(完整word版)大一期末考试微积分试题带答案
- 格式:doc
- 大小:286.01 KB
- 文档页数:5
共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。
lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。
、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。
6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。
8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。
9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。
《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。
二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。
大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-1, 1)上是:A. 增函数B. 减函数C. 先减后增函数D. 先增后减函数答案:A2. 极限lim (x->0) [sin(x)/x]的值是:A. 0B. 1C. 2D. 无穷大答案:B3. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = cos(x)答案:C4. 曲线y = x^3在点(1, 1)处的切线斜率是:A. 1B. 2C. 3D. 4答案:C5. 定积分∫[0, 1] x dx的值是:A. 0B. 1/2C. 1/3D. 1答案:C6. 微分方程dy/dx = x^2的通解是:A. y = x^3 + CB. y = e^x + CC. y = sin(x) + CD. y = ln(x) + C答案:A7. 函数f(x) = e^x在点x=0处的导数是:A. 0B. 1C. 2D. e答案:B8. 以下哪个级数是收敛的?A. ∑(-1)^n / nB. ∑n^2C. ∑(1/n)D. ∑(1/n^2)答案:D9. 曲线y = ln(x)的拐点是:A. x = 1B. x = eC. x = 0D. 没有拐点答案:D10. 以下哪个选项是正确的泰勒公式展开?A. e^x = ∑x^nB. sin(x) = ∑(-1)^n * x^(2n+1) / (2n+1)!C. ln(1+x) = ∑(-1)^n * x^n / nD. cos(x) = ∑x^(2n) / (2n)!答案:D二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 4x^2的驻点是______。
答案:x = 0, x = 312. 极限lim (x->∞) (1 + 1/x)^x的值是______。
答案:e13. 定积分∫[1, e] e^x dx可以通过分部积分法计算,其结果是______。
微积分期末试卷 一、选择题(6×2)1~6 DDBDBD二、填空题1 In 1x + ;2 322y x x =-;3 2log ,(0,1),1xy R x =-; 4(0,0)5解:原式=11(1)()1mlim lim 2(1)(3)3477,6x x x x m xm x x x m b a →→-+++===-++∴=∴=-= 三、判断题1、 无穷多个无穷小的和是无穷小( )2、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT四、计算题1用洛必达法则求极限2120lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求五、证明题。
1、 证明方程310x x +-=有且仅有一正实根。
证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 六、应用题1、 描绘下列函数的图形3.4.补充点7179(2,).(,).(1,2).(2,)2222---50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值 由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。
大一微积分期末试题题目一:函数的极限与连续性1.计算极限 $\\lim\\limits_{x \\to 2} \\frac{x^2 - 4}{x - 2}$,并证明你的答案。
2.已知函数 $f(x) = \\begin{cases} 2x -1, & \\text{若} x < 1 \\\\ 3x^2, &\\text{若} x \\geq 1 \\end{cases}$,求函数f(x)在x=1处的极限,并判断f(x)在x=1处是否连续。
题目二:函数的导数与应用1.求函数f(x)=3x2−2x的导数。
2.已知函数y=f(x)的导数为$f'(x) = \\frac{1}{3x^2}$,且f(1)=4,求函数f(x)的解析式。
3.某物体的位移与时间之间的关系为s(t)=3t2−4t+1,求物体在t=2时的瞬时速度。
题目三:定积分计算1.计算定积分 $\\int_0^1 (3x^2 - 2x) dx$。
2.已知函数f(x)在区间[a,b]上连续,求证必存在 $\\xi \\in (a,b)$,使得 $\\int_a^b f(x) dx = f(\\xi)(b-a)$。
题目四:不定积分计算1.计算不定积分 $\\int (x^3 - 2x^2 + 3x - 4) dx$。
2.计算不定积分 $\\int \\frac{2x^3 - 5x^2 - 4}{x^2} dx$。
题目五:微分方程求解1.求微分方程 $\\frac{dy}{dx} = x^2 + y^2$ 的通解。
2.已知微分方程 $\\frac{dy}{dx} + 2xy = 0$ 的通解为y=ce−x2,其中c是常数,求满足初始条件y(0)=2的特解。
以上是一份大一微积分期末试题,包含了函数的极限与连续性、函数的导数与应用、定积分计算、不定积分计算和微分方程求解等方面的内容。
这些题目旨在考察同学们对微积分基本概念和定理的理解和运用能力。
(完整版)⼤⼀期末考试微积分试题带答案第⼀学期期末考试试卷⼀、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每⼩题3分,共15分.)1. =→xx x 1sin lim 0___0_____.2. 设1)1(lim )(2+-=∞→nx xn x f n ,则)(x f 的间断点是___x=0_____.3. 已知(1)2f =,41)1('-=f ,则12()x df x dx -== _______.4. ()ax x '=_______.5. 函数434)(x x x f -=的极⼤值点为________.⼆、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每⼩题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.2. 设对任意的x ,总有)()()(x g x f x ≤≤?,使lim[()()]0x g x x ?→∞-=,则lim ()x f x →∞______.A.存在且⼀定等于零B. 存在但不⼀定等于零C.不⼀定存在D. ⼀定存在. 3. 极限=-→xx x xe 21lim0________.A. 2eB. 2-eC. eD.不存在.4. 设0)0(=f ,1)0(='f ,则=-+→xx f x f x tan )2()3(lim0________.A.0B. 1C. 2D. 5.5. 曲线221xy x=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.)求20sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)求21lim(cos )x x x +→. 五、(请写出主要计算步骤及结果,8分.)确定常数,a b , 使函数2(sec )0()0x x x x f x ax b x -?>=?+≤?处处可导.六、(请写出主要计算步骤及结果,8分.)设21()arctan ln(1)2f x x x x =-+,求dy .dy=arctanxdx七、(请写出主要计算步骤及结果,8分.)已知2326x xy y -+=确定y 是x 的函数,求y ''. ⼋、(请写出主要计算步骤及结果,8分.)列表求曲线523333152y x x =-+的凹向区间及拐点.九、证明题(请写出推理步骤及结果,共6+6=12分.)1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内⾄少存在⼀点ξ,使()f ξξ=.2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:⾄少存在⼀点)1,0(∈ξ,使得3'()()0f f ξξξ+=.第⼀学期期末考试参考答案与评分标准⼀、填空题(3×5=15)2、 0x = 3 、4- 4、()1ln 1ax a x x a x -?+ 5、3x = ⼆、单项选择题(3×5=15)1、C2、C3、A4、B5、D三、(8×1=8)220000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822x x x x x x x x e x e x x x e x xe x →→→→----=-=+==分分分四、(8×1=8)()200ln cos 1lim1sin cos lim 112lim (cos )268x x x x x x x xx e e e+→++→→---===分分分五、(8×1=8)因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。
微积分期末试卷选择题(6X2)1•设f(x) 2cosx,g(x) (1严在区间(0,—)内()。
2 2A f (x)是增函数,g (x)是减函数Bf (x)是减函数,g(x)是增函数C二者都是增函数D二者都是减函数2、x 0时,e2x cosx与sinx相比是()A高阶无穷小E低阶无穷小C等价无穷小D同阶但不等价无价小13、x = 0 是函数y = (1 -sinx)紺勺()A连续点E可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 nA X n ( 1)nB X n si n -n n 21 1C X n-(a 1)D X n cosa n5、若f "(x)在X0处取得最大值,则必有()A f /(X。
)o Bf /(X。
)oCf /(X。
)0且f''( X o)<O Df''(X o)不存在或f'(X o) 0、4)6、曲线y xe x( )A仅有水平渐近线E仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1~6 DDBDBD一、填空题1、d ) = -^― dxx +12、求过点(2,0 )的一条直线,使它与曲线y= -相切。
这条直线方程为:x2x3、函数y=二一的反函数及其定义域与值域分别是:2x+14、y=匹的拐点为:2 ,5、若lim X2a2,则a,b的值分别为:1 x+ 2x-3x1 In x 1 ;2 y x3 2x 2x;3 y也厂,©1)^ 4©0)lim (x 1)(x m) 5 解:原式=x 1 (x 1)(x 3) m 7 b limU 」2 x 1 x 3 4 7,a 6 1、 2、 、判断题 无穷多个无穷小的和是无穷小 lim 沁在区间(, X 0 X 是连续函数() 3、 f"(x 0)=0—定为f(x)的拐点 () 4、若f(X)在X o 处取得极值,则必有 f(x)在X 0处连续不可导( )5、 (x) 在 0,1 f '(x) 0令 A f'(0) f'(1),C f(1) f (0),则必有 A>B>C()1~5 FFFFT 二、计算题 1用洛必达法则求极限 x im 01e x2解:原式=lim x 0 1 x lime x2( 2x x 0J 2x 31 lim e xx 02 若 f (x)(x 3 10)4,求f ''(0) 解: 4( x 3 24x f'(x) f ''(x) f ''(x) 0 3 2 2 , 3 10) 3x 12x (x.3 3 2 3(x 10) 12x 3 (x 10) 3x 10)33 . 3 34 , 3 224x (x 10)108x (x 10)4I o 2 3 求极限 lim(cos x)xx 04 ,2I ncosx解:原式=lim e xx 05 tan3xdx2=sec x tan xdx tan xdx6 求xarctanxdxQ lim p Incosxx 0x2原式e2I>解:In y5ln3x11 Jx 1cosxI>yy1 5 3 11y 2 x 212(x 1)12(x 2)1cosx(sin x)tanxlim lim xx x 0 x x 0 x2224Incosxlim / e x 0解:原式=tan2xtanxdx2(sec x 1)tanxdx=tan xd tan x=tan xd tan xsin x , dxcosx1 . dcosxcosx= -ta n2x In cosx c解:原式=1 arcta nxd(x 2)1(x 2 arcta nx2 22arcta nx四、证明题。
微积分期末试卷 一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6二、填空题1d12lim2,,xd xax ba b→++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31In1x+ ; 2 322y x x=-; 3 2log,(0,1),1xy Rx=-; 4(0,0)5解:原式=11(1)()1mlim lim2(1)(3)3477,6x xx x m x mx x xm b a→→-+++===-++∴=∴=-=三、判断题1、无穷多个无穷小的和是无穷小()2、sinlimxxx→-∞+∞在区间(,)是连续函数()3、f"(x)=0一定为f(x)的拐点()4、若f(X)在0x处取得极值,则必有f(x)在0x处连续不可导()5、设函数f(x)在[]0,1上二阶可导且'()0A'0B'(1),(1)(0),A>B>C( )f x f f C f f<===-令(),则必有1~5四、计算题1用洛必达法则求极限212lim xxx e→解:原式=222111330002(2)limlim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:333'(''''f x f x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴=3 24lim(cos )x x x →求极限 4I cos 224I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xx e →→→→→→→-=---=====-∴=解:原式=原式4 (3y x =-求 511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:5 3tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx x xd x dxx xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =五、证明题。
第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1. =→xx x 1sin lim 0___0_____.2. 设1)1(lim )(2+-=∞→nx xn x f n ,则)(x f 的间断点是___x=0_____.3. 已知(1)2f =,41)1('-=f ,则12()x df x dx -== _______.4. ()ax x '=_______.5. 函数434)(x x x f -=的极大值点为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.2. 设对任意的x ,总有)()()(x g x f x ≤≤ϕ,使lim[()()]0x g x x ϕ→∞-=,则lim ()x f x →∞______.A.存在且一定等于零B. 存在但不一定等于零C.不一定存在D. 一定存在. 3. 极限=-→xx x xe 21lim0________.A. 2eB. 2-eC. eD.不存在.4. 设0)0(=f ,1)0(='f ,则=-+→xx f x f x tan )2()3(lim0________.A.0B. 1C. 2D. 5.5. 曲线221xy x=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求20sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)求21lim(cos )x x x +→. 五、(请写出主要计算步骤及结果,8分.)确定常数,a b , 使函数2(sec )0()0x x x x f x ax b x -⎧>=⎨+≤⎩处处可导.六、(请写出主要计算步骤及结果,8分.)设21()arctan ln(1)2f x x x x =-+,求dy .dy=arctanxdx七、(请写出主要计算步骤及结果,8分.) 已知2326x xy y -+=确定y 是x 的函数,求y ''. 八、(请写出主要计算步骤及结果,8分.)列表求曲线523333152y x x =-+的凹向区间及拐点.九、证明题(请写出推理步骤及结果,共6+6=12分.)1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内至少存在一点ξ,使()f ξξ=.2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:至少存在一点)1,0(∈ξ,使得3'()()0f f ξξξ+=.第一学期期末考试参考答案与评分标准一、填空题(3×5=15)1、02、 0x = 3 、4- 4、()1ln 1ax a x x a x -⋅+ 5、3x = 二、单项选择题(3×5=15)1、C2、C3、A4、B5、D三、(8×1=8)220000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822x x x x x x x x e x e x x x e xxe x →→→→----=-=+==L L L L L L L L L 分分分 四、(8×1=8)()200ln cos 1lim1sin cos lim 112lim (cos )268x x x x x x x xx e ee +→++→→-⋅--===L L L L L L L L L 分分分五、(8×1=8)因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。
可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。
答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。
答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。
答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。
答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。
答案:函数f(x)的导数为f'(x)=3x^2-6x+4。
令f'(x)=0,解得x=1, 2。
在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。
因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。
在区间端点处,f(0)=-2,f(3)=1。
所以,函数在区间[0,3]上的最大值为1,最小值为-2。
2. 求由曲线y=x^2与直线y=4x-3围成的面积。
微积分期末试卷1TTL设/⑴=2*"(]) = (土)血在区间(0,#)内()。
2 2A/'(x)是增函数,g⑴是减函数B/Cx)是减函数,g(i)是增函数C二者都是增函数D二者都是减函数2> x — Otl'j,疽* _cosx与sinMfl比是()A高阶无穷小B低阶无穷小C等价无穷小D同阶但不等价无价小£3、x = 0 是函数y = ( 1 -sinx)v的()A连续点B可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为()AX=(-l)n-- BX=sin —11〃n 2CX n= —(a>l)D X n =cos-a n5、都”⑴在X。
处取得最大值,贝IJ必有()Af,(X°) = o Bf‘(X())voCf,(X o) = O_ar( X°)vO Df”(x°)不存在或f'(Xo)= O(±)6^ 曲线y = xe x2()A仅有水平渐近线B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1 〜6DDBDBD填空题=2,则以的值分别为:5解: 1、 d ( ) =—^—dxx+12、 求过点(2,0)的一条直线,使它与曲线y =-相切。
这条直线方程为:X2X_ 3、 函数y =——的反函数及其定义域与值域分别是:2X4- 1 4、 y =Vxf|<J 拐点为:2止,. x + ax+ b gm —- n x +2x~31 Inx + l| ;2 y = x 3-2x 2;3 y = log,工,(0,1), R ; 4(0,0)■(x-l)(x +77?) x^m 1 + m c b hm ---- --------- = hm =-------------------- = 2 原式=ATI (X-l)(% + 3) XTl x + 3 4/• m = 7 :.b — —7, a = 6 二、判断题 1、无穷多个无穷小的和是无穷小()2、 lim —在区间(-8,+ 8)是连续函数() K ) X3、r (x 0)二o 一定为f (x )的拐点()4、 若f (X )在X 。
微积分期末试卷一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线二、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-3三、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有四、计算题1用洛必达法则求极限212lim x x x e →2 若34()(10),''(0)f x x f =+求3 24lim(cos )xx x →求极限4 (3y x =-求5 3tan xdx ⎰五、证明题。
5.已知 lim f (x)0 及( X x①g (x )为任意函数时 ③仅当lim g(x) 0时x x 0),则 lim f(x)g(x)0.x x②当g (x )为有界函数时 ④仅当lim g(x)存在时x x 0二填空题(每小题5分,共15分)x sin x1. lim ---------- ------------------ . xx sin x4.由方程e x y xy 0确定隐函数y =f (x ),求dy .dx 5.设为 1,x n 1xn^ ,求 lim x n .1焉1 x一单项选择题(每小题3分,共15分) 1. 设 limf(x) k ,那么点 x =a 是 f (x )的( ).x a ①连续点 ②可去间断点 ③跳跃间断点2. 设f (x )在点 x =a 处可导,那么lim —h)—包 (h 0h① 3f (a) ② 2f (a) ③ f (a)3. 设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为①(-1,1) ③(0,+ g )4.设 lim f(x) 学)1,那么 f (x )在 a 处( ).x a(x a) ①导数存在,但f (a)0 ②取得极大值③取得极小值④以上结论都不对 ).1④一 f (a) 3( ).④(-m ,+ m )④导数不存在3. y ln(x 2x ),求dy 和d 2ydx 2f (0) ____________2.X 6. Iim(3 x .ax bx c) 2,求常数 a ,b .x四证明题(每小题10分,共30分) 1. 设f (x )在(4,+ g )上连续,且lim 丄凶lim 丄凶0 ,证明:存在 (X X X Xf( )0 .2. 若函数f (x )在[a ,+ g ]上可导,对任意x € (a,+ g ),有f (x) M ,M3. 证明函数y sin 1在(C ,1)内一致连续,但在(0,1)内非一致连续x答案一单项选择题(每小题3分,共15分) 1.④ 2.① 3.④ 4.③5.②二填空题(每小题5分,共15分) 1 .),使是常数,则limxf(x)0.x sin x1. limxxsin x 2. lim(1 x1 \X 3 )1,lim (丄x 1l n x 宀) 1 解:lim( ------x 1 l n x &) lim (x 1) lnx x 1(x 1)ln xlim11 1 - xlim (x 1) x ln xxx 1 xln x x 1l i mi x 2. y ln x t e te t dx 2 dy dt dt — dx (e t 1te t ) -T (t 1)ed 2y dx 2 dx dt 3. y ln(x 一 1 2x ),求dy 和 dx 2 . 解:dy dln(x 1 x 2) 1 x J I1dx, 1 x 2 d 2y d r _(dx d( .1 x x 2)) 1 d (x .1 x 21 x J =f(dx xx . \「cdx)dx 2 .(1 x 2)3 2x x(1 x 2)3 4.由方程e x yxy 0确定隐函数y =f (x ),求dydx解:方程两边求微分得 d(e x y xy) 0,即d e x y (dx dy) 所以,dydx y x e e x y dxy ydx xdy e x y y x 5.设 X 1 1,X n1x n^ ,求 lim x n .1 X n 1xk口 0,所以{X n }单调增加;(1 X k )(1 X k 1)f( )故 x( 1) f (x) x x( 1) 0,取b X,所以当 x b 时有f(x) x 0,特别的f(b) 0同理可得存在a 0,使得f(a) 0. 而f (x)在(,)上连续,所以在闭区间[a,b ]连续, 从而 F(x) f (x) x 在[a,b ]上连续,而F(a) 0,F(b) 0,所以由闭区间上连续函数性质 (零点存在定理)得 存在 (,),使得F( ) f( )0.证明: 先证{x n }单调增加.显然x 2 x 1,设n k 时成立,即x k x k 1,当Xk) X k (1 X k 11 X k 1X k (1 X kJ X k i (1 xQ (1 X k )(1 X k i )2,所以由单调增加有界数列必有极限得{ X n }收敛.令 n im o x阿1亡)6. lim(3 XX解:显然a limXlimX1旦,得a1 alim x nn 01 lim x n nn5舍去).2一 ax 2 bx c) 2,求常数a ,b .、ax 2 bx c)0,lim(3 xX3x Jax 2 bx c(3x.ax 2 bx c)(3x3x . ax 2 bx c 9x 2ax 2bx c3 i a得0,2,得 ab四证明题(每小题10分,共30分) f (x) 1.设f (x )在(-g ,+ g )上连续,且lim所以,9 a\ ax 2bx c) o /bc3 ■a—2X X 9x axb cXi 9,b 3.lim f(-) 0,证明:存在(x x),使证明:因为limXf(x) Xf x x)成立,即 X0,所以对0<f(x) x ,1,存在X 0,使得当x X 时,有显然 a,则”叫X n 1 2limX2.若函数f(x)在[a,+ g ]上可导,对任意x € (a,+ g ),有f (x) M ,M 是常数,则0.lim xf(x) T ~ X 证明:因为f(x)在区间(a,)满足f(x) M,所以满足李普希兹条件, 即:对任意的 X \,x 2 (a,),有 f(xj f (x 2) M x 1 x 2 . 令b a,则x (a,),有 f(x) f (b) M x b 成立. 我们知lim 卑 0,故要证lim 卑 0,只需证lim f(x) 2f(b)0. x x x x xxx b 时,对任意给定的 0,要使 只需x 型即可,令X max{b,^}, 则当 x X 时,-f(x)2f(b)成立 x 即lim f (x)2f (b)0,所以得证. x x 1 3.证明函数y sin 在(c ,1)内一致连续,但在(0,1)内非一致连续. xX, X o <1,对任意的 0,要使 证明:设0 c1 11 1 1 一 sin — 2cos(-— -)sin( X X 0 2x 2X 0 2x/X X c cos( 、・ z X X 。
第一学期期末考试试卷
一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)
1. =→x
x x 1
sin lim 0___0_____.
2. 设1
)1(lim )(2+-=∞→nx x
n x f n ,则)(x f 的间断点是___x=0_____.
3. 已知(1)2f =,4
1
)1('-=f ,则
12
()x df x dx -== _______.
4. ()a
x x '=_______.
5. 函数434)(x x x f -=的极大值点为________.
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写
在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(.
2. 设对任意的x ,总有)()()(x g x f x ≤≤ϕ,使lim[()()]0x g x x ϕ→∞
-=,则
lim ()x f x →∞
______.
A.存在且一定等于零
B. 存在但不一定等于零
C.不一定存在
D. 一定存在. 3. 极限=-→x
x x x
e 21lim
0________.
A. 2e
B. 2-e
C. e
D.不存在.
4. 设0)0(=f ,1)0(='f ,则=-+→x
x f x f x tan )
2()3(lim
0________.
A.0
B. 1
C. 2
D. 5.
5. 曲线2
21x
y x
=-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求2
0sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)
求2
1
lim(cos )x x x +
→. 五、(请写出主要计算步骤及结果,8分.)
确定常数,a b , 使函数2(sec )0
()0x x x x f x ax b x -⎧>=⎨+≤⎩处处可导.
六、(请写出主要计算步骤及结果,8分.)
设21
()arctan ln(1)2
f x x x x =-+,求dy .dy=arctanxdx
七、(请写出主要计算步骤及结果,8分.) 已知2326x xy y -+=确定y 是x 的函数,求y ''. 八、(请写出主要计算步骤及结果,8分.)
列表求曲线52
3
333152
y x x =-+的凹向区间及拐点.
九、证明题(请写出推理步骤及结果,共6+6=12分.)
1. 设)(x f 在[,]a b 上连续,且(),(),f a a f b b <>证明在开区间(,)a b 内至少存在一点ξ,使()f ξξ=.
2. 设函数)(x f 在]1,0[上连续,在)1,0(内可导, 且0)1(=f ,求证:至少存在一点
)1,0(∈ξ,使得3'()()0f f ξξξ+=.
第一学期期末考试参考答案与评分
标准
一、填空题(3×5=15)
1、0
2、 0x = 3 、4- 4、()1ln 1a
x a x x a x -⋅+ 5、3x = 二、单项选择题(3×5=15)
1、C
2、C
3、A
4、B
5、D
三、(8×1=8)
22
0000sin 1sin 1lim lim 2sin cos lim 62sin 1lim 822
x x x x x x x x e x e x x x e x x
e x →→→→----=-=+==分
分分
四、(8×1=8)
()2
00ln cos 1
lim
1
sin cos lim 1
1
2
lim (cos )268x x x x x x x x
x e e e
+→+
+
→→-
⋅--
===分
分
分
五、(8×1=8)
因为()f x 在(),-∞+∞处处可导,所以()f x 在0x =处连续可导。
……1分 因为
()20
lim (sec )02lim 34x x x x x ax b b
x b
+--→→=+== 分分
f 分
所以 0b =5分
又因为
()()02
00
0l i m (s e c )00l i m 1x x x a x b f a
x
x x f x
-+-→-+→+-'==-'== 所以 1a = ………8分
六、(8×1=8)
()22112arctan 5121arcsin 6arcsin 8x
f x x x x x x dy xdx
'=-⋅-⋅
++==分
分
分
七、(8×1=8)
22
22
22
22230
42272322(22)(23)(22)(26)()823(23)x y xy y y x y y x y x y y x y x y yy y x y x y ''--+=-'=-''------'''==--分
分
分
八、(8×1=8) (1)定义域为 (),-∞+∞;
(2)
2
13
3
14334
3
12121
333
3y x x x y x x x ---'=-+''=+=分
分
令0y ''=得11
2
x =-,又20x =为y ''不存在的点4分
(3)列表:
8分
625
Q =时利润最大,最大利润为()6251250L =………8分
九、证明题(6×2=12)
1. 设()()F x f x x =- ,则有()F x 在[,]a b 上连续,………2分
()()0,()()0,
4F a f a a F b f b b =-<=->分
根据零值定理可得在开区间(,)a b 内至少存在一点ξ,使()0F ξ=, 即()f ξξ=………6分
2.设 ()(),F x x = 则2
31()()()3
F x x f x x -''=。
………2分
显然()F x 在[0,1]内连续,在(0,1)内可导,且(0)(1)0F F ==。
………4分
由罗尔定理知:至少存在一点(0,1)ξ∈使
2
31()()()0
3
()()0
F f f f ξξξξξξξ-''=+='+=即3 ………6分。