TL494做的DC-DC电路,波形,带负载问题?
- 格式:doc
- 大小:732.00 KB
- 文档页数:4
TL494是什么芯片?TL494工作原理及典型电路,十分钟带你快速搞懂TL494今天讲的是TL494,主要分为以下几个方面:1. TL494是什么?2. TL494引脚图3. TL494主要特征4. TL494内部结构5. TL494工作原理6. TL494典型电路7. 总结1. TL494是什么?TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于桥式单端正激双管式、半、全桥式开关电源。
TL494器件集成了在单个芯片上构建脉冲宽度调制(PWM)控制电路所需的所有功能。
该器件主要设计用于电源控制,可灵活地为特定应用定制电源控制电路。
图 1 TL494 PWM控制芯片2. TL494引脚图图 2 TL494引脚图1脚/同相输入:误差放大器1同相输入端。
2脚/反相输入:误差放大器1反相输入端。
3脚/补偿/PWM比较输入:接RC网络,以提高稳定性。
4脚/死区时间控制:输入0-4VDC电压,控制占空比在0-45%之间变化。
同时该因脚也可以作为软启动端,使脉宽在启动时逐步上升到预定值。
5脚/CT:振荡器外接定时电阻。
6脚/RT:振荡器外接定时电容。
振荡频率:f=1/RTCT。
7脚/GND:电源地。
8脚/C1:输出1集电极。
9脚/E1:输出1发射极。
10脚/E2:输出2发射极。
11脚/C2:输出2集电极。
12脚/Vcc:芯片电源正。
7-40VDC。
13脚/输出控制:输出方式控制,该脚接地时,两个输出同步,用于驱动单端电路。
接高电平时,两个输出管交替导通,可以用于驱动桥式、推挽式电路的两个开关管。
14脚/VREF:5VDC电压基准输出。
15脚/反相输入:误差放大器2反相输入端。
16脚/同相输入:误差放大器2同相输入端。
3. TL494主要特征(1)具有两个完整的脉宽调制控制电路,是PWM芯片;(2)两个误差放大器。
一个用于反馈控制,一个定义为过流保护等保护控制;(3)带5VDC基准电源;(4)死区时间可以调节;(5)输出级电流500mA;(6)输出控制可以用于推挽、半桥或单端控制;(7)具有欠压封锁功能。
TL494正弦波逆变电源设计————————————————————————————————作者:————————————————————————————————日期:21. TL494正弦波逆变电源设计1.1 概述:TL494本身就是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管室、半桥式、全桥式开关电源.TL494有SO—16和PDIP—16两种封装形式,以适应不同场合的要求。
次课程设计我所设计的是TL494正弦波逆变电路,其电路的主要功能是:1)逆变就是将直流变为交流.由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM 波,经过驱动电路逆变电路,再经过高频变压器与滤波电路输出50Hz的正弦波。
2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。
控制电路主要环节:正弦信号发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。
3)功率变换电路中的高频开关器件采用IGBT或MOSFET. 4)系统具有完善的保护这是本次课程设计中要设计的电路的概况,其实总的来说用TL494为主要元件实现的正弦波逆变电路控制器具有构思新颖、电路简单、成本低廉以及控制过程稳定等特点,在很多工业控制场合可获得广泛的应用。
~ - 1 - ~1。
2 系统总体方案的确定:通过对设计内容和设计要求的具体分析,我把电路分别设计成两部分:一是主电路,即是采用高频逆变电路和高频变压器的组合来实现,其中的滤波电路则是采用的线路滤波的方式,高频逆变电路由于其要求的特殊性我采用了电压型半桥逆变电路和高频开关IGBT相连接的方法,并且和高频变压器的组合可以高效的实现直流电向交流电的逆变过程。
第二部分控制电路,当然是采用集成芯片TL494来实现,主要原因在于主电路的电流逆变过程中控制电路各单元的复杂性,而TL494本身包含了开关电路控制所需的全部功能和全部脉宽调制电路,同时片内置有线性误差放大器和其他驱动电路等,因此便可以同时实现:正弦信号发生单元、脉宽调制PWM单元、电压电流检测单元和驱动电路单元。
TL494充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。
现以佳腾牌充电器为例,介绍其原理和故障检修方法。
一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。
整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。
1.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。
TL494是PWM开关电源集成电路。
引脚功能和内部框图如图2所示。
IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。
第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。
第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。
第4脚为死区电压控制端,该脚电压决定死区时间。
电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。
凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。
图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。
第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。
+44V充电电压经R28、R27和R26 分压反馈至第1脚。
C15是软启动电容。
第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。
第1脚电压越高,输出脉宽越窄,充电电压越低;反之脉宽增宽,充电电压升高。
从而实现+44V充电电压的目的。
Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。
R29是脚充电电流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。
电力电子技术课程设计报告设计课题:基于TL494的脉宽调制电路应用专业班级:学生学号:学生姓名:指导老师:漳州师范学院物理与电子信息工程系目录一、设计任务要求 (3)二、设计方案分析 (3)2.1、DC-DC升压变换器的工作原理 (4)2.2、DC-DC升压变换器输入、输出电压的关系 (5)2.3、DC-DC变换器稳压原理 (6)2.4、集成脉宽调制控制器TL494介绍 (6)三、主要单元电路设计 (8)3.1、DC-DC升压变换器主回路设计 (8)3.2、DC-DC变换器控制电路设计 (10)四、系统安装与调试 (12)五、总结 (12)六、附录 (13)基于TL494的DC-DC升压稳压变换器设计一、设计任务要求基于TL494设计一个将12V升高到24V的DC-DC变换器。
在电阻负载下,要求如下:1、输出电压U0=24V。
2、最大输出电流I0max=1A。
3、当输入UI=11~13V变化时,电压调整率SV≤2%(在I0=1A时)。
4、当I0从0变化到1A时,负载调整率SI≤5%(在UI=12V时)。
5、要求该变换器的在满载时的效率η≥70%。
6、输出噪声纹波电压峰-峰值U0PP≤1V(在UI=12V,U0=24V,I0=1A条件下)。
7、要求该变换器具有过流保护功能,动作电流设定在1.2A。
二、设计方案分析2.1、DC-DC升压变换器的工作原理DC-DC功率变换器的种类很多。
按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。
非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。
下面主要讨论非隔离型升压式DC-DC变换器的工作原理。
图1(a)是升压式DC-DC变换器的主电路,它主要由功率开关管VT、储能电感L、滤波电容C和续流二极管VD组成。
电路的工作原理是,当控制信号Vi 为高电平时,开关管VT 导通,能量从输入电源流入,储存于电感L 中,由于VT 导通时其饱和压降很小,所以二极管D 反偏而截止,此时存储在滤波电容C 中的能量释放给负载。
tl494电源工作原理TL494是一种常用的开关电源集成芯片,广泛应用于各种直流电源中。
它具有较高的转换效率、较低的功耗和噪声、易于控制等优点。
本篇文章将介绍TL494电源芯片的工作原理、内部结构、外部电路以及应用和注意事项。
一、工作原理TL494芯片是一种可调频的DC-DC转换器,其工作原理是将输入的交流电压通过变压、整流和滤波电路转换为直流电压,并通过控制电路进行调节和控制。
1. 输入与输出TL494芯片的输入为交流电源,输出为稳定的直流电压。
输入电压经过变压和整流后,通过滤波电路输出纹波较小的直流电压,即为芯片的输出电压。
2. 内部结构TL494芯片主要由三个部分组成:控制电路、驱动电路和开关管。
控制电路负责调节输出电压和频率,驱动电路将控制信号放大,驱动开关管进行开关动作,从而调节输出电压。
3. 工作过程TL494芯片的工作过程可以分为三个阶段:启动阶段、稳压阶段和停机阶段。
在启动阶段,芯片通过自举电路启动;在稳压阶段,控制电路通过检测输出电压,调节开关管的开关频率,保持输出电压稳定;在停机阶段,开关管关闭,芯片进入待机状态。
二、内部结构图与外部电路1. 内部结构图TL494芯片的内部结构图如图1所示。
控制电路、驱动电路和开关管集成在芯片内部,外部需要通过连接线进行连接。
2. 外部电路TL494芯片的外部电路包括输入滤波电路、反馈电路、驱动电路和控制电路板等。
输入滤波电路用于抑制交流电源的干扰;反馈电路用于检测输出电压,并将其反馈给控制电路;驱动电路将控制信号放大,驱动开关管进行开关动作;控制电路板则负责调节输出电压和频率。
三、应用与注意事项1. 应用TL494芯片广泛应用于各种直流电源中,如充电器、适配器、电源模块等。
它可以通过调节开关管的开关频率和占空比,实现输出电压的调节和控制。
2. 注意事项在使用TL494芯片时,需要注意以下几点:(1)选择合适的滤波电容和电感,以抑制输出纹波和提高输出稳定性;(2)确保输入电源的稳定性,避免电压波动和干扰;(3)正确连接芯片的外部电路和组件,确保电路的正确匹配和稳定工作;(4)注意控制电路的电压和电流限制,避免过载和短路;(5)定期检查和控制电路的参数和性能,确保电源的正常工作。
基于TL494的DC-DC开关电源设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。
近年来 ,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。
该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。
开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。
本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计小汽车中的音响供电电源,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
关键词:IGBT,PWM,推挽电路,半桥电路,单端正激BASED ON THE DC-DC TL494 SWITCHING POWER SUPPLYABSTRACTWith the rapid development of electronic technology, electronic systems, more and more extensive applications, the types of electronic equipment, more and more electronic equipment and people work and live closer and closer. In recent years, with the power electronic devices (such as IGBT, MOSFET), PWM switching power supply technology and development of the theory, a new generation of power began to gradually replace the traditional power supply circuits. The circuit is small, flexible to control the output characteristics of a good, ripple, load adjustment rate and so on.Switching power supply in the power adjustment control work in the off state, with low power consumption, high efficiency, wide voltage range, low temperature rise, and other outstanding advantages of small size, the communication equipment, CNC equipment, Instrumentation, video audio, home appliances so widely used in electronic circuits. High frequency converter switching power supply so many forms of commonly used with push-pull converter, full bridge, half bridge, single-ended forward and the form of single-ended flyback. In this thesis, two-side driver IC - TL494 PWM pulse output of the controller design car audio power supply in use as a switch MOSFET, can improve the efficiency of the power transformer, is conducive to impulse noise suppression, but also can reduce the size of the power transformer.KEY WORDS: IGBT,MOSFET,Push-pull circuit,Half bridge circuit, Single-ended forward目录前言 (1)第1章开关电源基础技术 (6)1.1 开关电源概述 (6)1.1.1 开关电源的工作原理 (6)1.1.2 开关电源的组成 (7)1.1.3 开关电源的特点 (7)1.2 电源电路组成 (8)1.3开关电源典型结构 (5)1.3.1串联开关电源结构 (5)1.3.2并联开关电源结构 (5)1.4 电力场效应晶体管MOSFET (11)1.5 开关电源的技术指标 (8)第2章开关变换电路 (10)2.1 推挽开关变换电路 (10)2.1.1 推挽开关变换基本电路 (14)2.1.2 自激推挽式变换器 (15)2.2 半桥变换电路 (18)2.3 正激变换电路 (19)2.4 DC/DC升压模块设计 (20)第3章双端驱动集成电路TL494 (19)3.1 TL494简介 (19)3.2 TL494的工作原理 (20)3.3 TL494内部电路 (240)3.4 TL494构成的PWM控制器电路 (22)第4章 TL494 在汽车音响供电电源中的应用 (28)4.1 汽车音响电源简述 (28)4.2 汽车音响供电电源的组成 (30)4.2.1 TL494的辅助电路设计 (30)4.2.2 主电路的设计 (32)结论 (29)谢辞 (30)参考文献 (35)附录 (36)外文资料翻译 (37)前言电源是实现电能变换和功率传递的主要设备、在信息时代,农业、能源、交通运输、信息、国防教育等领域的迅猛发展,对电源产业提出了更多、更高的要求,如:节能、节电、节材、缩体、减重、环保、可靠、安全等。
基于TL494的双向Buck-Boost BDC高效开关电源设计黄仲平;徐航;沈烨【摘要】该文双向DC-DC变换器(BDC)的设计由PWM控制、驱动、功率变换及测控4大部分组成.PWM控制以TL494为控制核心,闭环调节电路占空比;PWM驱动由IR2111构成,驱动同步整流电路的开关管;功率变换采用同步整流电路为功率变换拓扑,实现DC-DC双向高效功率变换;测控电路以MSP430单片机为控制器,结合电流、电压采样电路,控制电路输出参数并显示.系统具有过流、过压保护功能,并能通过MSP430单片机实现高精度的程控.测试结果表明,采用同步整流电路能较好完成DC-DC功率双向变换,双向功率变换效率均达到95%以上,同时还具有很强的抗扰动能力.【期刊名称】《实验科学与技术》【年(卷),期】2017(015)001【总页数】5页(P12-16)【关键词】双向DC-DC变换器;TL494;IR2111;MSP430单片机【作者】黄仲平;徐航;沈烨【作者单位】四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065【正文语种】中文【中图分类】TN702开关电源一般由脉冲宽度调制(pulse width modulation, PWM)控制IC和MOSFET构成,具有效率高、体积小、质量轻以及功耗小等特点,尤其是电源效率一般都超过了80,比传统的线性电源提高近一倍[1-3]。
随着自动化产业的发展,开关电源技术也得到了不断地提高,应用领域也逐渐扩大[4]。
不仅包括仪器仪表、测控系统以及计算机内部各供电系统,也适应各种消费类电子产品。
开关电源逐步取代了传统的线性电源成为主流的电源产品,并且不断地向集成化、智能化、模块化发展[5]。
在一个直流供电系统中,并不局限于单一的“充电”或者“放电”模式,往往需要能量的双向流动。
如电动汽车中的燃料电池,给汽车运动系统提供电能的同时从压缩机处吸收能量,只有吸收的能量大于等于提供的能量汽车才能正常运行[6-7];太阳能电池阵也是如此,航天器外围的太阳能板是一个双向DC-DC变换器,即可以为航天器时刻提供工作电压,也需要不断吸收太阳能[8];不停电(UPS)系统中的放电单元和充电单元也可以理解为双向boost-buck电源[9]。
对工程施工提出合理化建议工程施工合理化建议篇一所谓“工程”,是科学的某种应用,通过这一应用,使自然界的物质和能源的特性能够通过各种结构、机器、产品、系统和过程,是以最短的时间和精而少的人力做出高效、可靠且对人类有用的东西。
顾名思义,在一定的资源条件下实现工程项目的技术经济效益,达到施工效益与经济效益双赢才是做工程的最终目的。
为了达到这个目的,工程管理的合理化设计在整个工程项目中占据了举足轻重的地位:一、在施工过程中,工程技术人员缺乏技术理论基础和具体施工经验的情况很严重,技术指导书只是对技术范围空洞叙述,而未对具体工程的特点进行有针对性的规范和讲解,没有起到指导施工作用。
针对这种现状,公司必须培养工程技术人员用“心”做工程,责任心居首。
并树立“现场为主,理论为辅”的工程理念。
对于工程技术人员的培训必须全面,特殊工程必须有针对性。
二、古语云:粮草未到,兵马先行。
工程技术人员在前线奋斗,后勤人员的工作就是及时的为他们输送“弹药”。
在工作中我发现了不少技术人员干着干着没钱用或者干着干着没设备装的情况。
这说明前后方的衔接与沟通不够,应该加强力度。
不能感觉自己不在其位,则不需要谋其政。
三、安全问题永远是我们总是挂在嘴边,又不去重视的一个问题。
公司政策下来了,却很少有人实施。
这种行为是把自己的生命当儿戏的行为。
安全第一的思想必须深深的在工程技术人员的脑海里面扎根。
对于不听指挥的,该罚就罚绝不手软。
四、公司员工对公司设备所存在的缺陷以及工程遗留问题反馈的信息过少。
电子设备无论是硬件还是软件的完善过程都是一个不断发现缺陷不断补充自己的过程,软件工程师编写出来的程序,应用的最多的是我们的工程技术人员,最能发现美中不足的也是我们的工程技术人员,所以这就要求我们的工程技术人员要把这些信息反馈给公司,让我们的产品更趋于完善。
不存在问题的工程是假的,我们必须正视存在的问题,不能逃避,不能有投机取巧的心里。
公司需要建立完善的信息反馈体系,发现问题,想办法解决问题,这才会使蓝盾公司不断强大。
电力电子技术课程设计报告设计课题:基于TL494的脉宽调制电路应用专业班级:学生学号:学生姓名:指导老师:师学院物理与电子信息工程系目录一、设计任务要求 (3)二、设计方案分析 (3)2.1、DC-DC升压变换器的工作原理 (4)2.2、DC-DC升压变换器输入、输出电压的关系 (5)2.3、DC-DC变换器稳压原理 (6)2.4、集成脉宽调制控制器TL494介绍 (6)三、主要单元电路设计 (8)3.1、DC-DC升压变换器主回路设计 (8)3.2、DC-DC变换器控制电路设计 (10)四、系统安装与调试 (12)五、总结 (12)六、附录 (13)基于TL494的DC-DC升压稳压变换器设计一、设计任务要求基于TL494设计一个将12V升高到24V的DC-DC变换器。
在电阻负载下,要求如下:1、输出电压U0=24V。
2、最大输出电流I0max=1A。
3、当输入UI=11~13V变化时,电压调整率SV≤2%(在I0=1A时)。
4、当I0从0变化到1A时,负载调整率SI≤5%(在UI=12V时)。
5、要求该变换器的在满载时的效率η≥70%。
6、输出噪声纹波电压峰-峰值U0PP≤1V(在UI=12V,U0=24V,I0=1A 条件下)。
7、要求该变换器具有过流保护功能,动作电流设定在1.2A。
二、设计方案分析2.1、DC-DC升压变换器的工作原理DC-DC功率变换器的种类很多。
按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。
非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。
下面主要讨论非隔离型升压式DC-DC变换器的工作原理。
图1(a)是升压式DC-DC变换器的主电路,它主要由功率开关管VT、储能电感L、滤波电容C和续流二极管VD组成。
电路的工作原理是,当控制信号Vi 为高电平时,开关管VT 导通,能量从输入电源流入,储存于电感L 中,由于VT 导通时其饱和压降很小,所以二极管D 反偏而截止,此时存储在滤波电容C 中的能量释放给负载。
一种基于TL494Boost型DC_DC电源设计收稿日期:2009203223作者简介:江超(19882),男,湖北京山人,武汉大学电子信息学院本科生,主要研究方向通信工程。
文章编号:100923664(2009)0420039203设计应用一种基于T L 494Boost 型DC 2DC 电源设计江超,闻长远,王雨曦,高翔(武汉大学电子信息学院,湖北武汉430079)摘要:利用单片机MSP 430F 449,以电压型PWM 控制器TL 494为核心,设计了一种Boost 型稳压输出开关电源。
该系统电路结构简单,直流输出电压可调范围为30~36V ,效率高达90%,具有过流、过压保护并可实时显示输出电压与电流值。
文中给出了详细设计思路和器件参数计算过程,并进行了实验验证。
关键词:DC 2DC 变换;TL 494;Boost ;高效率中图分类号:TN 86文献标识码:ADesign of a Boo st 2Type DC 2DC Power Supply Based on TL 494J IAN G Chao ,WEN Chang 2yuan ,WAN G Yu 2xi ,GAO Xiang (School of Electronic Information ,Wuhan University ,Wuhan 430079,China )Abstract :Using single 2chip MSP 430F 449,a Boost 2type switching mode power supply is designed based on PWM con 2troller TL 494.The circuit structure of this system is simple and with over 2current ,over 2voltage protection.The DC output voltage ranges f rom 30V to 36V and the efficiency can be up to 90%.Also this circuit can display output voltage and cur 2rent values.In this paper ,the design and parameters calculation procedure are given in detail and the design is testified byexperiment.Key words :DC 2DC conversion ;TL 494;boost ;high efficiency0 引言在电子电力技术日新月异的今天,对器件的供电电源要求越来越苛刻。
返回列表
查看:1786|回复:
13TL494做的DC-DC电路,波形,带负载问题?[复制链接]此帖已结(10)
lq349218775
本帖最后由
我做的这个DC-DC升压电路,已经实现的功能是,当输入电压在5V~15V变化时,空载时输出100V稳定(变化范围小于2V)。
有个问题是,当输入小于8V时,TL494输出的两个PWM波(用于驱动MOS管)波形很好。
5V~8V时随着输入电压的升高,占空比越来越小,(正常现象)。
可是输入电压一到8V,PWM波便开始抖动。
波形变差。
且变压器开始哮叫。
我的想法是,因为随着输入电压的升高,PWM波的幅值将升高。
但要维持输出不变,PWM波占空比不断减小。
因为开关管等元件的限制,PWM波的高电平已经无法再变得更窄了。
从而使波形抖动。
我是这样分析的,不知道是不是这样?还请大家看一看,帮助我解决这个问题。
lq349218775
lq349218775
lq349218775
lipolly
Siderlee maychang
maychang
lq349218775
8#maychang
嗯。
maychang大叔。
贴子沉了这么久,没想到还有朋友来解答。
图中的错误,实际电路中已经改正。
贴子中的结果是错误改正之后的。
3年。
评分举报
9#maychang
“你所听到的变压器“哮叫”就是这个“打嗝”频率的声音”
我也是这样想的啊。
而且我发现“打嗝”的频率还非常固定(如最后一幅图)。
打嗝的频率差不多为原来频率(46.5KHZ)的1/3。
所以属于人耳能分辨的频率范围。
于是听到打嗝声。
3年。
评分举报
11楼:
从原帖最后一图看,确实是三个脉冲一组。