《相交线》习题 (1)
- 格式:doc
- 大小:202.37 KB
- 文档页数:2
人教版七年级数学下册《5.1 相交线》同步练习题-附带答案一、选择题1.同一平面内互不重合的3条直线的交点的个数是()A.可能是0,1,2 B.可能是0,2,3C.可能是0,1,2或3 D.可能是1,可能是32.下列图形中,∠1=∠2一定成立的是()A.B.C.D.3.如图,要把小河里的水引到田地A处,则作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点作已知直线的垂线有且只有一条4.如图,将一副三角板顶点O靠在一直尺的边上,若∠AOC=50°,则∠BOD的度数()A.30°B.40°C.50°D.60°5.如图,两只手的食指和拇指在同一平面内,在以下四种摆放方式中,它们构成的一对角可以看成内错角的是()A.B.C.D.6.如图AD⊥BC于点D, AB=6,AC=9,AD=5 ,点P是线段BC上的一个动点,则线段AP的长度不可能是()A.5.5 B.7 C.8 D.4.57.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠58.如图,直线a,b被直线c所截,∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角二、填空题9.若∠1和∠2是对顶角,∠1=36°,则∠2的度数是度.10.如图,若∠1+∠2=200°,则∠3=.11.如图,直线AB⊥CD于点O,EF为过点O的直线,∠1=50°,则∠2的度数为.12.如图,给出下列结论:①∠1与∠2是同旁内角;②∠1与∠3是同位角;③∠1与∠4是内错角;④∠1与∠5是同位角;⑤∠2与∠4是对顶角.其中说法正确的是.(填序号)13.物理中有一种现象,叫折射现象,它指的是当光线从空气射入水中时,光线的传播方向会发生改变.如图,我们建立折射现象数学模型,MN表示水面,它与底面EF平行,光线AB从空气射入水里时发生了折射,变成光线BC射到水底C处,射线BD是光线AB的延长线,∠1=70°,∠2=42°,则∠DBC的度数为°.三、解答题14.如图,直线CD与EF交于点O,OC平分∠AOF,若∠AOE=40°,求∠DOE的度数.15.如图,直线AB,CD相交于点O,OM⊥AB于点O.(1)若∠BOC=4∠AOC,求∠BOD的度数.(2)若∠1=∠2,请判断ON与CD关系,并说明理由.∠COF.16.如图,已知直线EF与AB交于点M,与CD交于点O,OG平分∠DOF,若∠COM=120°,∠EMB= 12(1)求∠FOG的度数;(2)写出一个与∠FOG互为同位角的角;(3)求∠AMO的度数.参考答案1.C2.C3.C4.B5.C6.D7.D8.A9.3610.80°11.40°12.①②⑤13.2814.解:∵∠AOE=40°∴∠AOF=140°.∵OC平分∠AOF∠AOF=70°∴∠COF=12∴∠DOE=∠COF=70°15.(1)解:由邻补角的定义,得∠AOC+∠BOC=180°∵∠BOC=4∠AOC∴4∠AOC+∠AOC=180°∴∠AOC=36°由对顶角相等,得∠BOD=∠AOC=36°;(2)解:ON⊥CD,理由如下:∵OM⊥AB∴∠AOM=90°∴∠1+∠AOC=90°∵∠1=∠2∴∠2+∠AOC=90°即∠NOC=90°∴ON⊥CD.16.(1)解:∵∠COM=120°∴∠DOF=120°∵OG平分∠DOF∴∠FOG=60°(2)解:与∠FOG互为同位角的角是∠BMF (3)解:∵∠COM=120°∴∠COF=60°∠COF∵∠EMB= 12∴∠EMB=30°∴∠AMO=30°。
人教版七年级下学期数学-5.1相交线练习题一、单选题1.如图,河道的同侧有、两地,现要铺设一条引水管道,从地把河水引向、两地.下列四种方案中,最节省材料的是()A.B.C.D.2.如图,直线AB、CD相交于O,且∠AOC=2∠BOC,则∠AOD的度数为()A.30°B.45°C.60°D.75°3.如图,直线AB,CD相交于点O,,OF平分,则的大小为()A.40°B.50°C.65°D.70°4.如图,在中,,,垂足为点D,那么点A到直线的距离是线段()的长.A.B.C.D.5.如图,直线AB,CD,EO相交于点O,已知OA平分∠EOC,若∠EOC:∠EOD=2:3,则∠BOD 的度数为()A.40°B.37°C.36°D.35°6.如图所示,与∠α构成同位角的角的个数为()A.1B.2C.3D.47.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段的长度就是点到直线的距离8.平面上三条直线两两相交最多能构成对顶角的对数是().A.7B.6C.5D.49.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD =∠BOC.A.①②③B.①②④C.①③④D.②③④10.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.已知直线AB与直线CD相交于点O,∠AOC:∠BOC=2:1,射线OE⊥CD,则∠AOE的度数为.12.如图,直线AB、CD、EF相交于点O,若∠1+∠2=150°,则∠3=°.13.如图,直线AB、CD相交于点O,OE平分,OF平分.若,则的度数为°.14.若与是对顶角,与互余,且,则的度数为°.15.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为.三、计算题16.如图,O为直线AB上一点,OC⊥AB,并且∠AOD=130°.求∠COD的度数.17.如图所示,直线AB、CD、EF相交于点O,CD⊥AB,∠AOE:∠AOD=3:5,求∠BOF与∠DOF的度数.四、综合题18.如图,在所标注的角中.(1)对顶角有对,邻补角有对;(2)若,,求与的度数.19.如图,点在直线外,点在直线上,连接.选择适当的工具作图.(1)在直线上作点,使,连接;(2)在的延长线上任取一点,连接;(3)在,,中,最短的线段是,依据是.20.如图,直线、相交于点,且平分,平分.(1)求证:平分;(2)求的度数.答案解析部分1.【答案】D【解析】【解答】解:依据垂线段最短,以及两点之间,线段最短,可得最节省材料的是:故答案为:D.【分析】利用垂线段最短,以及两点之间线段最短求解即可。
七年级下册第二章 第一小节两条直线的位置关系测试试题1、在同一平面内,两条直线的位置关系分为相交和平行两种。
平行线:在同一平面内,不相交的两条直线叫做平行线。
若两条直线只有一个公共点,我们称这两条直线为相交线。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
6、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
7、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
8、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
9、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
10、余角和补角的性质用数学语言可表示为:(1)则(同角的余角(或补角)相等)。
00001290(180),1390(180),∠+∠=∠+∠=23∠=∠(2)且则(等角的余角(或补角)相等)。
1、下列说法正确的是 。
A 、不相交的两条直线是平行线 B 、同一个平面内,不相交的两条射线叫平行线C 、同一平面内,两条直线不相交就重合 D 、同一平面内,没有公共点的两条直线是平行线2、如图所示,直线a ,b ,c 两两相交,∠1=2∠3,∠2=68°,则∠1= ,∠4= 。
(2题) (3题)3、下面四个图形中,∠1与∠2是对顶角的图形有( )A .0个B .1个C .2个D .3个 4、如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC,则∠2= 。
.(4题) (8题) (9题)5、下面角的图示中,能与30°角互补的是 。
A .B .C .D .6、下列语句错误的有( )个.00001290(180),3490(180),∠+∠=∠+∠=14,∠=∠23∠=∠(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A.1 B.2 C.3 D.47、小明做了四道练习题:①有公共顶点的两个角是对顶角②两个直角互为补角③一个三角板中两个锐角互为余角④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角,其中正确的有。
第五章 相交线与平行线 练习题姓名_________学号____一、填空题1.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2=_______.2. 已知直线AB CD ∥,60ABE =∠,20CDE =∠,则BED =∠ 度.3.如图,已知AB ∥CD ,EF 分别交AB 、CD 于点E 、F ,∠1=60°,则∠2=______度.4.如图,直线MA ∥NB ,∠A =70°,∠B =40°,则∠P =_____.5.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;第2题PBM A N第1题 第3题第4题(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若,//a b b c ⊥,则a 与c 的位置关系是________.6.如图,填空:⑴∵1A ∠=∠(已知)∴_____________( ) ⑵∵2B ∠=∠(已知)∴_____________( ) ⑶∵1D ∠=∠(已知)∴______________( ) 二、解答题7.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.第6题8.如图,已知直线AB 与CD 交于点O ,OE ⊥AB ,垂足为O ,若∠DOE =3∠COE ,求∠BOC 的度数.9.如图,直线//a b ,求证:12∠=∠.10. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE ,过点C 作CF ∥AB , 则B ∠=∠___( ) 又∵AB ∥DE ,AB ∥CF ,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.11.如第10题图,当∠B、∠E、∠BCE有什么关系时,有AB∥DE.12.如图,AB∥DE,则∠B、∠BCD、∠D有什么关系?第五章相交线与平行线练习题答案:1、28°2、803、60°4、30°5、平行;平行;垂直.6、AB∥DE(内错角相等,两直线平行)AB∥DE(同位角相等,两直线平行)AC∥DF(内错角相等,两直线平行).7、OD⊥OE理由略8、135°.9、∵a∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等)∴∠1=∠2.10、1(两直线平行,内错角相等)DE∥CF(平行于同一直线的两条直线平行)2 (两直线平行,内错角相等).11、∠B+∠E=∠BCE时,有AB∥DE. 证明略12、∠B+∠C-∠D=180°证明略.1、下面四个图形中,∠1与∠2是对顶角的图形A、 B、 C、 D、2、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度是()A、第一次右拐50 o,第二次左拐130 oB、第一次左拐50 o,第二次右拐50 oC、第一次左拐50 o,第二次左拐130 oD、第一次右拐50 o,第二次右拐50 o3、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A、a∥dB、b⊥dC、a⊥dD、b∥c4、如图,若m∥n,∠1=105 o,则∠2= ()A、55 oB、60 oC、65 oD、75 o5、下列说法中正确的是()A、有且只有一条直线垂直于已知直线B、从直线外一点到这条直线的垂线段,叫做这点到这条直线距离C、互相垂直的两条线段一定相交D、直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3cm,则点A到直线c的距离是3cm 6、两条直线被第三条直线所截,下列条件中,不能判断这两人条直线平行的的是()A、同位角相等B、内错角相等C、同旁内角互补D、同旁内角相等7、下列句子中不是命题的是()A、两直线平行,同位角相等。
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
5.1 相交线练习一选择题:1.下列说法正确的是().A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条.B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线.C.作出点P 到直线的距离D.连结直线外一点和直线上任一点的线段长是点到直线的距离. 2.已知OA ⊥OC ,∠AOB :∠AOC=2:3,则∠BOC 的度数是(). ° °°或者说50° D.以上答案都不对 3.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( ).A.21(∠1+∠2)B.21∠1C.21(∠1–∠2) D.21∠24.两条相交直线与另外一条直线在同一平面内,它们的交点个数是(). B.2或2 或2或35.下列语句正确的是( ).A.相等的角为对顶角B.不相等的角一定不是对顶角C.不是对顶角的角都不相等D.有公共顶点且和为180°的两角填空题:6.经过直线外或直线上一点,有且只有_______________直线与已知直线垂直.7.从直线外一点到这条直线的_______________叫做这点到直线的距离.8.直线外一点与直线上各点连结的线段中,以_______________为最短.9.如图,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=_______________,∠4=_______________.10.如图,∠1的同位角是_______________,∠1的内错角是_______________,∠1的同旁内角是_______________.11.如图,直线l截直线ba,所得的同位角有_______________对,它是_______________;内错角有_______________对,它们是_______________;同旁内角有_______________对,它们是_______________;对顶角有_______________对,它们是_______________.12.如图,直线AB,CD被EF所截,∠1=∠2,要证∠2+∠4=180°,请完善证明过程,并在括号内填上相应依据:∵直线AB与EF相交,∴∠1=∠3(_______________),又∵∠1+∠4=180°(_______________),∠1=∠2(已知),∴∠2=∠3,∠2+∠4=180°(_______________)。
相交线》练习题(含答案)5.1.1 相交线1.下列说法中,正确的是(。
B。
)。
A。
相等的两个角是对顶角B。
有一条公共边的两个角是邻补角C。
有公共顶点的两个角是对顶角D。
一条直线与端点在这条直线上的一条射线组成的两个角是邻补角2.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠1的对顶角是∠3.3.如图是一把剪刀,其中∠1=40°,则∠2=140°,其理由是邻补角互补。
4.如图,O是直线AB上一点,∠COB=30°,则∠1=150°。
5.如图所示,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD=35°。
6.如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为(。
A。
)。
A。
62°B。
118°C。
72°D。
59°7.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于(。
C。
)。
A。
90°B。
120°C。
180°D。
360°8.如图所示,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数为80°。
9.如图所示,l1,l2,l3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数为72°。
10.探究题:1) 三条直线相交,最少有一个交点,最多有三个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;2) 四条直线相交,最少有四个交点,最多有十个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数。
相交线与平行线练习题(附答案)【知识积累】一、相交线1、邻补角:如下图,∠1和∠2(或∠3和∠4、或∠5和∠6、或∠7和∠8、或∠1和∠3、或∠2和∠4、或∠5和∠7、或∠6和∠8)有一条公共边,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
2、对顶角:如上图,∠1和∠4(或∠2和∠3、或∠5和∠8、或∠6和∠7)有一个公共顶点,并且∠1的两边分别是∠4的两边的反向延长线(∠1和∠4相等),具有这种位置关系的两个角,互为对顶角。
3、同位角:如上图,∠1和∠5(或∠3和∠7、或∠2和∠6、或∠4和∠8),这两个角分别在直线的同一侧,即左侧(或左侧、或右侧、或右侧),并且在另外两条直线的同一方,即上方(或下方、或上方、或下方),具有这种位置关系的一对角叫做同位角。
4、内错角:如上图,∠3和∠6(或∠4和∠5),这两个角都在两条直线之间,并且分别在中间直线的两侧,具有这种位置关系的一对角叫做内错角。
5、同旁内角:如上图,∠3和∠5(或∠4和∠6),这两个角都在两条直线之间,并且分别在中间直线的同侧,具有这种位置关系的一对角叫做同旁内角。
二、垂直1、定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O。
垂直定义的两层含义:(1)∵∵AOC=90°(已知),∵AB∵CD(垂直的定义)(2)∵AB∵CD(已知),∵∵AOC=90°(垂直的定义)2、性质:(1)过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线段的概念:由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
4、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
三、平行1、定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∵b。
七年级下册相交线与平行线练习题及答案第五章相交线与平行线一、典型例题例1.如图1,直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
图1例2.已知:如图2,AB∥EF∥CD,EG平分∠XXX,∠B+∠BED+∠D=192°,求∠EGD的度数。
图2例3.如图3,已知AB∥CD,且∠B=40°,∠D=70°,求∠DEB的度数。
图3例4.平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?例6.10条直线两两相交,最多将平面分成多少块不同的区域?例7.两条直线相交于一点,所形成的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n条直线相交于一点时,有多少对对顶角,多少对邻补角?二、巩固练1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条。
A。
6B。
7C。
8D。
92.平面上三条直线相互间的交点个数是()。
A。
3B。
1或3C。
1或2或3D。
不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()。
A。
36条B。
33条C。
24条D。
21条4.已知平面中有n个点,A、B、C三个点在一条直线上,A、D、F、E四个点也在一条直线上,除这些之外,再没有三点共线或四点共线,以这n个点作一条直线,一共可以画出38条不同的直线,这时n等于()。
A。
9B。
10C。
11D。
125.若平行直线AB、CD与相交直线EF、GH相交成如图所示的图形,则共得同旁内角()。
A。
4对B。
8对C。
12对D。
16对6.如图,已知FD∥BE,则∠1+∠2-∠3=()。
图4A。
90°B。
135°C。
(D)(C)(B)(A)22211121《5.1相交线》练习题班级 姓名 得分一:填空、选择题(每题5分)1、直线AB 、CD 相交于点O ,若∠AOC=50度,则∠∠BOD= 。
2、如右图,直线AB 与CD 相交于点O ,射线OE 平分∠已知∠AOD=40度,则∠COE= ,∠BOD= 3、若∠1与∠2是对顶角,∠3与∠2互余,且∠3=60那么∠1= 。
4、若∠1与∠2是对顶角,且∠1与∠2互余,则∠1=__ ___5、如图,直线AB 、CD 交于点O ,则 (1)若∠1+∠3=68度,则∠1= 。
(2)若∠2:∠3=4:1,则∠2= 。
(3)若∠2-∠1=100度,则∠3= 。
第5题6、下列各图中,∠1和∠2是对顶角的是( )7、已知直线AB 、CD 相交于点O ,则与∠AOC 互补的角有( )A 、1个B 、2个C 、3个D 、4个 第7题 8、如图,三条直线两两相交,其中对顶角共有( ) A 、3对 B 、4对 C 、5对 D 、6对9、下列说法错误的是 ( ) 第9题A 、对顶角的平分线成一个平角B 、对顶角相等C 、相等的角是对顶角D 、对顶角的余角相等 10、如右图,直线AB 、CD 交于点O ,OE 、OF 是过O 点 的两条射线,其中构成对顶角的是( ) A 、∠AOF 与 ∠DOE B 、∠EOF 与∠BOEC 、∠BOC 与∠AOD D 、∠COF 与∠BOD321O DBCA ODCBAOF EDCB AEDOCBA321OFE D CB A11、下列说法中正确的个数有 ( )(1)直线外一点与直线上各点连接的所有线中垂线段最短。
(2)画一条直线的垂线段可以画无数条。
(3)在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直。
(4)从直线外一点到这条直线的垂线段叫做点到直线的距离。
A 、1个 B 、2个 C 、3个 D 、4个12、如图2-28,∠1与∠2不能构成同位角的图形是 ( )13、如图2-29,图中共有同旁内角( )A .2B .3C .4D .514、如图2-30,与∠1构成同位角的共有 ( )A .1个B .2个C .3个D .4个三:解答题(每题10分)15、如图,直线AD 和BE 相交于O 点,OC ⊥AD ,∠COE=70度,求∠AOB 的度数。
《相交线》习题
一.选择题
1、如图,直线AB 与直线CD 相交于点O ,E 是AOD ∠内一点,已知OE ⊥AB ,︒=∠45BOD ,则COE ∠的度数是( )
A .︒125
B .︒135
C .︒145
D .︒155 2、下面四个命题中正确的是( ) A .相等的两个角是对顶角
B .和等于180°的两个角是互为邻补角
C .连接两点的最短线是过这两点的直线
D .两条直线相交所成的四个角都相等,则这两条直线互相垂直 3、如图,点A 、O 、B 是在同一直线上,OD 平分∠BOC ,O
E 平分∠A OC ,则下列说法中错误的是( )
A .∠DOE 是直角
B .∠DO
C 与∠AOE 互余 (第3题
图)
C .∠AOE 和∠BO
D 互余 D .∠AOD 与∠DOC 互余 4、对两条直线相交所得的四个角中,下面说法正确的是( ) ①没有公共边的两个角是对顶角 ②有公共边的两个角是对顶角 ③没有公共边的两个角是邻补角 ④有公共边的两个角是邻补角 A .①② B .①③ C .①④ D .以上都不对 5、下列说法正确的是( )
A .如果两个角相等,那么这两个角是对顶角
B .有公共顶点的两个角是对顶角
C .有公共顶点并且相等的两个角是对顶角
D .如果两个角是对顶角,那么这两个角相等
6、如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC =100º,则∠BO
D 的度数是( )
A .20º
B .40º
C .50º
D .80º
(第9
题图
) 7、设PO ⊥AB ,垂足为O ,C 是AB 上任意一个异于O 的动点,连结PE ,则 A .PO >PC B .PO =PC C .PO <PC D .不能确定
8、∠1的对顶角是∠2,∠2的邻补角是∠3,若∠3=45º,则∠1的度数是( )A .45º B .135º C .45º和135º D .90º
9、如图中,∠1的同位角
A .3个
B .4个
C .2个
D .1个
10、如图,平面上三条不同的直线相交最多能构成对顶角的对数是( ) A .4 B .5 C .6 D .7 二、选择题
11、两条直线相交与O ,共有_______对对顶角;三条直线相
交与O 点,共有_______对对顶角;n 条直线相交于O 点,共有______对对顶角. 12、如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= .
第13题图)
13、如图,直线AB 、CD 相交于O ,OE 平分∠BOD ,∠AOC =60º,∠EOD =
______,∠EOB 的余角等于______,∠EOB 的补角的
3
1
等于______. 14、如图,AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =______________度. 15、将一张长方形的白纸如图形式折叠,使D 到D ˊ,E 到E ˊ处,并且BD ˊ与BE ˊ在同一条直线上,那么AB 与BC 的位置的关系是______.
A C
B
E
D
O
第1题图
(第6题图)
E D A
B
O
C 1 (第12题)
2
1
O
D
C
B
A
B E
D O
16、如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,0
30
A
∠=,那么E
∠=__________
17、如图,AB、CD相交于点O,OB平分∠DOE,若∠DOE=60º,则∠AOC的度数是______.
18、如图,直线AB、CD相交于点O,OE是∠BOD的平分线、∠AOE=150º,求∠A OC的度数.
解:因为AOB是直线(已知),
所以∠AOE+∠BOE=180º( ).
因为∠AOE=150º(已知),所以∠BOE=______º
因为OE平分∠BOD(已知),
所以∠BOD=2∠BOE( ).所以∠BOD=60º.
(第18题图)
因为直线AB、CD相交与点O(已知),
所以∠AOC与∠BOD是对顶角. ( ) 所以∠AOC=∠BOD( ) 所以∠AOC=60º( ).
三、解答题
19、如图,直线AB、CD相交与点O,∠AOD=70º,OE平分∠BOC,求∠DOE的度数.
20、如图,O为直线AB上一点,OC平分∠BOD,OE⊥OC,请说明下面两中结论的理由:
(1)∠DOC与∠AOE互余;(2)OE平分∠AOD.
21、如图,∠AOD=90º,OD为∠BOC的平分线,OE为BO的延长线,∠COE的度数是∠AOB的度数的2倍吗?如果是,请说明理由.
22、如图,∠1=
2
1
∠2,∠1+∠2=162°,求∠3与∠4的度数.
A
C
O
70º
E
A
B
O
D
E
D
16题图C
E
A
B
B E D
O
C A。