植物生理第一章
- 格式:doc
- 大小:43.50 KB
- 文档页数:5
植物生理学电子教案第一章:植物细胞的结构和功能1.1 植物细胞的基本结构细胞壁细胞膜细胞质细胞核1.2 植物细胞的特殊结构叶绿体液泡中心体质体1.3 植物细胞的生理功能细胞膜的功能细胞核的功能叶绿体的功能液泡的功能第二章:植物的生长和发育2.1 植物生长的基本过程细胞分裂细胞伸长细胞分化种子发芽幼苗生长成熟植物2.3 植物生长的环境因素光照温度水分养分第三章:植物的营养吸收和运输3.1 植物的营养需求水分养分(氮、磷、钾等)光照温度3.2 植物的营养吸收根系吸收叶片吸收3.3 植物的营养运输维管束的运输系统韧皮部的运输系统第四章:植物的生殖和繁殖有性生殖无性生殖4.2 植物的繁殖结构雄性生殖器官(花药、花粉)雌性生殖器官(子房、卵细胞)4.3 植物的繁殖过程花粉管的形成和生长受精过程种子的形成和成熟第五章:植物的适应和逆境反应5.1 植物对环境的适应光合作用的调节呼吸作用的调节水分的调节养分的调节5.2 植物的逆境反应干旱盐分低温病虫害5.3 植物的逆境适应机制抗氧化系统渗透调节物质基因表达的调节第六章:植物的激素和生长调节6.1 植物激素的种类和功能激素的定义和作用细胞分裂素(CK)生长素(IAA)赤霉素(GA)脱落酸(ABA)乙烯(ETH)6.2 植物激素的合成和运输激素合成的途径激素的运输机制激素的信号传导6.3 植物生长调节的应用促进植物生长的应用控制植物生长的应用调节植物发育的应用第七章:植物的光合作用和呼吸作用7.1 光合作用的原理和过程光合作用的定义和意义光合色素的结构和功能光反应和暗反应CO2的固定和还原7.2 呼吸作用的原理和过程呼吸作用的定义和意义有氧呼吸和无氧呼吸能量的释放和利用呼吸作用与光合作用的关系7.3 光合作用和呼吸作用的应用提高植物光合作用的效率促进植物生长的应用节能减排的应用第八章:植物的生态生理学8.1 植物与环境的相互作用植物与光照的关系植物与水分的关系植物与养分的关系植物与生物的关系8.2 植物的生态适应性植物对环境的适应机制植物的生态位植物的生态多样性8.3 植物的生态生理学研究方法实验方法观测方法模型方法第九章:植物的生理生态与应用9.1 植物生理生态在农业中的应用改良土壤质量提高作物产量和品质病虫害防治9.2 植物生理生态在环境保护中的应用植物修复技术植物对环境污染的指示作用植物在气候变化中的作用9.3 植物生理生态在其他领域的应用植物生理生态在园艺学中的应用植物生理生态在生物学研究中的应用植物生理生态在生物技术中的应用第十章:植物生理学研究的进展与展望10.1 植物生理学研究的最新进展基因组学和转录组学在植物生理学中的应用蛋白质组学和代谢组学在植物生理学中的应用植物生理学在分子水平上的研究进展10.2 植物生理学研究的挑战与机遇植物生理学面临的挑战植物生理学的新机遇10.3 植物生理学的发展前景植物生理学在科学研究中的重要性植物生理学在解决全球性问题中的作用植物生理学在人类社会发展中的贡献重点和难点解析重点环节1:植物细胞的结构和功能细胞壁、细胞膜、细胞质、细胞核等基本结构的定义和作用是教学重点。
植物⽣理学整理版第⼀章植物的⽔分⽣理●⽔势:⽔溶液的化学势与纯⽔的化学势之差,除以⽔的偏摩尔体积所得商。
●渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了⽔的⾃由能,因⽽其⽔势低于纯⽔⽔势的⽔势下降值。
●压⼒势:指细胞的原⽣质体吸⽔膨胀,对细胞壁产⽣⼀种作⽤⼒相互作⽤的结果,与引起富有弹性的细胞壁产⽣⼀种限制原⽣质体膨胀的反作⽤⼒。
●质外体:植物体内原⽣质以外的部分,是离⼦可⾃由扩散的区域,主要包括细胞壁、细胞间隙、导管等部分。
●共质体:指细胞膜以内的原⽣质部分,各细胞间的原⽣质通过胞间连丝互相串连着,故称共质体。
●渗透作⽤:⽔分从⽔势⾼的系统通过半透膜向⽔势低的系统移动的现象。
●根压:由于⽔势梯度引起⽔分进⼊中柱后产⽣的压⼒。
●蒸腾作⽤:指⽔分以⽓体状态,通过植物体的表⾯(主要是叶⼦),从体内散失到体外的现象。
●蒸腾速率:植物在⼀定时间内单位叶⾯积蒸腾的⽔量。
●内聚⼒学说:以⽔分具有较⼤的内聚⼒⾜以抵抗张⼒,保证由叶⾄根⽔柱不断来解释⽔分上升原因的学说。
●⽔分临界期:植物对⽔分不⾜特别敏感的时期。
1.将植物细胞分别放在纯⽔和1mol/L 蔗糖溶液中,细胞的渗透势、压⼒势、⽔势及细胞体积各会发⽣什么变化?答:在纯⽔中,各项指标都增⼤;在蔗糖中,各项指标都降低。
2.从植物⽣理学⾓度,分析农谚“有收⽆收在于⽔”的道理。
答:⽔,孕育了⽣命。
陆⽣植物是由⽔⽣植物进化⽽来的,⽔是植物的⼀个重要的“先天”环境条件。
植物的⼀切正常⽣命活动,只有在⼀定的细胞⽔分含量的状况下才能进⾏,否则,植物的正常⽣命活动就会受阻,甚⾄停⽌。
可以说,没有⽔就没有⽣命。
在农业⽣产上,⽔是决定收成有⽆的重要因素之⼀。
⽔分在植物⽣命活动中的作⽤很⼤,主要表现在4个⽅⾯:⽔分是细胞质的主要成分。
细胞质的含⽔量⼀般在70~90%使细胞质呈溶胶状态,保证了旺盛的代谢作⽤正常进⾏,如根尖、茎尖。
如果含⽔量减少,细胞质便变成凝胶状态,⽣命活动就⼤⼤减弱,如休眠种⼦。
植物生理学:研究植物生命活动规律的科学。
第一章:自由水:距离胶粒较远而可以自由流动的水分。
束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。
水势Ψw:每偏摩尔体积水的化学势,单位Pa。
即水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得的商。
渗透势Ψs:由于溶质颗粒的存在而使水势降低的值。
压力势Ψp:细胞壁阻止原生质体吸水膨胀的力量,是增加水势的值。
重力势Ψg:水分因重力下移而增加水势的值。
衬质势Ψm:细胞内胶体物质的亲水性而引发水势降低的值。
质外体途径:水分通过细胞壁、细胞间隙等没有细胞质的部份移动。
此途径速度快。
跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。
共质体途径:水分通过胞间连丝的吸收。
移动速度较慢。
根压:靠根部水势梯度使水沿导管上升的动力。
伤流:从受伤或折断的植物组织溢出液体的现象。
吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。
蒸腾拉力:植物因蒸腾失水而产生的吸水动力,内聚力学说:这种以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说,称为内聚力学说。
蒸腾作用:水分以气体状态,通过植物体的表面(主如果叶片),从体内散失到体外的现象。
蒸腾速度:植物在一按时间内单位叶面积蒸腾的水量,用g/m2*h表示。
蒸腾比率:植物光合作用产生的干物质与蒸腾失水量的比值,用g.kg-1表示。
蒸腾系数:植物制造1 g干物质所需水分的克数,用g.g-1表示。
水分临界期:植物对水分不足最敏感的时期。
第二章:矿质营养:植物对矿物质的吸收、转运和同化灰分元素:指以氧化物形式存在于灰分中的元素,又叫矿质元素。
大量元素:植物对其需要量相对较大的元素,碳、氢、氧、氮、钾、钙、镁、磷、硫九种。
微量元素:植物需要量极微,稍多即发生迫害的元素,氯、铁、锰、硼、锌、铜、镍、钼八种。
通道运输理论:细胞质膜上有内在蛋白组成的通道,横跨膜的双侧,离子顺着跨膜的电化学势梯度进入细胞。
第一章:植物的水分生理1.水分的存在状态束缚水—被原生质胶体吸附不易流动的水特性:1.不能自由移动,含量变化小,不易散失2.冰点低,不起溶剂作用3.决定原生质胶体稳定性4.与植物抗逆性有关自由水—距离原生质胶粒较远、可自由流动的水。
特性:1.不被吸附或吸附很松,含量变化大2.冰点为零,起溶剂作用3.与代谢强度有关自由水/束缚水:比值大,代谢强、抗性弱;比值小,代谢弱、抗性强2.植物细胞对水的吸收方式:扩散、集流、渗透作用1)、扩散作用—由分子的热运动所造成的物质从浓度高处向浓度低处移动的过程。
特点:简单扩散是物质顺浓度梯度进行,适于短距离运输(胞内跨膜或胞间)2)、集流—指液体中成群的原子或分子在压力梯度下共同移动的现象。
特点:物质顺压力梯度进行,通过膜上的水孔蛋白形成的水通道3)、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
注:渗透作用是物质顺浓度梯度和压力梯度进行3.水势及组成1.Ψw = ψs + ψp + ψm + ψgΨs :渗透势Ψp :压力势Ψm :衬质势Ψg :重力势1)渗透势—在某系统中由于溶质颗粒的存在而使水势降低的值,又叫溶质势(ψπ)。
ψs大小取决于溶质颗粒总数:1 M蔗糖ψs > 1M NaCl ψs (电解质)测定方法:小液流法2)压力势—ψp 〉0,正常情况压力正向作用细胞,增加ψw;ψp〈0,剧烈蒸腾压力负向作用细胞,降低ψw;ψp = 0,质壁分离时,壁对质无压力3)重力势—当水高1米时,重力势是0.01MP,考虑到水在细胞内的小范围水平移动,通常忽略不计。
4)衬质势—由于亲水性物质和毛细管对自由水的束缚而引起的水势降低值,ψm 〈0,降低水势.2.注:亲水物质吸水力:蛋白质〉淀粉〉纤维素*有液泡细胞,原生质几乎已被水饱和,ψm = --0.01 MPa ,忽略不计;Ψg也忽略,水势公式简化为:ψw = ψs+ ψp*没有液泡的分生细胞、风干种子胚细胞:ψw = ψm*初始质壁分离细胞:ψw = ψs*水饱和细胞:ψw = 03.细胞水势与相对体积的关系◆细胞吸水,体积增大、ψsψpψw 增大◆细胞吸水饱和,体积、ψs ψp ψw = 0最大◆细胞失水,体积减小,ψs ψp ψw 减小◆细胞失水达初始质壁分离ψp = 0,ψw = ψs◆细胞继续失水,ψp 可能为负ψw《ψs4.蒸腾作用(气孔运动)小孔扩散律(边缘效应)——气体通过小孔表面的扩散速度不与小孔的面积呈正比,而与小孔的周长呈正比。
第一章植物的水分代谢水分代谢(water metabolism)植物对水分的吸收,水分在植物体内的运输利用以及水分的散失是构成植物水分代谢的不可分割的三个方面。
水分代谢的作用是维持植物体内水分平衡第一节水在植物生命活动中的重要性一、水的理化性质水的很多性质都是由其分子结构决定的。
水分子的结构具有如下特点:1. 水分子有很强的极性.2. 水分子之间通过氢键形成很强的内聚力3.水极容易与其它极性分子结合.一、水的理化性质(一)在生理温度下是液体由于水分子有很强的分子间力(氢键的作用), 所以, 虽然分子很小(分子量18), 但在生理温度下是液体. 这对于生命非常重要.(二)高比热因为需要很高的能量来破坏氢键,所以,水的比热很高。
由于植物体含有大量的水分,所以当环境温度变化较大,植物体吸收或散失较多热能时,植物仍能维持相当恒定的体温(三)高气化热这同样是由于水分之间的氢键造成的,破坏氢键需要很高的能量。
在炎热的夏天植物通过蒸腾作用散失水分,可以降低体温。
(四)高内聚力、粘附力和表面张力由于水分子间有很强的内聚力可以使木质部导管的水柱在受到很大张力的条件下不致于断裂,保证水分能运到很高的植株顶部。
水分子间的亲和力还导致水有很高的表面张力。
(五)水是很好的溶剂由于水分子的极性,它是电解质和极性分子如糖、蛋白质和氨基酸等强有力的溶剂水分子在细胞壁和细胞膜表面形成水膜,保护分子的结构。
水是代谢反应的参与者(水解、光合等)。
水作为许多反应的介质和溶剂,同时由于水的惰性不会轻易干扰其它代谢反应(二)水分在植物体内的存在状态1. 束缚水与自由水束缚水(bound water):靠近胶粒并被紧密吸附而不易流动的水分,叫做束缚水自由水(free water):距胶粒较远,能自由移动的水分叫自由水。
自由水、束缚水与代谢的关系:自由水参与各种代谢活动,其数量的多少直接影响植物代谢强度,自由水含量越高,植物的代谢越旺盛。
束缚水不参与代谢活动,束缚水含量越高,植物代谢活动越弱,越冬植物的休眠芽和干燥种子里所含的水基本上是束缚水,这时植物以微弱的代谢活动渡过不良的环境条件。
水分代谢(w a t e r m e t a b o l i s m):植物对水分的吸收、
运输、利用和散失的过程。
第一节植物对水分的需要
一、植物的含水量
二、植物体内水分存在的状态
三、水分在植物生命活动中的作用
一、植物的含水量
三、水在植物生命活动中的作用
1.水分是细胞质的主要成分;
2.水分是代谢作用过程的反应物质;
3.水分是植物对物质吸收和运输的溶剂;
4.水分能维持植物的固有姿态;
一、扩散(d i f f u s i o n)
是一种自发过程,指由于分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩散是顺着浓度梯度进行的。
适合于水分的短距离迁徙,不适合长距离迁徙。
二、集流(m a s s f l o w)
是指液体中成群的原子或分子在压力梯度下共同移动;
可以远距离运输,与溶质浓度梯度无关;
通过膜上的水孔蛋白(a q u a p o r i n)形成的水通道(w a t e r c h a n n a l)进行。
水孔蛋白(a q u a p o r i n):
水通道蛋白(蛋白质性质的跨膜水通道);
存在于细菌、酵母、动物和植物中;
有3种:
质膜上的质膜内在蛋白(p l a s m a m e m b r a n e i n t r i n s i c p r o t e i n)
液泡膜上的液泡膜内在蛋白(t o n o p l a s t i n t r i n s i c p r o t e i n)
根瘤共生膜上的内在蛋白(n o d u l i n-l i k e i n t r i n s i c p r o t e i n)
功能:调节细胞中水分的快速流动
三、渗透作用(o s m o s i s)
(一)自由能和水势
(二)渗透现象
(三)植物细胞可以构成一个渗透系统
(四)细胞的水势
(五)细胞间的水分移动
(一)自由能和水势
水势(w a t e r p o t e n t i a l):
每偏摩尔体积水的化学势差。
即水溶液的化学势(μw)与纯水(μ0w)的化学势之差,除以水的偏摩尔体积(V w)所得的商。
水势的单位:P a
纯水的水势最高,定为0,其它溶液的水势为负值。
(三)植物细胞可以构成一个渗透系统
成熟细胞的原生质层(原生质膜、原生质和液泡膜)相当于半透膜。
液泡液、原生质层和细胞外液构成了一个渗透系统。
植物细胞的水分得失
将一个细胞(Ψw)放在一溶液中(Ψw′):
①Ψw<Ψw′
细胞吸水;
②Ψw>Ψw′
细胞失水;
③Ψw=Ψw′
水分进出达动态平衡。
水分在植物体内的运输:
径向运输(radial transport)——根系吸水
轴向运输(axial transport)——水分向上运输
一、根系吸水
(一)根系吸水的部位
(二)根系吸水的途径
(三)根系吸水的动力
(四)影响根系吸水的土壤条件
(一)根系吸水的部位
吸水的主要器官是根系;
根吸水的主要部位是根尖;
根尖吸水最活跃的部位是根毛区。
(二)根系吸水的途径
(三)根系吸水的动力
2、蒸腾拉力(t r a n s p i r a t i o n a l p u l l)
由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。
被动吸水,在正常蒸腾的情况下,植物吸收水分主要靠蒸腾拉力。
二、水分向上运输
(一)水分在木质部运输的速度
(二)水分沿导管或管胞上升的动力
(一)水分在木质部运输的速度
3~45cm· h-1
环孔材:20~40cm · h-1
散孔材:1~6cm · h-1
裸子植物:<0.6cm · h-1
(二)水分沿导管或管胞上升的动力
水分上升的动力:根压和蒸腾拉力(高大乔木)
水分上升的原因:
(1)水分子间有较大的内聚力(20 MPa)
(2)水柱有张力(0.5~3MPa)
内聚力>张力
内聚力学说(cohesion theory)蒸腾—内聚力—张力学说
(tranpiration-cohesion-tension theory)
水分子具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释上升原因的学说。
争论:
是否有活细胞参与
空穴化(cavitation)、栓塞(emobotiom)
(一)蒸腾作用的生理意义
淀粉-糖互变学说
(s t a r c h-s u g a r i n t e r c o n v e r s i o n t h e o r y)
钾离子吸收学说
(p o t a s s i u m i o n u p t a k e t h e o r y)
苹果酸生成学说
(m a l a t e p r o d u c t i o n t h e o r y)
淀粉-糖互变学说
•白天
•蔗糖是气孔运动的调节物质之一。
钾离子吸收学说、苹果酸生成学说
第五节合理灌溉的生理基础
水分平衡(w a t e r b a l a n c e)
指植物吸水量足以补偿蒸腾失水量的状态。
合理灌溉
完熟期
三、节水灌溉的方法
(一)喷灌(s p r i n k l i n g i r r i g a t i o n)
(二)滴灌(d r o p i r r i g a t i o n)
(三)调亏灌溉(r e g u l a t e d d e f i c i t i r r i g a t i o n,R D I)(四)控制性分根交替灌溉(c o n t r o l r o o t-s p l i t e d a l t e r n a t i v e
i r r i g a t i o n,C R A I)
四、合理灌溉增产的原因
●可改善各种生理作用,特别是光合作用;
●能改变栽培环境的土壤条件和气候条件(满足生态需水);
●防止土壤干旱(满足生理需水)。