdx -J
tan xdx
sin x tan xd tan x - cos x
JJ
1
tan xd tan x - dx
d cos x
ltan 2x +In cos x +c 2
求J x arctan xdx
y'=(3x -1)
x 一213x -12(x -1)2(x 一2)
5 3
BM +
解:原式1J arctan xd (x 2)=1(x 2arctan x -J x 2d arctan x )
22
1,J x 2+1-1,、 (x 2arctan x -dx ) 21+x 2
1 x 2arctan x -J(1-)dx 1+x 2
1+x 2x arctan x --+c
四、证明题。
1、证明方程X 3+x -1=0有且仅有一正实根。
证明:设f (x )=x 3
+x -1
/(0)=-1<0,f (1)=1>0,且f (x )在[0,1]上连续
・•・至少存在自(0,1),使得化)=0
即/(x)在(0,1)内至少有一根,即f (x )=0在(0,+8)内至少有一实根
假设〃X )=0在(0,+8)有两不同实根x x 2,x 2>x /(x)在[x ,x ]上连续,在(x ,x )内可导2222 且(X)=f (x )=0
H 至少m G e(x ,x ),•/&)=0
22
而化)=312+1>1与假设相矛盾
・•・方程x 3+x -1=0有且只有一个正实根
兀/、
2、证明arcsin x +arccos x =—(-1<x <1)2
证明:设f (x )=arcsin x +arccos x
1=0,x w [-1,1] J1一X 2
,f (x )=c =f (0)=arcsin0+arccos0=
.兀
f (1)=arcsin1+arccos1二一
2
f '(x )=:
J1-x 2
兀
f(-1)=arcsin(-1)+anccos(-1)=—,综上所述,f(x)=arcsin x+arccos x二五、应用题
[-1,1]
1、描绘下列函数的图形
°1
y=x2+—
x
解:.Dy=(-8,0)u(0,+s)
12X3—1
2.y=2x———=
X2X2
令y'=0得X={2
y"=2+—
X3
令y"=0,得X=—1
-717—入9
4.补充点(—2,-).(—-,—-).(1,2).(2,-)
5lim f(X)=8,:.f(X)有铅直渐近线X=0
X—0
6如图所示:
2.讨论函数/(x)=X2—/加2的单调区间并求极值解:Df(x)=R
X2(x—1)(x+1)
f(x)=2x--=(x丰0)
xx
令f'(x)=0,得x=—1,x=1
12
由上表可知f(x)的单调递减区间为(-8,-1)和(0,1)
单调递增区间为(-1,0)和。
+8)
且f(x)的极小值为f(-1)=f(1)=1。