微积分(上)期末考试试题(B)
- 格式:doc
- 大小:167.50 KB
- 文档页数:8
微积分上考试题目及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1的导数为:A. 3x^2-3B. x^2-3x+1C. 3x^2-3xD. 3x^2-3x+1答案:A2. 极限lim(x→0)(sin(x)/x)的值为:A. 0B. 1C. -1D. ∞答案:B3. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - 2xC. f(x) = cos(x)D. f(x) = sin(x) + x答案:C4. 以下哪个积分是发散的?A. ∫(1/x)dx 从1到∞B. ∫(x^2)dx 从0到1C. ∫(e^(-x))dx 从0到∞D. ∫(sin(x))dx 从0到2π答案:A5. 以下哪个是复合函数的导数?A. (f(g(x)))' = f'(g(x))g'(x)B. (f(g(x)))' = f'(x)g'(x)C. (f(g(x)))' = f(g'(x))g'(x)D. (f(g(x)))' = f'(x)g(x)答案:A二、填空题(每题4分,共20分)6. 函数f(x)=x^2的二阶导数为________。
答案:27. 定积分∫(0到1) x dx的值为________。
答案:1/28. 函数y=ln(x)的反函数为________。
答案:e^y9. 函数f(x)=e^x的不定积分为________。
答案:e^x + C10. 函数f(x)=x^3-3x^2+2x的极值点为________。
答案:x=0, x=2三、计算题(每题10分,共30分)11. 计算极限lim(x→∞) (x^2 - 3x + 2) / (2x^2 + 5x - 3)。
答案:1/212. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。
答案:1/313. 求函数f(x)=x^3-6x^2+11x-6的极值。
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
浙工大之江学院2009-2010学年第一学期《微积分B 》期末试卷(A )班级 姓名 学号一.选择题:(每格3分,共15分)1、下列四种趋向中,函数11)(2+++=x x x x x f 不是无穷小量的是( B ) A.0→x B.1→x C.1-→x D.+∞→x2、关于函数)(x f y =在点x 处连续、可导及可微三者的关系是( D )A. 连续是可微的充分条件B. 连续是可导的充要条件C. 可微不是连续的充分条件D. 可微是可导的充要条件3、设⎪⎩⎪⎨⎧≥<--=1,21,11)(2x x x x x x f , 则1=x 是)(x f 的 ( A ) A. 连续点 B. 可去间断点 C. 跳跃间断点 D. 第二类间断点4、311-+=x y 的拐点为 ( C )A. )0,0(B.)2,2(C. )1,1(D. 无5、若)(x f 是)(x g 的一个原函数,则 ( B )A.⎰+=c x g dx x f )()( B.⎰+=c x f dx x g )()( C.c x g dx x f +='⎰)()( D.⎰+='c x f dx x g )()(二.填空题:(每格3分,共15分)1、 设x x x f cos )(=, 则='')(x f __-2sinx-xcosx______________2、某商品的需求量Q 与价格P 的函数关系式为P Q 3100-=,则需求量对价格的弹性是______31003p p-____________3、函数32)(3+-=x x x f 在区间]0,2[-上满足拉格朗日定理的条件,求定理中的=ξ_____4、设x e x f -=)(, 则='⎰dx x x f )(ln ____1c x +______________5、x e x f 2)(=的n 阶麦克劳林公式为 __________22(2)(2)12()2!!nx n x x e x x n ο=+++++ __________________________三. 计算题:1、求极限(每题5分,共10分) (1) x x x )1ln(lim 0+→011lim 11x x→+==(2) 10)xx x →1)0012032lim )lim 1(1)132=x x x x x ex xx e →→-→=++==先求原式2、求不定积分(每题5分,共15分) (1) dx x x ⎰+231()()()()22222312222111122111123x xx x c=+-+=+-++=(2) ⎰+++dxxxx82622221225228(1)71ln282xdx dxx x xx x c+=+++++=++++⎰⎰(3) 3lnx xdx⎰4444344ln4ln ln441ln441ln416xxdx xx d xxx x dxxx x c==⋅-=⋅-=-+⎰⎰⎰3、利用对数求导法求函数35)33()23(4+-⋅+=xxxy的导数y'(7分)解:1ln ln(4)5ln(32)3ln(33)2y x x x=++--+1115(2)33243233yy x x x-'=⋅+-⋅+-+532)1103()(33)2(4)321xyx x x x-'=--++-+4、设曲线方程为33(1)cos()90x y x y π++++=,试求此曲线在横坐标1-=x 的点处的切线方程。
完整版)大一期末考试微积分试题带答案第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置。
答错或未答,该题不得分。
每小题3分,共15分。
)1.XXX→0sinx/x = ___1___.2.设f(x) = lim(n-1)x(n→∞) / (nx+1),则f(x)的间断点是___x=0___.3.已知f(1)=2,f'(1)=-1/4,则df-1(x)/dx4x=2.4.(xx)' = ___1___。
5.函数f(x)=4x3-x4的极大值点为___x=0___。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分。
)1.设f(x)的定义域为(1,2),则f(lgx)的定义域为___[ln1,ln2]___。
2.设对任意的x,总有φ(x)≤f(x)≤g(x),使lim[g(x)-φ(x)] = a,则limf(x) x→∞ = ___存在但不一定等于零___。
3.极限limex/(1-2x) x→∞ = ___e___。
4.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
5.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
三、(请写出主要计算步骤及结果,8分。
)4.设f(x)=(ex-sinx-1)/(sinx2),f'(x)=(ex-cosx)/sinx2,lim(x→sinx/2)f(x) = lim(x→sinx/2)(ex-sinx-1)/(sinx2) =___1/2___。
四、(请写出主要计算步骤及结果,8分。
)1.lim(x→0)(cosx1/x)x = ___1___。
五、(请写出主要计算步骤及结果,8分。
)确定常数a,b,使函数f(x)={x(secx)-2x。
x≤a。
ax+b。
x>a}处处可导。
因为f(x)处处可导,所以f(x)在x=a处连续,即a(sec(a))-2a=lim(x→a)(ax+b),得到a=1/2.根据f(x)在x=a处可导,得到a(sec(a))-2=lim(x→a)(ax+b)/(x-a),得到b=-1/2.六、(请写出主要计算步骤及结果,8分。
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分(上)期末考试试题(B)微积分(上)期末考试试题(B)对外经济贸易大学 2003-2004学年第一学期《微积分》(上)期末考试试卷(B)课程课序号CMP101??(1~14)学号:___________ 姓名:___________班级:___________ 成绩:___________ 题号一二三四五六总分成绩一、选择题 (选出每小题的正确答案,每小题2分,共计8分)1.下列极限正确的是 _________。
(A )10lim 20xx +→= (B )10lim 20xx -→=(C )1lim(1)xx ex→∞-=- (D )01lim (1)1xx x+→+=2.若()(),f x x a x x φφφ=-≠其中()为连续函数,且(a )0,()f x 在x a =点_________。
(A )不连续(B )连续(C )可导(D )不可导3.设f (x )有二阶连续导数,且2()(0)0,lim1,_______x f x f x→'''==则。
()0()A x f x =是的极大值点 ()0(0)B f (,)是f(x)的拐点()0()C x f x =是的极小值点 ())0D f x x =(在处是否取极值不确定4.下列函数中满足罗尔定理条件的是。
()ln(2)[0,1]A f x x x =-()201()01x x B f x x ?≤<=?=?()()sin sin [0,]C f x x x x π=+() 21()1[1,1]D f x x =--()5.若()(),f x x φ''=则下列各式成立。
()()()0A f x x φ-= ()()()B f x x C φ-=()()()C d f x d x φ=?? ()()()d dD f x dx x dx dx dxφ=??二、填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim 1sin x f x f x x f x→-===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。
解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。
代入x=1得斜率为7。
又因为该点经过(1,3),故切线方程为y = 7x - 4。
8. 求曲线y = x^3上与x轴围成的面积。
解:首先确定曲线截距为(0,0),解方程得x=0。
利用定积分区间求解:∫[0,1] x^3dx = 1/4。
以上为微积分考试题目及答案,希望对您的学习有所帮助。
感谢阅读!。
微积分(上)期末考试试题(B)
对外经济贸易大学 2003-2004学年第一学期 《微积分》(上)期末考试试卷(B)
课程课序号CMP101−−(1~14)
学号:___________ 姓名:___________
班级:___________ 成绩:___________ 题号
一 二 三 四 五 六 总分
成
绩
一、 选择题 (选出每小题的正确答案,每小题2分,共计8分)
1.
下列极限正确的是 _________。
(A )1
0lim 20x
x +
→= (B )
10lim 20
x
x -
→=
(C )1lim(1)
x
x e
x
→∞
-=- (D )
01lim (1)1x
x x
+→+=
2.若()(),f x x a x x φφφ=-≠其中()为连续函数,且(a )0,()
f x 在
x a =点_________。
(A ) 不连续 (B ) 连续 (C )可导 (D ) 不可导
3.
设f (x )有二阶连续导数,且
2
()
(0)0,lim
1,_______x f x f x
→'''==则。
()
0()A x f x =是的极大值点 ()0(0)B f (,)是f(x)的拐点
()0()C x f x =是的极小值点 ())0D f x x =(在处是否取极值不确定
4.下列函数中满足罗尔定理条件的是 。
()ln(2)
[0,1]
A f x x x =-()
2
01()0
1
x x B f x x ⎧≤<=⎨
=⎩()
()sin sin [0,]
C f x x x x π=+() 2
1
()1[1,1]
D f x x =-
-()
5.若()(),f x x φ''=则下列各式 成立。
()
()()0A f x x φ-= ()
()()B f x x C φ-=
()
()()C d f x d x φ=⎰⎰ ()
()()d d
D f x dx x dx dx dx
φ=⎰⎰
二、 填空题(每小题3分,共18分)
1. 设0
(2)
()0(0)0,lim 1sin x f x f x x f x
→-===-在处可导,且,那么曲线()
y f x =在原点处的切线方程是__________。
2.设函数f (x )可导,则2
(4)(2)lim 2
x f x f x →--=-_________。
3.设ln ,()x xf x dx x '=⎰为f(x)的一个原函数那么 。
4
.
设
2121,2ln 3x x y a x bx x a b ===++均是的极值点,则、的值为。
5. 设某商品的需求量Q是价格P的函数
116004
P
Q =(),
,那么在P=1的水平上,若价格
下降1%,需求量将 。
6.若1
(),,1
x y f u u x +==-且,1)('
u u f
=
dy dx
= 。
三、计算题(共42分): 1、求1
sin 0
((1)lim x x
x xe →+
2、()41
lim x x
x arctg x π→∞
-+
3、确定 a 值,使x →0时,无穷小量sin 21
x
ax e -+-与x
等价。
4、2
1
dx
x x -
5、2
2323x dx x x ++-⎰
6、x
x arctge dx
e ⎰
7、设
()0()00
x g x e x f x x
x -⎧-≠⎪=⎨⎪=⎩
,其中g (x )具有二阶连续
导数,且g (0)=1,(0)1g '=-
求()f x '。
四、(8分))假设某种商品的需求量Q 是单价P (单位元)的函数:Q=12000-80P ;商品的总成本C 是需求量Q 的函数:C=25000+50Q 。
(1) 求边际收益函数和边际成本函数; (2)若每单位商品需要纳税2元,试求使销售利润最大的商品单价和最大利润。
五、(12分)作函数2
12(1)
x
y x -=-的图形
六、证明题(每题5分,共计10分) 1、证明方程
23
10
26
x x x +++=只有一个实根。
2、设f(x)在[a,b]上连续,在(a,b)内有二
阶导数,且()()0,()0,.
其中a<
==><
f a f b f c c b
证明在(a,b)内存在ξ,使得()0.
''<
fξ。