最新4-4-1-圆与扇形(一).教师版
- 格式:doc
- 大小:1.01 MB
- 文档页数:13
圆与扇形精选题【例 1】 图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?【解析】 如下图所示:可以将每个圆内的阴影部分拼成一个正方形,每个正方形的面积为11240.542⨯÷⨯=⨯=()(平方厘米),所以阴影部分的总面积为248⨯=(平方厘米).【巩固】如图所示,四个全等的圆每个半径均为2m ,阴影部分的面积是 .或【解析】 我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于222216m ⨯=()().【例 2】 如图中三个圆的半径都是5cm ,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)【解析】 将原图割补成如图,阴影部分正好是一个半圆,面积为255 3.14239.25(cm )⨯⨯÷=【巩固】如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,221π2S r r =-,所以()12: 3.142:257:100S S =-=.移动图形是解这种题目的最好方法,一定要找出图形之间的关系. 【例 3】 请计算图中阴影部分的面积.【解析】 法一:为了求得阴影部分的面积,可以从下图的整体面积中扣掉一个圆的面积,就是要求的面积了.=-要扣掉圆的面积,如果按照下图把圆切成两半后,从两端去扣掉也是一样.如此一来,就会出现一个长方形的面积.O半圆半圆103-=因此,所求的面积为210330cm ⨯=(). 【例 4】 求如图中阴影部分的面积.(圆周率取3.14)44【解析】 可将左下橄榄型的阴影部分剖开,两部分分别顺逆时针90︒,则阴影部分转化为四分之一圆减去一个等腰直角三角形,所以阴影部分的面积为211π444 4.5642⨯⨯-⨯⨯=.【巩固】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227.【解析】 原题图中的左边部分可以割补至如右上图位置,这样只用先求出四分之一大圆的面积,再减去其内的等腰直角三角形面积即为所求.因为四分之一大圆的半径为7,所以其面积为:2211227π738.5447⨯⨯≈⨯⨯=.四分之一大圆内的等腰直角三角形ABC 的面积为17724.52⨯⨯=,所以阴影部分的面积为38.524.514-=. 【例 5】 (华校2005~2006年度第一学期期中测试第6题)大圆半径为R ,小圆半径为r ,两个同心圆构成一个环形.以圆心O 为顶点,半径R 为边长作一个正方形:再以O 为顶点,以r 为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【解析】 环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r -=平方厘米,那么环形的面积为:2222πππ()π50=157R r R r -=-=⨯(平方厘米).【巩固】图中阴影部分的面积是225cm ,求圆环的面积.【解析】 设大圆半径为R ,小圆半径为r ,依题有222522R r -=,即2250R r -=.则圆环面积为:22222πππ()50π157(cm )R r R r -=-==.【例 6】 (2008年101中学考题)已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a ,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与正方形的面积之比为:22π:π:2r a =,所以大圆面积为:202π10π÷⨯=;小圆的面积与正方形的面积之比为:22π():π:42aa =,所以小圆的面积为:204π5π÷⨯=;两个圆的面积之和为:10π5π15π15 3.1447.1+==⨯=(平方厘米).【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a ,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a a r r ===, 即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米).【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面积为212a .【例 1】 如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【解析】 方法一:设小正方形的边长为a ,则三角形ABF 与梯形ABCD 的面积均为()122a a +⨯÷.阴影部分为:大正方形+梯形-三角形ABF -右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=. 方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=; 则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF .则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【例 2】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)DD【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD ∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和.ABP ∆的面积为:()10102225⨯÷÷=;弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【例 3】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)A【解析】 连接小正方形AC ,有图可见ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯ ∴232AC =同理272CE =,∴48AC CE ⨯= ∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△ ∴2412.56828.56S =+-=阴影【例 4】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBADCBA【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形 21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)DBADB【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积. 解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分. 则阴影部分的面积为=21π44482⋅⋅-⨯=; 解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积, 所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【例 5】 (2008年四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ).【例 6】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)A【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键.我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米), 再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积, 则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【巩固】求图中阴影部分的面积.【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=.【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)C【解析】 观察可知阴影部分是被以AD 为半径的扇形、以AB 为直径的半圆形和对角线BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,我们发现如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,我们再观察可以发现左下边空白部分的面积就等于三角形ABD 的面积减去扇形ADE 的面积,那么我们的思路就很清楚了.因为45ADB ∠=︒,所以扇形ADE 的面积为:224545π 3.1459.8125360360AD ⨯⨯=⨯⨯=(平方厘米), 那么左下边空白的面积为:1559.8125 2.68752⨯⨯-=(平方厘米),又因为半圆面积为:215π9.812522⎛⎫⨯⨯= ⎪⎝⎭(平方厘米),所以阴影部分面积为:9.8125 2.68757.125-=(平方厘米).【例 7】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【解析】 由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差. 由于半圆的面积为62.8平方厘米,所以262.8 3.1420OA =÷=. 因此:22210AOB S OA OB OA =⨯÷=÷=△(平方厘米). 由于AOB ∆是等腰直角三角形,所以220240AB =⨯=. 因此:扇形ABC 的面积24545ππ4015.7360360AB =⨯⨯=⨯⨯=(平方厘米). 所以,阴影部分的面积等于:15.710 5.7-=(平方厘米).【例 8】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍. 而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形, 则圆的面积为508400⨯=【例 9】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了. 因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7. 半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15.【巩固】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IABCI【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC 面积圆与扇形精选题11 减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ), BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=. 有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【例 10】 如图,求阴影部分的面积.(π取3)43【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅ =6【例 11】 (2009年十三分入学测试题)图中的长方形的长与宽的比为8:3,求阴影部分的面积.204【解析】 如下图,设半圆的圆心为O ,连接OC .。
第四章 圆和扇形4.1圆的周长 重要概念:1.周长公式 C=πd=2πr ,其中π是一个无限不循环小数,通常取π=3.14 2.会根据题意,有其中2个量求第三个量的值 运用巩固:1.小杰骑的自行车的车轮外直径是76厘米,车轮每分钟在地上滚动100圈,小杰从他家出发骑车到学校一共用了5分钟.小杰的家到学校的路程约是多少千米?2:在“太极图”中,大圆的直径cm AB 10 .求其中阴影部分的周长. 4.2弧长 重要概念:1.如图,圆上A 、B 两点间的部分就是弧,记作 读作弧AB ,∠AOB 称为圆心角 2. 圆心角所对的弧长是圆周长的3.设圆的半径为r , 圆心角所对的弧长是 ,弧长公式:l = 180nπ运用巩固:1:一段圆弧所在圆的半径是60厘米,这条弧所对的圆心角是120°,求该圆弧的弧长.ABO BA2:如图,三角形ABC 的三条边长都是27毫米,分别以A,B,C 三点为圆心,27毫米为半径画弧,求这三条弧长的和.4.3圆的面积 重点概述:1.圆的面积 S=π2r2.环形的面积=大圆的面积-小圆的面积 S=π( 2R -2r ) 运用巩固:1:游乐场大转盘的半径约为50米,它旋转产生的圆面的面积是多少平方米?游客乘坐这个大转盘,旋转一周经过的路线有多长?2:在“太极图”中,cm AO 5=.求其中阴影部分的面积.4.4 扇形的面积 重点概述:1. 扇形面积公式S 扇=360n π2r =12lr 2.要求阴影部分面积,要善于抓住图形间的位置关系和数量关系进行适当的割补 运用巩固:1: 如图;已知扇形AOB 的面积是6.28平方厘米,︒=∠90AOB ,求图中阴影部分的面积.A B BA C。
[冀教版数学六下]冀教版六年级数学上册第1单元圆和扇形教案及反思第一单元圆和扇形一、教学内容说课的内容是小学数学冀教版六年级上册第一单元《圆的认识》的第一课时。
本课是空间与图形领域的内容,它既是一节起始课,同时也是后继学习的内容------圆周长、面积、扇形。
学生对圆并不陌生,但只是直观的认识,本课将进一步认识圆的特征及其内在联系,让学生深切体会圆与我们生活紧密相连。
二、教学目标根据我对教材的理解和学生的认知水平,设计如下教学目标1、知识与技能目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,理解在同一个圆内直径与半径的关系;认识直径和半径的关系,能找出圆的对称轴。
2、过程与方法目标:在观察、操作、交流等活动中,经历认识圆的过程。
3、情感态度与价值观目标:对周围环境中与圆有关的事物有好奇心,发展初步的空间观念。
让学生养成在交流、合作中获1/ 12得新知的习惯。
教学重点:探索出圆各部分的名称、特征及关系。
教学难点:通过动手操作体会圆的特征。
6、教学关键:指导学生正确使用圆规,多进行实际操作练习。
学生分析:在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低;本校处在城乡结合处,家庭辅导能力较低,学生接受能力较差;学生的学习水平差距较大,小组合作意识不强,鉴于以前学习长、正方形等是直线平面图形,而圆是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。
说教法学法:学生的学习过程是一个主动建构的过程,教师要激活学生的先前经验,激发学习热情,让学生在经历、体验和运用中真正感悟知识。
本节课我以学生亲自动手制作车轮为主线,在动手中引导学生认识圆的各部分名称,理解圆的特征,以及教学圆的画法时,有目的、有意识地安排了让学生画一画、指一指、比一比、量一量等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用耳去辨析同学们的答案。
教学中理应发挥学生的主体作用,淡化教师的主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,2/ 12总结规律,从而主动获取知识。
第四章圆和扇形本章知识结构第一节圆的周长和弧长4.1圆的周长圆的周长除以直径的商总是一个固定的数,这个固定数叫圆周率,用π来表示。
π是一个无限不循环小数:π=3.14159265……到定点的距离等于定长的点的集合,是以定点为圆心、定长为半径的圆,圆的周长是指符合上述条件的动点,从起点又返回到起点的路程的长度。
如果用C表示圆周的长度,d表示这个圆的直径,r表示它的半径。
圆的周长为:C=2πr =πd4.2弧长设圆的半径为r,扇形的圆心角是n度,扇形的弧长用L表示。
弧是圆上任意两点间的距离,圆上A、B两点之间的部分就是弧,记作⋂AB ,读作弧AB。
1802360110r r ππ=⨯=圆心角所对的弧长; 18023600rn r n L n ππ=⨯=圆心角所对的弧长。
第二节 圆和扇形的面积4.3圆的面积2r S π=圆的面积4.4扇形的面积由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。
设组成扇形的半径为r ,圆心角为0n ,弧长为l ,扇形的面积:S =360n ×πr 2=21Lr本章最重点内容本章是圆与扇形,掌握圆的周长的计算公式和弧长的概念,会计算圆的面积及扇形的面积,是我们学习的重点。
1.圆的周长公式:r d C ⋅=⋅=ππ2. 2.弧长公式:180360rdl ⋅=⋅=ππ.3.圆的面积公式:2r S ⋅=π 4.扇形面积公式:lr r n S 213602=⋅=π扇. 5.特别地:360n C l =,360n S S =扇,即:SSC l 扇=. 本章错题集【结合个人平时作业具体情况总结、整理、添加】1.如图,一个半径为1厘米的小圆盘沿着一个半径为4厘米的大圆盘外侧做无滑动的滚动。
当小圆盘的中心围绕大圆盘中心转动90度后,小圆盘运动过程中扫过的面积是多少平方厘米?(3π=)【答案】:小圆盘运动过程中扫过的面积由两部分组成,即两半圆加四分之一环形。
2221(64)418S πππ=⨯+⨯-⨯÷=平方厘米。
研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、 跟曲线有关的图形元素: ①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长+360n⨯2⨯半径(易错点是把扇形的周长等同于扇形的弧长)②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、 常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块一 平移、旋转、割补、对称在曲线型面积中的应用例题精讲圆与扇形【例 1】 如图,圆O 的直径AB 与CD 互相垂直,AB =10厘米,以C 为圆心,CA 为半径画弧。
求月牙形ADBEA (阴影部分)的面积。
D【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】华杯赛,决赛,第9题,10分 【解析】 ①月牙形ADBEA (阴影部分)的面积=半圆的面积+△ABC 的面积-扇形CAEBC 的面积②月牙形ADBEA 的面积=211π525π502524⨯⨯+-⨯⨯=(平方厘米),所以月牙形ADBEA 的面积是25平方厘米。
研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、 跟曲线有关的图形元素: ①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图:弯角的面积=正方形-扇形④”谷子”:如图:“谷子”的面积=弓形面积2⨯二、 常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块、曲线型旋转问题【例 1】 正三角形ABC 的边长是6厘米,在一条直线上将它翻滚几次,使A 点再次落在这条直线上,那么A 点在翻滚过程中经过的路线总长度是多少厘米?如果三角形例题精讲圆与扇形面积是15平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留π)【考点】曲线型旋转问题 【难度】3星 【题型】解答 【解析】 如图所示,A 点在翻滚过程中经过的路线为两段120︒的圆弧,所以路线的总长度为:1202π628π360⨯⨯⨯=厘米;三角形在滚动过程中扫过的图形的为两个120︒的扇形加上一个与其相等的正三角形,面积为:2120π621524π15360⨯⨯⨯+=+平方厘米.【答案】24π15+【巩固】直角三角形ABC 放在一条直线上,斜边AC 长20厘米,直角边BC 长10厘米.如下图所示,三角形由位置Ⅰ绕A 点转动,到达位置Ⅱ,此时B ,C 点分别到达1B ,1C 点;再绕1B 点转动,到达位置Ⅲ,此时A ,1C 点分别到达2A ,2C 点.求C 点经1C 到2C 走过的路径的长.60︒30︒B 1C 1C 2A 2CB AⅢⅡⅠ【考点】曲线型旋转问题 【难度】3星 【题型】解答【解析】 由于BC 为AC 的一半,所以30CAB ∠=︒,则弧1CC 为大圆周长的18030536012︒-︒=︒,弧12C C 为小圆周长的14,而112C C CC +即为C 点经1C 到2C 的路径,所以C 点经1C 到2C 走过的路径的长为5150652π202π10π5ππ12433⨯⨯+⨯⨯=+=(厘米).【答案】65π3【巩固】如图,一条直线上放着一个长和宽分别为4cm 和3cm 的长方形Ⅰ.它的对角线长恰好是5cm .让这个长方形绕顶点B 顺时针旋转90°后到达长方形Ⅱ的位置,这样连续做三次,点A 到达点E 的位置.求点A 走过的路程的长.ⅣⅢⅡⅠEDCBA【考点】曲线型旋转问题 【难度】3星 【题型】解答 【解析】 因为长方形旋转了三次,所以A 点在整个运动过程中也走了三段路程(如右上图所示).这三段路程分别是:第1段是弧1AA ,它的长度是12π44⨯⨯⨯(cm );第2段是弧12A A ,它的长度是12π54⨯⨯⨯(cm );第3段是弧2A E ,它的长度是12π34⨯⨯⨯(cm );所以A 点走过的路程长为:1112π42π52π36π444⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=(cm ).【答案】6π【例 2】 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见如图).问:这只羊能够活动的范围有多大?(圆周率取3.14)【考点】曲线型旋转问题 【难度】3星 【题型】解答【解析】 如图所示,羊活动的范围可以分为A ,B ,C 三部分,其中A 是半径30米的34个圆,B ,C 分别是半径为20米和10米的14个圆. 所以羊活动的范围是222311π30π20π10444⨯⨯+⨯⨯+⨯⨯222311π302010444⎛⎫=⨯⨯+⨯+⨯ ⎪⎝⎭2512=.【答案】2512【巩固】一只狗被拴在底座为边长3m 的等边三角形建筑物的墙角上(如图),绳长是4m ,求狗所能到的地方的总面积.(圆周率按3.14计算)3【考点】曲线型旋转问题 【难度】3星 【题型】解答 【解析】 如图所示,羊活动的范围是一个半径4m ,圆心角300°的扇形与两个半径1m ,圆心角120°的扇形之和.所以答案是243.96m .【答案】43.96【例 3】 如图是一个直径为3cm 的半圆,让这个半圆以A 点为轴沿逆时针方向旋转60︒,此时B 点移动到'B 点,求阴影部分的面积.(图中长度单位为cm ,圆周率按3计算).BA【考点】曲线型旋转问题 【难度】3星 【题型】解答 【解析】 面积=圆心角为60︒的扇形面积+半圆-空白部分面积(也是半圆)=圆心角为60︒的扇形面积22603π3π 4.5(cm )3602=⨯⨯==.【答案】4.5【例 4】 如图所示,直角三角形ABC 的斜边AB 长为10厘米,60ABC ∠=︒,此时BC 长5厘米.以点B 为中心,将ABC ∆顺时针旋转120︒,点A 、C 分别到达点E 、D 的位置.求AC 边扫过的图形即图中阴影部分的面积.(π取3)E【考点】曲线型旋转问题 【难度】3星 【题型】解答 【解析】 注意分割、平移、补齐.E DB A如图所示,将图形⑴移补到图形⑵的位置, 因为60EBD ∠=︒,那么120ABE ∠=︒,则阴影部分为一圆环的13.所以阴影部分面积为()221π753AB BC ⨯⨯-=(平方厘米).【答案】75【巩固】如右图,以OA 为斜边的直角三角形的面积是24平方厘米,斜边长10厘米,将它以O 点为中心旋转90︒,问:三角形扫过的面积是多少?(π取3)【考点】曲线型旋转问题 【难度】3星 【题型】解答 【解析】 从图中可以看出,直角三角形扫过的面积就是图中图形的总面积,等于一个三角形的面积与四分之一圆的面积之和.圆的半径就是直角三角形的斜边OA .因此可以求得,三角形扫过的面积为:124π10102425π994+⨯⨯⨯=+=(平方厘米).【答案】99【巩固】(“学而思杯”数学试题)如图,直角三角形ABC 中,B ∠为直角,且2BC =厘米,4AC = 厘米,则在将ABC ∆绕C 点顺时针旋转120︒的过程中,AB 边扫过图形的面积为 .(π 3.14=)C B AB'A'C B A【考点】曲线型旋转问题 【难度】3星 【题型】解答 【解析】 如右上图所示,假设ABC ∆旋转120︒到达''A B C ∆的位置.阴影部分为AB 边扫过的图形.从图中可以看出,阴影部分面积等于整个图形的总面积减去空白部分面积,而整个图形总面积等于扇形'ACA 的面积与ABC ∆的面积之和,空白部分面积等于扇形'BCB 的面积与''A B C ∆的面积,由于ABC ∆的面积与''A B C ∆的面积相等,所以阴影部分的面积等于扇形'ACA 与扇形'BCB 的面积之差,为22120120π4π24π12.56360360⨯⨯-⨯⨯==(平方厘米).【答案】12.56【例 5】 如下图,△ABC 是一个等腰直角三角形,直角边的长度是1米。
研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长+360n⨯2⨯半径(易错点是把扇形的周长等同于扇形的弧长)②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图:弯角的面积=正方形-扇形④”谷子”:如图:“谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块一 平移、旋转、割补、对称在曲线型面积中的应用【例 1】 如图,圆O 的直径AB 与CD 互相垂直,AB =10厘米,以C 为圆心,CA 为半径画弧。
求月牙形ADBEA (阴影部分)的面积。
例题精讲圆与扇形D【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】华杯赛,决赛,第9题,10分 【解析】 ①月牙形ADBEA (阴影部分)的面积=半圆的面积+△ABC 的面积-扇形CAEBC 的面积②月牙形ADBEA 的面积=211π525π502524⨯⨯+-⨯⨯=(平方厘米),所以月牙形ADBEA 的面积是25平方厘米。
【答案】25【例 2】 三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】迎春杯,六年级,初赛,4题【解析】 三个扇形的弧长相当于半径100厘米,圆心角为1800的扇形的弧长,1802 3.14314360⨯⨯=厘米; 【答案】314【例 3】 分别以一个边长为2厘米的等边三角形的三个顶点为圆心,以2厘米为半径画弧,得到右图;那么,阴影图形的周长是_______厘米.(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】迎春杯,六年级,初赛,试题【解析】 每段弧长为16C 圆,所以166C C C =⨯=圆圆阴影C 阴影=6×16C 圆= C 圆,所以12.56C =阴影【答案】12.56【例 4】 下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 割补法.如右图,格线部分的面积是36平方厘米.【答案】36【巩固】下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 割补法.如右图,格线部分的面积是36平方厘米. 【答案】36【例 5】 如图,在18⨯8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【考点】圆与扇形 【难度】3星 【题型】解答【解析】 我们数出阴影部分中完整的小正方形有8+15+15+16=54个,其中部分有6+6+8=20个,部分有6+6+8=20(个),而1个 和1个 正好组成一个完整的小正方形,所以阴影部分共包含54+20=74(个)完整小正方形,而整个方格纸包含8⨯18=144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的74144,即3772.【答案】3772【巩固】在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 矩形纸板共28个小正方格,其中弧线都是14圆周,非阴影部分有3个完整的小正方形,其余部分可拼成6个小正方格.因此阴影部分共28-6-3=19个小正方格.所以,阴影面积占纸板面积的1928. 【答案】1928【例 6】 在一个边长为2厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图中阴影部分的面积为 平方厘米.【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】西城实验 【解析】 采用割补法.如果将阴影半圆中的2个弓形移到下面的等腰直角三角形中,那么就形成两个相同的等腰直角三角形,所以阴影部分的面积等于两个等腰直角三角形的面积和,即正方形面积的一半,所以阴影部分的面积等于21222⨯=平方厘米.【答案】2【巩固】如图,在一个边长为4的正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 阴影部分经过切割平移变成了一个面积为正方形一半的长方形,则阴影部分面积为 4428⨯÷=. 【答案】8【例 7】 如图,正方形边长为1,正方形的4个顶点和4条边分别为4个圆的圆心和半径,求阴影部分面积.(π取3.14)【考点】圆与扇形 【难度】4星 【题型】解答 【关键词】人大附中,分班考试 【解析】 把中间正方形里面的4个小阴影向外平移,得到如右图所示的图形,可见,阴影部分的面积等于四个正方形面积与四个90︒的扇形的面积之和,所以,221444441π14π7.14S S S S S =⨯+⨯=⨯+=⨯+⨯=+=圆阴影圆.【答案】7.14【例 8】 图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 如下图所示:可以将每个圆内的阴影部分拼成一个正方形,每个正方形的面积为11240.542⨯÷⨯=⨯=()(平方厘米),所以阴影部分的总面积为248⨯=(平方厘米).【答案】8【巩固】如图所示,四个全等的圆每个半径均为2m ,阴影部分的面积是 .或【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于222216m ⨯=()().【答案】16【例 9】 如右图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.则花瓣图形的面积是多少平方厘米? (π取3)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 本题直接计算不方便,可以利用分割移动凑成规则图形来求解.如右上图,连接顶角上的4个圆心,可得到一个边长为4的正方形.可以看出,与原图相比,正方形的每一条边上都多了一个半圆,所以可以把原花瓣图形的每个角上分割出一个半圆来补在这些地方,这样得到一个正方形,还剩下4个14圆,合起来恰好是一个圆,所以花瓣图形的面积为224π119+⨯=(平方厘米).【总结】在求不规则图形的面积时,我们一般要对原图进行切割、移动、补齐,使原图变成一个规则的图形,从而利用面积公式进行求解.这个切割、移动、补齐的过程实际上是整个解题过程的关键,我们需要多多练习,这样才能快速找到切割拼补的方法、【答案】19【例 10】 如图中三个圆的半径都是5cm ,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 将原图割补成如图,阴影部分正好是一个半圆,面积为255 3.14239.25(cm )⨯⨯÷= 【答案】39.25【巩固】如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,221π2S r r =-,所以()12: 3.142:257:100S S =-=. 移动图形是解这种题目的最好方法,一定要找出图形之间的关系.【答案】57:100【例 11】 计算图中阴影部分的面积(单位:分米).A A【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 将右边的扇形向左平移,如图所示.两个阴影部分拼成—个直角梯形. ()5105275237.5+⨯÷=÷=(平方分米). 【答案】37.5【巩固】如图,阴影部分的面积是多少?224【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 首先观察阴影部分,我们发现阴影部分形如一个号角,但是我们并没有学习过如何求号角的面积,那么我们要怎么办呢?阴影部分我们找不到出路,那么我们不妨考虑下除了阴影部分之外的部分吧!观察发现,阴影部分左侧是一个扇形,而阴影部分右边的空白部分恰好与左边的扇形构成一个边长为4的正方形,那么阴影部分的面积就等于大的矩形面积减去正方形面积.则阴影部分面积(222)4(22)48++⨯-+⨯=【答案】8【例 12】 请计算图中阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 法一:为了求得阴影部分的面积,可以从下图的整体面积中扣掉一个圆的面积,就是要求的面积了.=-要扣掉圆的面积,如果按照下图把圆切成两半后,从两端去扣掉也是一样.如此一来,就会出现一个长方形的面积.半圆半圆-=因此,所求的面积为210330cm ⨯=(). 法二:由于原来的月牙形很难直接计算,我们可以尝试构造下面的辅助图形:如左上图所示,我们也可以这样来思考,让图形往右侧平移3cm 就会得到右上图中的组合图形,而这个组合图形中右端的月牙形正是我们要求的面积.显然图中右侧延伸出了多少面积,左侧就会缩进多少面积. 因此,所求的面积是210330cm ⨯=(). 【答案】30【例 13】 求图中阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 如图,连接BD ,可知阴影部分的面积与三角形BCD 的面积相等,即为1112123622⨯⨯⨯=.【答案】36【例 14】 求如图中阴影部分的面积.(圆周率取3.14)【考点】圆与扇形 【难度】2星 【题型】解答 【解析】 可将左下橄榄型的阴影部分剖开,两部分分别顺逆时针90︒,则阴影部分转化为四分之一圆减去一个等腰直角三角形,所以阴影部分的面积为211π444 4.5642⨯⨯-⨯⨯=.【答案】4.56【巩固】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227.【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 原题图中的左边部分可以割补至如右上图位置,这样只用先求出四分之一大圆的面积,再减去其内的等腰直角三角形面积即为所求.因为四分之一大圆的半径为7,所以其面积为: 2211227π738.5447⨯⨯≈⨯⨯=. 四分之一大圆内的等腰直角三角形ABC 的面积为17724.52⨯⨯=,所以阴影部分的面积为38.524.514-=. 【答案,14【例 15】 求下列各图中阴影部分的面积.(1)1010(2)ba【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 在图(1)中,阴影部分经过切割平移变成了一个底为10,高为5的三角形,利用三角形面积公式可以求得110102522S =⨯⨯=阴影;在图(2)中,阴影部分经过切割平移变成了一个长为b ,宽为a 的长方形,利用长方形面积公式可以求得S a b ab =⨯=阴影. 【答案】25,ab【巩固】求下列各图中阴影部分的面积(图中长度单位为cm ,圆周率按3计算):⑴3⑵4⑶111⑷2⑸2⑹【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 ⑴4.5 ⑵4 ⑶1 ⑷2 ⑸1.5 ⑹4.5 【答案】⑴4.5 ⑵4 ⑶1 ⑷2 ⑸1.5 ⑹4.5【例 16】 如图,ABCD 是正方形,且1FA AD DE ===,求阴影部分的面积.(取π3=)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 方法一:两个分割开的阴影部分给我们求面积造成了很大的麻烦,那么我们把它们通过切割、移动、补齐,使两块阴影部分连接在一起,这个时候我们再来考虑,可能会有新的发现. 由于对称性,我们可以发现,弓形BMF 的面积和弓形BND 的面积是相等的,因此,阴影部分面积就等于不规则图形BDWC 的面积.因为ABCD 是正方形,且F A =AD =DE =1,则有CD =DE .那么四边形BDEC 为平行四边形,且∠E =45°.我们再在平行四边形BDEC 中来讨论,可以发现不规则图形BDWC 和扇形WDE 共同构成这个平行四边形,由此,我们可以知道阴影部分面积=平行四边形BDEC -扇形DEW 245511π13608=⨯-⨯⨯=.方法二:先看总的面积为14的圆,加上一个正方形,加上一个等腰直角三角形,在则阴影面积为总面积扣除一个等腰直角三角形,一个14圆,一个45︒的扇形.那么最终效果等于一个正方形扣除一个45︒的扇形.面积为215113188⨯-⨯⨯=.【答案】58【巩固】求图中阴影部分的面积(单位:cm ).2【考点】圆与扇形 【难度】2星 【题型】解答 【解析】 从图中可以看出,两部分阴影的面积之和恰好是梯形的面积,所以阴影部分面积为21(24)39cm 2⨯+⨯=.【答案】9【例 17】 如图,长方形ABCD 的长是8cm ,则阴影部分的面积是 2cm .(π 3.14=)【考点】圆与扇形 【难度】2星 【题型】填空 【解析】 阴影部分的面积实际上是右上图阴影部分面积的一半,所以求出右上图中阴影部分面积再除以2即可.长方形的长等于两个圆直径,宽等于1个圆直径,所以右图的阴影部分的面积等于:()2882822π2 6.88⨯÷-÷÷⨯⨯=所以左图阴影部分的面积等于6.882 3.44÷=平方厘米.【答案】3.44【例 18】 【例 19】 如图所示,在半径为4cm 的图中有两条互相垂直的线段,阴影部分面积A 与其它部分面积B 之差(大减小)是 2cm .【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】西城实验,期末考试 【解析】 【解析】 如图,将圆对称分割后,B 与A 中的部分区域能对应,B 仅比A 少了一块矩形,所以两部分的面积差为:()()222128cm ⨯⨯⨯=.【答案】8【巩固】一块圆形稀有金属板平分给甲、乙二人.但此金属板事先已被两条互相垂直的弦切割成如图所示尺寸的四块.现甲取②、③两块,乙取①、④两块.如果这种金属板每平方厘米价值1000元,问:甲应偿付给乙多少元?5cm 7.5cm3cm 2cm ④③②①【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 如右上图所示,④的面积与Ⅰ的面积相等,①的面积等于②与Ⅱ的面积之和.可见甲比乙多拿的部分为中间的长方形,所以甲比乙多拿的面积为:2537.522 5.511cm -⨯-=⨯=()()(),而原本应是两人平分,所以甲应付给乙:11100055002⨯=(元).【答案】5500【例 20】 【例 21】 求右图中阴影部分的面积.(π取3)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 看到这道题,一下就会知道解决方法就是求出空白部分的面积,再通过作差来求出阴影部分面积,因为阴影部分非常不规则,无法入手.这样,平移和旋转就成了我们首选的方法.(法1)我们只用将两个半径为10厘米的四分之一圆减去空白的①、②部分面积之和即可,其中①、②面积相等.易知①、②部分均是等腰直角三角形,但是①部分的直角边AB 的长度未知.单独求①部分面积不易,于是我们将①、②部分平移至一起,如右下图所示,则①、②部分变为一个以AC 为直角边的等腰直角三角形,而AC 为四分之一圆的半径,所以有AC =10.两个四分之一圆的面积和为150,而①、②部分的面积和为11010502⨯⨯=,所以阴影部分的面积为15050100-=(平方厘米).(法2)欲求图①中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A 与C 重合,从而构成如右图②的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.所以阴影部分面积为21110101010022π⨯⨯-⨯⨯=(平方厘米).A【答案】100【例22】如图,边长为3的两个正方形BDKE、正方形DCFK并排放置,以BC为边向内侧作等边三角形,分别以B、C为圆心,BK、CK为半径画弧.求阴影部分面积.(π 3.14=)EE【考点】圆与扇形【难度】4星【题型】解答【关键词】走美,决赛【解析】【解析】根据题意可知扇形的半径r恰是正方形的对角线,所以223218r=⨯=,如右图将左边的阴影翻转右边阴影下部,S S S=-阴影扇形柳叶1118π2(18π33)34=⨯-⨯-⨯183π8.58=-=【答案】8.58。