线性相位FIR滤波器的设计
- 格式:pdf
- 大小:265.52 KB
- 文档页数:4
FIR滤波器的设计及特点FIR(Finite Impulse Response)滤波器是一种数字滤波器,其特点在于其频率响应仅由其滤波器系数决定,而与输入序列无关。
它是一种线性相位滤波器,常用于数字信号处理中的陷波、低通、高通、带通等滤波应用。
窗函数法是最简单也是最常用的设计方法之一、它通过在滤波器的理想频率响应上乘以一个窗函数来得到最终的滤波器系数。
常用的窗函数包括矩形窗、汉宁窗、汉明窗和布莱克曼窗等。
窗函数的选择决定了滤波器的主瓣宽度和副瓣衰减。
最小二乘法是一种优化方法,它通过最小化输出序列与理想响应序列之间的均方误差来得到滤波器系数。
最小二乘法可以得到线性相位的滤波器设计,但计算量较大。
频域采样法是通过在频域上对理想频率响应进行采样,然后进行插值来得到滤波器系数。
频域采样法可以得到具有任意响应的滤波器,但需要对理想频率响应进行采样和插值,计算量较大。
优化算法是通过优化问题的求解方法来得到滤波器系数。
常用的优化算法包括遗传算法、粒子群算法和蚁群算法等。
优化算法可以得到满足特定需求的非线性相位滤波器设计,但计算量较大。
1.线性相位特性:FIR滤波器的线性相位特性使其在处理信号时不引入相位延迟,因此适用于对信号相位有严格要求的应用,如音频信号处理和通信系统中的调制解调等。
2.稳定性:FIR滤波器是稳定的,不会引入非物理的增益和相位。
这使得其在实际应用中更加可靠和可控。
3.容易设计:FIR滤波器的设计相对较为简单,不需要考虑稳定性和因果性等问题,只需要选择合适的滤波器结构和设计方法即可。
4.灵活性:FIR滤波器的频率响应可以通过改变滤波器系数来实现。
这使得其适用于各种滤波需求,例如低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
5.高阻带衰减:由于FIR滤波器的频率响应只受滤波器系数控制,因此可以设计出具有较高阻带衰减和较窄主瓣带宽的滤波器。
总之,FIR滤波器的设计简单、稳定性高、频率响应灵活可调等特点,使得其在数字信号处理中得到广泛应用。
EDA 课程设计报告滤波器设计参数:根据要求,要设计一个输入8位,输出8位的17阶线性相位FIR 滤波器,所以采用图2(a)的方式,其中输入信号范围为:[±99,0,0,0, ±70,0,0,0, ±99,0,0,0, ±70,…],此滤波器 Fs 为44kHz,Fc 为10.4kHz 。
(一)FIR 数字滤波器理论简述有限冲激响应(FIR )数字滤波器和无限冲激响应(IIR )数字滤波器广泛应用于数字信号处理系统中。
IIR 数字滤波器方便简单,但它相位的非线性,要求采用全通网络进行相位校正,且稳定性难以保障。
FIR 滤波器具有很好的线性相位特性,使得它越来越受到广泛的重视。
有限冲击响应(FIR )滤波器的特点:1 既具有严格的线性相位,又具有任意的幅度;2 FIR 滤波器的单位抽样响应是有限长的,因而滤波器性能稳定;3只要经过一定的延时,任何非因果有限长序列都能变成因果的有限长序列,因而能用因果系统来实现;4 FIR 滤波器由于单位冲击响应是有限长的,因而可用快速傅里叶变换(FFT)算法来实现过滤信号,可大大提高运算效率。
5 FIR 也有利于对数字信号的处理,便于编程,用于计算的时延也小,这对实时的信号处理很重要。
6 FIR 滤波器比较大的缺点就是阶次相对于IIR 滤波器来说要大很多。
FIR 数字滤波器是一个线性时不变系统(LTI ),N 阶因果有限冲激响应滤波器可以用传输函数H (z )来描述,()()Nk k H z h k z -==∑(0.1)在时域中,上述有限冲激响应滤波器的输入输出关系如下:[][][][][]Nk y n x n h n x k h n k ==*=-∑(0.2)其中,x [n ]和y [n ]分别是输入和输出序列。
N 阶有限冲激响应滤波器要用N +1个系数描述,通常要用N+1个乘法器和N 个两输入加法器来实现。
乘法器的系数正好是传递函数的系数,因此这种结构称为直接型结构,可通过式(1.2)来实现,如图1。
DSP原理及应用——FIR线性相位滤波器设计学院光电信息与计算机工程学院专业通信工程姓名王桐张莹戴梦渝丁洁华张嫕日期2011年12月目录1.引言2.原理简介2.1滤波器的分类2.2 FIR滤波器的设计2.3窗函数设计法3.实验所用软件4.滤波器类型设定5.实验步骤5.1参数设定5.2滤波器的脉冲响应5.3 MATLAB获取H参数5.4 DSP实现程序5.5在CCS下的程序调试和结果显示6.心得体会7.小组成员具体分工一.引言随着信息时代和数字世界的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。
数字信号处理在通信、语音、图像,自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。
在数字信号处理中,滤波占有极其重要的地位。
数字滤波器是谱分析、雷达信号处理、通信信号处理应用中的基本处理算法,在系统设计中,滤波器的好坏将直接影响系统的性能。
现代数字滤波器可以用软件或设计专用的数字处理硬件两种方式来实现,用软件来实现数字滤波器优点是随着滤波器参数的改变,很容易改变滤波器的性能。
二.原理简介2.1滤波器的分类数字滤波器从功能上看,可分为低通、高通、带通、带阻滤波器。
数字滤波器根据其单位脉冲响应可分为IIR (Infinite Impulse Response) 无限长冲激响应滤波器和FIR (Finite Impulse Response) 有限长冲激响应滤波器两类。
IIR滤波器可以用较少的阶数获得很高的选择特性,但在有限精度的运算中可能出现不稳定现象,而且相位特性不好控制。
在许多实际应用中为了保证滤波后的信号不产生相位失真。
一般均采用FIR滤波器。
2.2 FIR滤波器的设计FIR 滤波器能够在保证幅度特性满足技术要求的同时,易做成严格的线性相位特性,且FIR滤波器的单位抽样响应是有限长的,因而滤波器一定是稳定的,而且可以用快速傅里叶变换算法实现,大大提高了运算速率。
同时只要经过一定的延时,任何非因果有限长序列都能变成因果的有限长序列,所以系统总能用因果系统来实现。
西南科技大学课程设计报告课程名称:数字通信课程设计设计名称:线性相位FIR数字滤波器的设计姓名:学号:班级:指导教师:起止日期:2011.6.21-2011.7.3西南科技大学信息工程学院制课 程 设 计 任 务 书学生班级: 学生姓名: 学号:设计名称: 线性相位FIR 数字滤波器的设计 起止日期: 2011.6.21-2011.7.3 指导教师:设计要求:1、用窗函数法设计一个线性相位FIR 高通数字滤波器。
要求:FIR 高通数字滤波器指标为:)阻带衰减()通带衰减(度)数字阻带截止频率(弧度)数字通带截止频率(弧dB dBs A dB dB p R s p 4013.05.0====πωπω根据技术指标选择合适的窗形状,并绘制FIR 高通数字滤波器的幅度响应曲线和相位响应曲线;2、用窗函数法设计一个线性相位FIR 低通数字滤波器。
要求:FIR 低通数字滤波器指标为:)阻带衰减()通带衰减(度)数字阻带截止频率(弧度)数字通带截止频率(弧dB dBs A dB dB p R s p 5014.02.0====πωπω根据技术指标选择合适的窗形状,并绘制FIR 低通数字滤波器的幅度响应曲线和相位响应曲线;FIR 数字滤波器的设计可以使用matlab 工具箱中的函数课程设计学生日志时间设计内容2011.6.21-6.24 查阅资料,确定方案2011.6.25-6.26 设计总体方案2011.6.27-6.30 编写程序2011.7.1-7.3 撰写设计报告2011.7.4 答辩课程设计考勤表周星期一星期二星期三星期四星期五课程设计评语表指导教师评语:成绩:指导教师:年月日线性相位FIR 数字滤波器的设计一、 设计目的和意义 1.目的(1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。
(2)熟悉线性相位FIR 数字滤波器的特性。
(3)了解各种窗函数对滤波特性的影响。
2.意义通过做这个设计,我们可以加深对线性相位FIR 数字滤波器原理以及设计方法的了解,有助于夯实进一步学习的基础。
FIR滤波器设计一、设计指标1、设计一个15阶低通线性相位FIR滤波器;2、要求采样频率Fs为10KHz;3、截止频率Fc为1500Hz;二、设计原理1、有限长脉冲响应(FIR)滤波器的系统函数只有零点,除原点外,没有极点,因而FIR滤波器总是稳定的。
如果他的单位脉冲响应是非因果的,总能够方便的通过适当的移位得到因果的单位脉冲响应,所以FIR滤波器不存在稳定性和是否可实现的问题。
它的另一个突出的优点是在满足一定的对称条件时,可以实现严格的线性相位。
由于线性相位滤波器不会改变输入信号的形状,而只是在时域上使信号延时,因此线性相位特性在工程实际中具有非常重要的意义,如在数据通信、图像处理等应用领域,往往要求信号在传输和处理过程中不能有明显的相位失真,因而线性相位FIR滤波器得到了广泛的应用。
2、模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器)。
3、数字滤波器系数的确定方法。
4、根据要求设计低通FIR 滤波器。
要求:通带边缘频率10kHz,阻带边缘频率22kHz,阻带衰减75dB,采样频率50kHz。
设计:(1)过渡带宽度=阻带边缘频率-通带边缘频率=22-10=12kHz (2)采样频率:f1=通带边缘频率+(过渡带宽度)/2=10000+12000/2=16kHzΩ1=2πf1/fs=0.64π(3)理想低通滤波器脉冲响应:h1[n]=sin(nΩ1)/n/π=sin(0.64πn)/n/π(4)根据要求,选择布莱克曼窗,窗函数长度为:N=5.98fs/过渡带宽度=5.98*50/12=24.9(5)选择N=25,窗函数为:w[n]=0.42+0.5cos(2πn/24)+0.8cos(4πn/24)(6)滤波器脉冲响应为:h[n]=h1[n]w[n] |n|≤12h[n]=0 |n|>12(7)根据上面计算,各式计算出h[n],然后将脉冲响应值移位为因果序列。
(8)完成的滤波器的差分方程为:y[n]=0.0132x[n-2]-0.0298x[n-3]-0.0617x[n-4]-0.0458x[n-5]+0.0 324x[n-6]+0.156x[n-7]+0.2571x[n-8]+0.1506x[n-9]+0.0324x[n-10]-0.0458x[n-11]-0.0617x[n-12]-0.0298x[n-13]00.132x[n-14]+0.3x[n-15] -0.0298[n-16]5、程序流程图:三、设计步骤1、实验准备:-设置软件仿真模式,-启动CCS,选择菜单Debug→Reset CPU。
课程设计报告课程名称:专业综合课程设计学生姓名:段博文学号:201116020227专业班级:通信工程11102班指导教师:朱明旱完成时间: 2014年6月15日报告成绩:线性相位FIR带通滤波器的设计1.课程设计目的1.能够运用本课程中学到的知识,设计基于窗口函数法的FIR数字滤波器。
要求掌握数字信号处理的基本方法;2. FIR滤波器的设计步骤和方法;3.能够熟练MATLAB进行计算机辅助设计和方针验证设计内容的合理性。
2.课题要求1.了解数字滤波器的性能要求2.了解窗函数设计滤波器的基本理论3.设计原理3.1 FIR滤波器数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置。
其功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。
由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。
数字滤波器根据其单位冲激响应函数的时域特性分为两种:无限长冲激响应(IIR) 滤波器和有限长冲激响应(FIR)滤波器。
FIR数字滤波器又称有限长单位冲激响应滤波器,它的优点是可以做成具有严格的线性相位,同时又可以具有任意的幅度特性。
此外,FIR滤波器的单位抽样响应是有限长的,因而滤波器一定是稳定的。
再有,FIR滤波器由于单位冲激响应是有限长的,所以可以用快速傅里叶变换(FFT)算法来实现过滤信号,从而可大大提高运算效率。
在滤波器设计中要对理想滤波器抽样响应进行截断. 截断后不可避免的产生了频谱泄漏, 为了尽量减小频谱泄漏, 在设计滤波器时要采用不同的窗函数来满足不同用途的要求.各种窗函数的幅频响应都存在明显的主瓣和旁瓣. 主瓣宽度和旁瓣的幅值衰减特性决定了窗函数的应用. 用于滤波器的窗函数,一般要求窗函数主瓣宽度窄,以获得较好过渡带:旁瓣相对值尽可能小, 以增加通带段的平稳度和增大阻带的衰减.窗函数应满足在0<Fn<N 范围内关于a 对称,在其它区域取零值.由线性系统理论可知,在某种适度条件下,输入到线性系统的一个冲击完全可以表征系统。
滤波器的线性相位和非线性相位设计方法滤波器是一种常用的信号处理器件,它可以通过选择特定频率范围内的信号,对信号进行滤波和处理。
滤波器的设计涉及到很多方面,其中一个重要的考虑因素是相位特性。
本文将介绍滤波器的线性相位和非线性相位设计方法。
一、线性相位设计方法线性相位滤波器是指滤波器的相位响应与频率成线性关系。
线性相位滤波器一般使用FIR (Finite Impulse Response) 滤波器来实现,其特点是具有稳定的相移特性,适用于实时信号处理应用。
线性相位滤波器的设计方法有两种常用的方式:窗函数法和最小相位反演法。
1.1 窗函数法窗函数法是一种常用的设计线性相位滤波器的方法。
该方法的基本思想是将滤波器的频率响应与理想滤波器的频率响应进行近似拟合。
常见的窗函数有矩形窗、汉宁窗、黑曼窗等。
在窗函数法中,首先确定滤波器所需的通带、阻带和过渡带的频率范围,然后选择合适的窗函数进行设计。
通过对窗函数进行傅立叶变换,可以得到滤波器的冲激响应。
最后,通过将冲激响应作为滤波器的系数,即可实现线性相位的滤波器设计。
1.2 最小相位反演法最小相位反演法是另一种常用的设计线性相位滤波器的方法。
该方法的基本原理是通过对滤波器的幅度响应进行傅立叶变换,并计算其对数幅度谱,然后将对数幅度谱反变换得到滤波器的冲激响应。
最小相位反演法的优点是可以设计出更短的线性相位滤波器,适用于信号处理时延较为严格的应用场景。
然而,该方法的计算复杂度较高,需要进行频域的计算和反变换,因此在实际应用中需要根据具体情况进行权衡和选择。
二、非线性相位设计方法非线性相位滤波器是指滤波器的相位响应与频率不成线性关系。
非线性相位滤波器常用于对信号的组成部分进行时间或相位延迟的处理。
非线性相位滤波器的设计方法有FIR型和IIR型两种。
2.1 FIR型非线性相位滤波器FIR型非线性相位滤波器是通过设计多通的滤波器来实现的。
其基本思想是在滤波器的频域响应上引入不同频率的群延迟,从而实现非线性相位特性。
FIR滤波器设计与实现实验报告目录一、实验概述 (2)1. 实验目的 (3)2. 实验原理 (3)3. 实验设备与工具 (4)4. 实验内容与步骤 (6)5. 实验数据与结果分析 (7)二、FIR滤波器设计 (8)1. 滤波器设计基本概念 (9)2. 系数求解方法 (10)频谱采样法 (11)最小均方误差法 (14)3. 常用FIR滤波器类型 (15)线性相位FIR滤波器 (16)非线性相位FIR滤波器 (18)4. 设计实例与比较 (19)三、FIR滤波器实现 (20)1. 硬件实现基础 (21)2. 软件实现方法 (22)3. 实现过程中的关键问题与解决方案 (23)4. 滤波器性能评估指标 (25)四、实验结果与分析 (26)1. 实验数据记录与处理 (27)2. 滤波器性能测试与分析 (29)通带波动 (30)虚部衰减 (31)相位失真 (32)3. 与其他设计方案的对比与讨论 (33)五、总结与展望 (34)1. 实验成果总结 (35)2. 存在问题与不足 (36)3. 未来发展方向与改进措施 (37)一、实验概述本次实验的主要目标是设计并实现一个有限脉冲响应(Finite Impulse Response,简称FIR)滤波器。
FIR滤波器是数字信号处理中常用的一种滤波器,具有线性相位响应和易于设计的优点。
本次实验旨在通过实践加深我们对FIR滤波器设计和实现过程的理解,提升我们的实践能力和问题解决能力。
在实验过程中,我们将首先理解FIR滤波器的基本原理和特性,包括其工作原理、设计方法和性能指标。
我们将选择合适的实验工具和环境,例如MATLAB或Python等编程环境,进行FIR滤波器的设计。
我们还将关注滤波器的实现过程,包括代码编写、性能测试和结果分析等步骤。
通过这次实验,我们期望能够深入理解FIR滤波器的设计和实现过程,并能够将理论知识应用到实践中,提高我们的工程实践能力。
本次实验报告将按照“设计原理设计方法实现过程实验结果与分析”的逻辑结构进行组织,让读者能够清晰地了解我们实验的全过程,以及我们从中获得的收获和启示。