(通用版)2018学高考数学二轮复习练酷专题课时跟踪检测(十二)圆锥曲线的定义、标准方程和几何性质理
- 格式:doc
- 大小:140.52 KB
- 文档页数:9
课时跟踪检测(一)A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 为( ) A .-23B .23C .38D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38,故选C.2.已知向量a =(1,2),b =(2,-3).若向量c 满足c ⊥(a +b ),且b ∥(a -c ),则c =( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-79,73C.⎝ ⎛⎭⎪⎫79,-73D.⎝ ⎛⎭⎪⎫-79,-73解析:选A 设c =(x ,y ),由题可得a +b =(3,-1),a -c =(1-x,2-y ).因为c ⊥(a +b ),b ∥(a -c ),所以⎩⎪⎨⎪⎧3x -y =0,-y +-x =0,解得⎩⎪⎨⎪⎧x =79,y =73,故c =⎝ ⎛⎭⎪⎫79,73.3.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:选D 由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.4.(2017·西安模拟)已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=( ) A .5 B .4 C .3D .1解析:选B 因为|a +b |=13,所以|a +b |2=a 2+2a ·b +b 2=13,即9+2×3×|b |cos 120°+|b |2=13,得|b |=4.5.(2018届高三·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( )A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( ) A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0,∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-23AB ―→-13BC ―→,故选D. 7.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( ) A.⎝⎛⎭⎪⎫32,12B.⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)解析:选B 设b =(cos α,sin α)(α∈(0,π)∪(π,2π)),则a ·b =(3,1)·(cos α,sin α)=3cos α+sin α=2sin ⎝⎛⎭⎪⎫π3+α=3,得α=π3,故b =⎝ ⎛⎭⎪⎫12,32.8.(2018届高三·广东五校联考)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-2解析:选A 由|a +b |=|a -b |可得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,所以a ·b =0,即a ·b =(λ,1)·(λ+2,1)=λ2+2λ+1=0,解得λ=-1.9.(2017·惠州调研)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形解析:选A (OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,即CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→,∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形,故选A.。
课时跟踪检测(五十)圆锥曲线的综合问题一保高考,全练题型做到高考达标.过抛物线=的焦点作一条直线与抛物线交于,两点,它们的横坐标之和等于,则这样的直线( ).有且只有一条.有且只有两条.有且只有三条.有且只有四条解析:选设该抛物线焦点为,(,),(,),则=+=+++=++=>=.所以符合条件的直线有且只有两条..若直线=+与双曲线-=的右支交于不同的两点,则的取值范围是( )....解析:选由得(-)--=.设直线与双曲线右支交于不同的两点(,),(,),则解得-<<-.即的取值范围是..经过椭圆+=的一个焦点作倾斜角为°的直线,交椭圆于,两点.设为坐标原点,则·等于( ) .-.-.-或-.±解析:选依题意,当直线经过椭圆的右焦点()时,其方程为-=°(-),即=-,代入椭圆方程+=并整理得-=,解得=或=,所以两个交点坐标分别为(,-),,∴·=-,同理,直线经过椭圆的左焦点时,也可得·=-..已知抛物线=的焦点与椭圆+=的左焦点重合,抛物线的准线与轴的交点为,点在抛物线上且=,则点的横坐标为( )..-..-解析:选+=可化为+=,则椭圆的左焦点为(-),又抛物线=的焦点为,准线为=-,所以=-,即=-,即=-,().设(,),则由=得(-)+=[(+)+],即+++=,又=-,所以++=,解得=-..已知双曲线-=(>,>)上的一点到双曲线的左、右焦点的距离之差为,若抛物线=上的两点(,),(,)关于直线=+对称,且=-,则的值为( )....解析:选由双曲线的定义知=,得=,所以抛物线的方程为=.因为点(,),(,)在抛物线=上,所以=,=,两式相减得-=(-)(+),不妨设<,又,关于直线=+对称,所以=-,故+=-,而=-,解得=-,=,设(,),(,)的中点为(,),则==-,===,因为中点在直线=+上,所以=-+,解得=..已知()是直线被椭圆+=所截得的线段的中点,则的方程是.解析:设直线与椭圆相交于(,),(,).则+=,且+=,两式相减并化简得=-.又+=,+=,所以=-,故直线的方程为-=-(-),即+-=.答案:+-=.如图,过抛物线=的焦点的直线与抛物线和圆+(-)=交于,,,四点,则·=.解析:不妨设直线的方程为=,联立解得=±,则(-),(),因为(-),(),所以=(),=(-),所以·=-.答案:-。
高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题1.(2021·重庆八中月考)已知椭圆C :x 24+y 23=1的右焦点为F ,过点M (4,0)的直线l 交椭圆C 于A ,B 两点,连接AF ,BF 并延长分别与椭圆交于异于A ,B 的两点P ,Q. (1)求直线l 的斜率的取值范围; (2)若PF ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,QF ⃗⃗⃗⃗⃗ =μFB ⃗⃗⃗⃗⃗ ,证明:λμ为定值.2.(2021·河北张家口三模)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,问是否存在实数m ,使|MA|·|MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.3.(2021·江苏南通适应性联考)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,一条渐近线方程为y=bx (b ∈N *),且双曲线C 经过点D (√2,1). (1)求双曲线C 的方程;(2)设点P 在直线x=m (y ≠±m ,0<m<1,且m 是常数)上,过点P 作双曲线C 的两条切线PA ,PB ,切点为A ,B ,求证:直线AB 过某一个定点.4.(2021·山东济南二模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且经过点H (-2,1).(1)求椭圆C 的方程;(2)过点P (-3,0)的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G (-2,0),若PM⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.5.(2021·广东汕头三模)已知圆C :x 2+(y-2)2=1与定直线l :y=-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y=-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A ,B.①求证:直线AB 过定点; ②求证:∠PCA=∠PCB.6.(2021·北京东城一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),且焦距为2√3. (1)求椭圆C 的方程;(2)过点A (-4,0)的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立?若存在,求出λ的值;若不存在,说明理由.答案及解析1.(1)解 由题意知直线l 的斜率不为零,故设其方程为x=ty+4,与椭圆方程联立,消去x 得(3t 2+4)y 2+24ty+36=0,Δ=144(t 2-4)>0,解得t<-2或t>2.故直线l 的斜率k=1t 的取值范围为(-12,0)∪(0,12).(2)证明 F (1,0),设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由(1)得y 1+y 2=-24t3t 2+4,y 1y 2=363t 2+4,所以ty 1y 2=-32(y 1+y 2).由PF⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,得{1−x 3=λ(x 1-1),-y 3=λy 1,即{-x 3=λx 1-λ-1,-y 3=λy 1. 又点P 在椭圆上,即有3x 32+4y 32=12,代入上式得3(λx 1-λ-1)2+4λ2y 12=12,即λ2(3x 12+4y 12)-6λ(λ+1)x 1+3(λ+1)2=12, 又3x 12+4y 12=12,所以12(λ+1)(λ-1)-6λ(λ+1)x 1+3(λ+1)2=0.易知λ+1≠0,故λ=35−2x 1,同理可得μ=35−2x 2.又(5-2x 1)(5-2x 2)=25-10(x 1+x 2)+4x 1x 2 =25-10[t (y 1+y 2)+8]+4(ty 1+4)(ty 2+4)=9+6t (y 1+y 2)+4t 2y 1y 2=9+6t (y 1+y 2)+4t ·(-32)(y 1+y 2)=9, 所以λμ=9(5-2x1)(5-2x 2)=1.2.解 (1)由点M 到点F 的距离比到y 轴的距离大p ,得点M 到点F 的距离与到直线x=-p 的距离相等.由抛物线的定义,可知点M 在抛物线C 上,所以4=4p ,解得p=1. 所以抛物线C 的方程为y 2=4x.(2)存在满足题意的m ,其值为1或-3. 理由如下:由{y 2=4x,x-m(y +2)−5=0,得y 2-4my-8m-20=0. 因为Δ=16m 2+4(8m+20)>0恒成立,所以直线l 与抛物线C 恒有两个交点. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,所以|MA|·|MB|=|AB|·d=√1+m 2·√(y 1+y 2)2-4y 1y 2·√1+m 2=4·|1+m|·√16m 2+16(2m +5)=16·|1+m|·√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0, 解得(m+1)2=4或(m+1)2=-8(舍). 所以m=1或m=-3.所以当实数m=1或m=-3时,|MA|·|MB|=64√2.3.(1)解 由{ba =b,2a 2-1b 2=1,解得{a =1,b =1,故双曲线方程为x 2-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),直线PA 的斜率为k ,P (m ,y 0).则PA:y-y1=k(x-x1),联立方程组{y-y1=k(x-x1), x2-y2=1,消去y,可得x2-[kx+(-kx1+y1)]2=1,整理可得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0.因为PA与双曲线相切,所以Δ=4k2(y1-kx1)2+4(1-k2)·(y1-kx1)2+4(1-k2)=0,整理得4(y1-kx1)2+4(1-k2)=0.即k2x12-2kx1y1+y12+1-k2=0,即(x12-1)k2-2kx1y1+(y12+1)=0,因为x12−y12=1,所以x12-1=y12,y12+1=x12代入可得y12k2-2x1y1k+x12=0,即(y1k-x1)2=0,所以k=x1y1.故PA:y-y1=x1y1(x-x1),即y1y=x1x-1.同理,切线PB的方程为y2y=x2x-1.因为P(m,y0)在切线PA,PB上,所以有{y0y1=mx1-1, y0y2=mx2-1,A,B满足直线方程y0y=mx-1,而两点唯一确定一条直线,故AB:y0y=mx-1,所以当{x=1m,y=0时,无论y0为何值,等式均成立.故点(1m ,0)恒在直线AB上,故无论P在何处,AB恒过定点(1m,0).4.(1)解由题意知e=ca =√1−b2a2=√22,则a2=2b2.又椭圆C经过点H(2,1),所以4a2+1b2=1.联立解得a2=6,b2=3,所以椭圆C的方程为x 26+y23=1.(2)证明 设直线AB 的方程为x=my-3,A (x 1,y 1),B (x 2,y 2),由{x =my-3,x 26+y 23=1联立消去x ,得(m 2+2)y 2-6my+3=0,所以Δ=36m 2-12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2,由题意知,y 1,y 2均不为1.设M (x M ,0),N (x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M -x 1=(-y 1)(-2-x M ),化简得x M =x 1+2y 11−y 1.由H ,N ,B 三点共线,同理可得x N =x 2+2y 21−y 2.由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3. 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3. 所以1λ+1μ=1xM+3+1xN+3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x1-y 1+3+1−y 2x 2-y 2+3=1−y1(m-1)y1+1−y 2(m-1)y 2=1m-11−y 1y 1+1−y 2y 2=1m-1(y 1+y 2y1y 2-2)=1m-1(6mm 2+23m 2+2-2)=2,所以1λ+1μ为定值.5.(1)解 依题意知:M 到C (0,2)的距离等于M 到直线y=-2的距离,故动点M 的轨迹是以C 为焦点,直线y=-2为准线的抛物线.设抛物线方程为x 2=2py (p>0),则p2=2,则p=4,即抛物线的方程为x 2=8y ,故动圆圆心M 的轨迹E 的方程为x 2=8y. (2)证明 ①由x 2=8y 得y=18x 2,y'=14x.设A (x 1,18x 12),B (x 2,18x 22),P (t ,-2),其中x 1≠x 2, 则切线PA 的方程为y-18x 12=x 14(x-x 1),即y=14x 1x-18x 12.同理,切线PB 的方程为y=14x 2x-18x 22. 由{y =14x 1x-18x 12,y =14x 2x-18x 22,解得{x =x 1+x22,y =x 1x 28, 故{t =x 1+x 22,-2=x 1x 28,即{x 1+x 2=2t,x 1x 2=−16.故直线AB 的方程为y-18x 12=18x 22-18x 12x 2-x 1(x-x 1),化简得y=x 1+x 28x-x 1x 28,即y=t4x+2,故直线AB 过定点(0,2).②由①知:直线AB 的斜率为k AB =t4,(i)当直线PC 的斜率不存在时,直线AB 的方程为y=2,∴PC ⊥AB ,∴∠PCA=∠PCB ;(ii)当直线PC 的斜率存在时,P (t ,-2),C (0,2),直线PC 的斜率k PC =-2-2t-0=-4t,k AB ·k PC =t 4×-4t =-1,故PC ⊥AB ,∠PCA=∠PCB. 综上所述,∠PCA=∠PCB 得证.6.解 (1)因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),所以a=2,又2c=2√3,即c=√3,所以b 2=a 2-c 2=4-3=1,所以椭圆C 的方程为x 24+y 2=1.(2)存在常数λ=2,满足题意. 理由如下:显然直线l 的斜率存在且不为0,设直线l :y=k (x+4),联立{y =k(x +4),x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+32k 2x+64k 2-4=0, Δ=(32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112.设P (x 1,y 1),Q (x 2,y 2),则T (x 2,-y 2),所以x 1+x 2=-32k 21+4k 2,x 1x 2=64k 2-41+4k 2,直线PT :y-y 1=y 1+y2x 1-x 2(x-x 1),令y=0,得x=x 1-y 1(x 1-x 2)y 1+y 2,所以H x 1-y 1(x 1-x 2)y 1+y 2,0,若存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立, 所以1λ=|AD|-|DH||AD|·|DH|=1|DH|−1|AD|,又因为D (-2,0),A (-4,0),H (x 1-y 1(x 1-x 2)y 1+y 2,0),所以|AD|=2,|DH|=x 1-y 1(x 1-x 2)y 1+y 2+2 =x 1-k(x 1+4)(x 1-x 2)k(x 1+4)+k(x 2+4)+2=x 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 1(x 1+x 2)+8kx 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 12+kx 1x 2+8kx 1-kx 12+kx 1x 2-4kx 1+4kx 2k(x 1+x 2)+8k+2=4k(x 1+x 2)+2kx 1x 2k(x 1+x 2)+8k+2=4k·-32k 21+4k 2+2k·64k 2-41+4k 2k·-32k 21+4k 2+8k +2=-1+2=1,所以1λ=11−12,解得λ=2.所以存在常数λ=2,使得|AD|·|DH|=2(|AD|-|DH|)成立.。
2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。
课时跟踪检测(二十三) 圆锥曲线1.(2018届高三·石家庄摸底)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围. 解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0), 设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=yx -4. 由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),联立方程⎩⎪⎨⎪⎧x 216+y 212=1,y =kx +2消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP ―→·OQ ―→+MP ―→·MQ ―→=x 1x 2+y 1y 2+x 1x 2+(y 1-2)(y 2-2)=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3. 所以-20<OP ―→·OQ ―→+MP ―→·MQ ―→≤-523.当直线PQ 的斜率不存在时,OP ―→·OQ ―→+MP ―→·MQ ―→的值为-20. 综上,OP ―→·OQ ―→+MP ―→·MQ ―→的取值范围为⎣⎡⎦⎤-20,-523. 2.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM ―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·PQ ―→=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0). 由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ), 则OQ ―→=(-3,t ),PF ―→=(-1-m ,-n ), OQ ―→·PF ―→=3+3m -tn ,OP ―→=(m ,n ),PQ ―→=(-3-m ,t -n ). 由OP ―→·PQ ―→=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以OQ ―→·PF ―→=0,即OQ ―→⊥PF ―→. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2018届高三·西安八校联考)设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上的点T (2,2)到点F 1,F 2的距离之和等于4 2.(1)求椭圆C 的方程;(2)若直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,A 为椭圆C 的左顶点,直线AE ,AF 分别与y 轴交于点M ,N .问:以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解:(1)由椭圆上的点T (2,2)到点F 1,F 2的距离之和是42,可得2a =42,a =2 2. 又T (2,2)在椭圆上,因此4a 2+2b 2=1,所以b =2,所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A , 所以点A 的坐标为(-22,0).因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于E ,F 两点,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).由⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2, 所以x 0=221+2k 2,则y 0=22k 1+2k 2, 所以直线AE 的方程为y =k1+1+2k 2(x +22).因为直线AE ,AF 分别与y 轴交于点M ,N , 令x =0,得y =22k1+1+2k 2,即点M 0,22k1+1+2k 2.同理可得点N ⎝ ⎛⎭⎪⎫0,22k 1-1+2k 2.所以|MN |=⎪⎪⎪⎪⎪⎪22k 1+1+2k 2-22k 1-1+2k 2=22(1+2k 2)|k |.设MN 的中点为P ,则点P 的坐标为P ⎝⎛⎭⎫0,-2k . 则以MN 为直径的圆的方程为x 2+⎝⎛⎭⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+22k y =4. 令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0).4.(2017·安徽二校联考)已知焦点为F 的抛物线C 1:x 2=2py (p >0),圆C 2:x 2+y 2=1,直线l 与抛物线相切于点P ,与圆相切于点Q .(1)当直线l 的方程为x -y -2=0时,求抛物线C 1的方程; (2)记S 1,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.解:(1)设点P ⎝⎛⎭⎫x 0,x 22p ,由x 2=2py (p >0)得, y =x 22p ,求得y ′=xp ,因为直线PQ 的斜率为1, 所以x 0p =1且x 0-x 202p -2=0,解得p =2 2.所以抛物线C 1的方程为x 2=42y .(2)点P 处的切线方程为y -x 202p=x 0p (x -x 0),即2x 0x -2py -x 20=0,OQ 的方程为y =-px 0x . 根据切线与圆相切,得|-x 20|4x 20+4p2=1,化简得x 40=4x 20+4p 2,由方程组⎩⎪⎨⎪⎧2x 0x -2py -x 20=0,y =-px 0x , 解得Q ⎝⎛⎭⎫2x 0,4-x 202p .所以|PQ |=1+k 2|x P -x Q |=1+x 20p 2⎪⎪⎪⎪x 0-2x 0= p 2+x 20p ·⎪⎪⎪⎪x 20-2x 0,又点F ⎝⎛⎭⎫0,p2到切线PQ 的距离 d 1=|-p 2-x 20|4x 20+4p2=12x 2+p 2, 所以S 1=12|PQ |d 1=12·p 2+x 20p ·⎪⎪⎪⎪x 20-2x 0·12x 20+p 2=x 20+p 24p ⎪⎪⎪⎪x 20-2x 0, S 2=12|OF ||x Q |=p 2|x 0|,而由x 40=4x 20+4p 2知,4p 2=x 40-4x 20>0,得|x 0|>2, 所以S 1S 2=x 20+p 24p ⎪⎪⎪⎪x 20-2x 0·2|x 0|p=(x 20+p 2)(x 20-2)2p 2=(4x 20+x 40-4x 20)(x 20-2)2(x 40-4x 20) =x 20(x 20-2)2(x 20-4) =x 20-42+4x 20-4+3≥22+3,当且仅当x 20-42=4x 20-4时取等号,即x 20=4+22时取等号,此时p =2+2 2. 所以S 1S 2的最小值为22+3.。
课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。
课时跟踪检测(十二)圆锥曲线的定义、标准方程和几何性质“+”保分小题提速练]).(·福州模拟)已知双曲线:-=(>,>)的离心率为,则的渐近线方程为( ).=±.=±.=±.=±解析:选∵双曲线:-=(>,>)的离心率为,∴=,即=,∴+=,∴=,∴的渐近线方程为=±..(届高三·广东三市联考)若抛物线=(>)上的点(,)到其焦点的距离是到轴距离的倍,则等于( )..解析:选由题意=+,即=,将代入=(>),得=,∵>,∴=..(·南京模拟)若双曲线:-=(>)的离心率为,则=( )..解析:选由题意得===,解得=..(·长沙模拟)是抛物线=(>)上一点,是抛物线的焦点,为坐标原点,当=时,∠=°,则抛物线的准线方程是( ).=-.=-.=-.=-解析:选过向准线作垂线,设垂足为,准线与轴的交点为.因为∠=°,所以△为等边三角形,∠=°,从而==,因此抛物线的准线方程为=-..(·合肥模拟)已知双曲线-=的两条渐近线分别与抛物线=(>)的准线交于,两点.为坐标原点.若△的面积为,则的值为( )...解析:选双曲线的两条渐近线方程为=±,抛物线的准线方程为=-,故,两点的坐标为,=,所以△=··==,解得=..(届高三·张掖调研)过抛物线=的焦点的直线与抛物线交于,两点,若,两点的横坐标之和为,则=( ).解析:选∵=,∴=+=..(·广州模拟)已知双曲线:-=(>)的一条渐近线方程为+=,,分别是双曲线的左、右焦点,点在双曲线上,且=,则等于( )...或.或解析:选由一条渐近线方程为+=和=可得=,==,由点在双曲线上,=,得-==×=,可得=或=,根据=,=,=,或者=,=,=,均能满足三角形成立的条件,选..(·沈阳模拟)已知双曲线:-=(>,>)的左、右焦点分别为,,点与双曲线的焦点不重合,点关于,的对称点分别为,,线段的中点在双曲线的右支上,若-=,则=( )....解析:选作出示意图如图所示,设的中点为.∵为的中点,为的中点,∴=,=,又-=,∴-==,∴=..(届高三·武昌调研)已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且>,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则+的最小值为( )..解析:选设椭圆的长半轴长为,双曲线的半实轴长为′,半焦距为,依题意知∴=′+,∴+=+=+=++≥+=,当且仅当=′时取“=”,故选..(·全国卷Ⅲ)已知椭圆:+=(>>)的左、右顶点分别为,,且以线段为直径的圆与直线-+=相切,则的离心率为()解析:选以线段为直径的圆的方程为+=,由原点到直线-+=的距离==,得。
课时跟踪检测(十二) 圆锥曲线的定义、标准方程和几何性质[A 级——“12+4”保分小题提速练]1.(2017·福州模拟)已知双曲线C :y 2a 2-x 2b2=1(a >0,b >0)的离心率为2,则C 的渐近线方程为( )A .y =±33x B .y =±3x C .y =±2xD .y =±5x解析:选A ∵双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为2,∴c a=2,即c 2=4a 2,∴a 2+b 2=4a 2,∴ab =33,∴C 的渐近线方程为y =±33x . 2.(2018届高三·广东三市联考)若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )A.12 B .1 C.32D .2解析:选D 由题意3x 0=x 0+p 2,即x 0=p4,将⎝ ⎛⎭⎪⎫p 4,2代入y 2=2px (p >0),得p 22=2,∵p >0,∴p =2.3.(2017·南京模拟)若双曲线C :x 2-y 2b2=1(b >0)的离心率为2,则b =( )A .1 B. 2 C. 3D .2解析:选C 由题意得e =c a =1+b21=2,解得b = 3.4.(2017·长沙模拟)A 是抛物线y 2=2px (p >0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF |=4时,∠OFA =120°,则抛物线的准线方程是( )A .x =-1B .y =-1C .x =-2D .y =-2解析:选A 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D .因为∠OFA =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF |=2,因此抛物线的准线方程为x =-1.5.(2017·合肥模拟)已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为1,则p 的值为( )A .1 B. 2 C .2 2D .4解析:选B 双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p2,故A ,B 两点的坐标为⎝ ⎛⎭⎪⎫-p 2,±p ,|AB |=2p ,所以S △OAB =12·2p ·p 2=p 22=1,解得p = 2. 6.(2018届高三·张掖调研)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( )A.133B.143C .5D.163解析:选D ∵p =2,∴|AB |=2+103=163.7.(2017·广州模拟)已知双曲线C :x 2a 2-y 24=1(a >0)的一条渐近线方程为2x +3y =0,F 1,F 2分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且|PF 1|=7,则|PF 2|等于( )A .1B .13C .4或10D .1或13解析:选D 由一条渐近线方程为2x +3y =0和b =2可得a =3,|F 1F 2|=29+4=213,由点P 在双曲线C 上,|PF 1|=7,得|7-|PF 2||=2a =2×3=6,可得|PF 2|=1或|PF 2|=13,根据|PF 1|=7,|PF 2|=1,|F 1F 2|=213,或者|PF 1|=7,|PF 2|=13,|F 1F 2|=213,均能满足三角形成立的条件,选D.8.(2017·沈阳模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为A ,B ,线段MN 的中点在双曲线的右支上,若|AN |-|BN |=12,则a =( )A .3B .4C .5D .6解析:选A 作出示意图如图所示,设MN 的中点为P .∵F 1为MA 的中点,F 2为MB 的中点,∴|AN |=2|PF 1|,|BN |=2|PF 2|,又|AN |-|BN |=12,∴|PF 1|-|PF 2|=6=2a ,∴a =3.9.(2018届高三·武昌调研)已知F 1,F 2是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 1|>|PF 2|,线段PF 1的垂直平分线过F 2,若椭圆的离心率为e 1,双曲线的离心率为e 2,则2e 1+e 22的最小值为( )A .6B .3 C. 6D. 3解析:选A 设椭圆的长半轴长为a ,双曲线的半实轴长为a ′,半焦距为c ,依题意知⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|-|PF 2|=2a ′,|PF 2|=|F 1F 2|=2c ,∴2a =2a ′+4c ,∴2e 1+e 22=2a c +c 2a ′=2a ′+4c c +c 2a ′=2a ′c +c2a ′+4≥2+4=6,当且仅当c =2a ′时取“=”,故选A.10.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13解析:选A 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由原点到直线bx -ay +2ab =0的距离d =2abb 2+a 2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63. 11.(2017·福州模拟)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5D .5解析:选C 由题意,知抛物线C :y 2=4x 的焦点F (1,0),设准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1,由⎩⎪⎨⎪⎧x =-1,y =x -,x ≤1得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|FQ ||FF 1|=252= 5.12.(2017·淄博模拟)已知抛物线y 2=8x 的焦点到双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的渐近线的距离不大于3,则双曲线E 的离心率的取值范围是( )A .(1, 2 ]B .(1,2]C .[2,+∞)D .[2,+∞)解析:选B 抛物线y 2=8x 的焦点为(2,0),双曲线的一条渐近线方程为bx +ay =0,由题知|2b |a 2+b2≤3,化简得b 2≤3a 2,又c 2=a 2+b 2,∴c 2≤4a 2,∴e ≤2,又e >1,∴e ∈(1,2].13.(2017·合肥模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则该双曲线的渐近线方程为________.解析:在双曲线中,b 2a 2=c 2-a 2a 2=c 2a2-1=e 2-1=2,所以该双曲线的渐近线方程为y =±bax =±2x .答案:y =±2x14.(2018届高三·西安八校联考)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与C 交于A ,B (A 在x 轴上方)两点.若AF ―→=m FB ―→,则m 的值为________.解析:由题意知F (1,0),由⎩⎨⎧y =3x -,y 2=4x ,解得⎩⎪⎨⎪⎧x 1=13,y 1=-233或⎩⎨⎧x 2=3,y 2=2 3.由A 在x 轴上方,知A (3,23),B ⎝ ⎛⎭⎪⎫13,-233,则AF ―→=(-2,-23),FB ―→=⎝ ⎛⎭⎪⎫-23,-233,因为AF ―→=m FB ―→,所以m =3.答案:315.(2018届高三·湘中名校联考)已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA ―→+FB ―→+FC ―→=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA ―→+FB ―→+FC ―→=0,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p+y 3+y 12p +y 2+y 32p=0. 答案:016.(2017·安徽二校联考)已知点A 在椭圆x 225+y 29=1上,点P 满足AP ―→=(λ-1)OA ―→(λ∈R)(O 是坐标原点),且OA ―→·OP ―→=72,则线段OP 在x 轴上的投影长度的最大值为________.解析:因为AP ―→=(λ-1)OA ―→,所以OP ―→=λOA ―→,即O ,A ,P 三点共线,因为OA ―→·OP ―→=72,所以OA ―→·OP ―→=λ|OA ―→|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP ―→||cos θ|=|λ||x |=72|x ||OA ―→|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号,故所求最大值为15.答案:15[B 级——中档小题强化练]1.(2018届高三·菏泽摸底)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线x +3y +1=0垂直,则双曲线的离心率等于( )A. 6B.233C.10D. 3解析:选C 由于双曲线的一条渐近线与直线x +3y +1=0垂直,则双曲线的渐近线方程为y =±3x ,可得b a=3,可得b 2=9a 2,即c 2-a 2=9a 2,亦即c 2=10a 2,故离心率为e =c a=10.2.(2017·云南模拟)以双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上一点M 为圆心作圆,该圆与x 轴相切于C 的一个焦点,与y 轴交于P ,Q 两点.若△MPQ 为正三角形,则该双曲线的离心率等于( )A. 2B. 3 C .2D. 5解析:选B 设圆M 与双曲线C 相切于点F (c,0),则MF ⊥x 轴,于是可设M (c ,t )(t >0),代入双曲线方程中解得t =b 2a ,所以|MF |=b 2a,所以|PQ |=2⎝ ⎛⎭⎪⎫b 2a 2-c 2.因为△MPQ 为等边三角形,所以c =32×2⎝ ⎛⎭⎪⎫b 2a 2-c 2,化简,得3b 4=4a 2c 2,即3(c 2-a 2)2=4a 2c 2,亦即3c 4-10c 2a 2+3a 4=0,所以3e 4-10e 2+3=0,解得e 2=13或e 2=3,又e >1,所以e = 3.3.(2017·兰州模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3]B .[3,+∞)C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca≤3,又e >1,∴1<e ≤3,即双曲线C 的离心率的取值范围为(1,3].4.(2017·湘中名校联考)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率的取值范围为( )A.⎣⎢⎡⎭⎪⎫53,+∞B.⎣⎢⎡⎭⎪⎫54,+∞C.⎝ ⎛⎦⎥⎤1,53 D.⎝ ⎛⎦⎥⎤1,54 解析:选B 将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,不妨取A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±b a x ,得y =±bc a,不妨取C ⎝ ⎛⎭⎪⎫c ,bc a ,D ⎝ ⎛⎭⎪⎫c ,-bc a ,所以|CD |=2bc a.因为|AB |≥35|CD |,所以2b 2a ≥35×2bca ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54. 5.(2018届高三·武汉调研)已知抛物线Γ:y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点P 在Γ上且|PK |=2|PF |,则△PKF 的面积为________.解析:由已知得,F (2,0),K (-2,0),过P 作PM 垂直于准线于点M ,则|PM |=|PF |,又|PK |=2|PF |,∴|PM |=|MK |=|PF |,∴PF ⊥x 轴,△PFK 的高等于|PF |,不妨设P (m 2,22m )(m >0), 则m 2+2=4,解得m =2,故△PFK 的面积S =4×22×2×12=8.答案:86.(2016·石家庄模拟)已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过原点的直线l 与双曲线交于M ,N 两点,且MF ―→·NF ―→=0,△MNF 的面积为ab ,则该双曲线的离心率为________.解析:因为MF ―→·NF ―→=0,所以MF ―→⊥NF ―→.设双曲线的左焦点为F ′,则由双曲线的对称性知四边形F ′MFN 为矩形,则有|MF |=|NF ′|,|MN |=2c .不妨设点N 在双曲线右支上,由双曲线的定义知,|NF ′|-|NF |=2a ,所以|MF |-|NF |=2a .因为S △MNF =12|MF |·|NF |=ab ,所以|MF ||NF |=2ab .在Rt △MNF 中,|MF |2+|NF |2=|MN |2,即(|MF |-|NF |)2+2|MF ||NF |=|MN |2,所以(2a )2+2·2ab =(2c )2,把c 2=a 2+b 2代入,并整理,得b a =1,所以e =c a=1+⎝ ⎛⎭⎪⎫b a 2= 2.答案: 2[C 级——压轴小题突破练]1.(2018届高三·河南八市联考)已知点M (-3,2)是坐标平面内一定点,若抛物线y2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是( )A.72 B .3 C.52D .2解析:选C 抛物线的准线方程为x =-12,依据抛物线的定义,得|QM |-|QF |≥|x Q +3|-⎪⎪⎪⎪⎪⎪x Q +12=⎪⎪⎪⎪⎪⎪3-12=52. 2.(2017·贵阳模拟)双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,52 B.⎝⎛⎭⎪⎫52,+∞ C.⎝ ⎛⎭⎪⎫1,54D.⎝ ⎛⎭⎪⎫54,+∞ 解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,且“右”区域是由不等式组⎩⎪⎨⎪⎧y <bax ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2b a ,即ba>12,因此题中的双曲线的离心率e =1+⎝ ⎛⎭⎪⎫b a2∈⎝ ⎛⎭⎪⎫52,+∞.3.(2018届高三·武汉调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF ―→与FB ―→反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52解析:选C 设实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=b a,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan 2α=|AB ||OA |,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理得d =14m ,∴-tan 2α=-2tan α1-tan 2α=|AB ||OA |=m 34m =43,解得b a =2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =c a= 5.4.(2017·沈阳模拟)已知抛物线C :x 2=4y 的焦点为F ,直线AB 与抛物线C 相交于A ,B 两点,若2OA ―→+OB ―→-3OP ―→=0,则弦AB 的中点到抛物线C 的准线的距离为________.解析:依题意得,抛物线的焦点F (0,1),准线方程是y =-1,因为2(OA ―→-OP ―→)+(OB ―→-OP ―→)=0,即2FA ―→+FB ―→=0,所以F ,A ,B 三点共线.设直线AB :y =kx +1(k ≠0),A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2=4(kx +1),即x 2-4kx -4=0,x 1x 2=-4, ①又2FA ―→+FB ―→=0,因此2x 1+x 2=0, ②由①②解得x 21=2,弦AB 的中点到抛物线C 的准线的距离为12[(y 1+1)+(y 2+1)]=12(y 1+y 2)+1=18(x 21+x 22)+1=5x 218+1=94.答案:94。