DSP的FIR设计(低通滤波)C语言编写
- 格式:pdf
- 大小:1.35 MB
- 文档页数:14
一、设计目的低通滤波器设计。
本设计中使用的信号为信息信号: signal=sin(2*pi*sl*n*T)高频噪声1:noise1=0.7*sin(2*pi*ns1*n*T) 高频噪声2:noise2=0.4*sin(2*pi*ns2*n*T) 混合信号: x=(signal+noise1+noise2)其中sl=500Hz ,ns1=3000Hz ,ns2=8000Hz ,T=1/20000。
混合信号波形为滤波器输入信号波形,信息信号波形为输出信号波形,滤波器的效果为滤除两个高频噪声。
二、FIR 滤波器基本理论(1)FIR 滤波器的特点数字滤波器的功能,就是把输入序列通过一定的运算变换成输出序列。
它的实现方法有很多,其中比较常用到的是无限长脉冲响应滤波器 IIR 和有限长脉冲响应滤波器FIR 两种。
在计算量相等的情况下,IIR 数字滤波器比FIR 滤波器的幅频特性优越,频率选择性也好。
但是,它有着致命的缺点,其相位特性不好控制。
它的相位特性)argH( )f(ωωj e =是使频率产生严重的非线性的原因。
但是在图像处理、数据传输等波形传递系统中都越来越多的要求信道具有线性的相位特性。
在这方面 FIR 滤波器具有它独特的优点,设FIR 滤波器单位脉冲响应h(n)长度为N ,其系统函数H(z)为∑-=-=10)()(N n n z n h z HH(z)是1-z 的(N-1)次多项式,它在z 平面上有(N-1)个零点,原点z=0是(N-1)阶重极点。
因此,H(z)永远稳定,它可以在幅度特性随意设计的同时,保证精确、严格的线性相位。
(2)FIR 滤波器的基本结构数字滤波是将输入的信号序列,按规定的算法进行处理,从而得到所期望的输出序列,FIR 滤波器的差分方程为:∑-=-=1)()(N k k k n x a n y对上式进行Z 变换得到FIR 滤波器的传递函数为:()()()∑-=-==10N i kk z b z X z Y z H由上式可以看出,H(z)是1-z 的N-1次多项式,它在z 平面内有N-1个零点,同时在原点处有N-1个重极点。
根据fir滤波器的公式y(n)=∑h(m)x(n-m);(m: 0~(N-1)).利用MATLAB产生滤波器系数(h(n))并归一化,下面为一个LP滤波算法void filter(void){uint16 i,j;fp32 sum;int16 x1[2030];fp32 h[19]={ -0.0027, -0.0025, 0.0050, 0.0157, -0.0000, -0.0471, -0.0482, 0.0838, 0.2953, 0.4013,0.2953, 0.0838, -0.0482, -0.0471, -0.0000,0.0157, 0.0050, -0.0025, -0.0027};for(i=0;i<2020;i++)x1[i] = data0[i];for(i=0;i<2020;i++){sum=0.0;for(j=0;j<19;j++){if(i >= j)sum+=h[j]*x1[i-j];else;}data0[i]=(int16)sum;}for(i=0;i<2000;i++){data0[i] = data0[i+20];}}考虑到前19个点为不完全累加和,故抛去前19个点。
(应该是前后各18个点都是不完全累加和,都应该去掉,对于数据分段进入滤波器的情况,应该把前一段的后面数据放到下一段的前面,这段时间我在解调FSK时遇到了这个问题,通过滤波器的数据的分段处理。
)设输入数据x[N],输出数据y[N],滤波器系数h[n]1.直接法(由y(m)=h(0)*x(m)+h(1)*x(m-1)+...+h(N-1)*x(m-n-1));void fir(short x[], short h[], short y[]){int i,j;long long sum;for (j = 0; j < N; j++){sum = 0;for (i = 0; i < n; i++)sum += x[j-i] * h[i];y[j] = sum >> 15;}}乘法器使用次数:N*n2.逆推法:void fir(short x[], short h[], short y[]){int i,j;long sum;for (j = 0; j < n; j++){for (i = 0; i < N; i++){sum = 0;sum = h[j] * x[i]y[i] += sum >> 15;}}}乘法器使用次数:N*n3.倒序法:(输入输出可以是同一量)void fir(short x[], short h[], short y[]) {int i,j;long long sum;for (j = N; j > 0; j--){sum = 0;for (i = n; i > 0; i--)sum += x[j-i] * h[i];y[j] = sum >> 15;}}#include<stdio.h>#include<math.h>#define true 1#define false 0#define n 8#define bufsize 100 /* the buffer size is 100 *//* global declarations */int in_buffer[bufsize]; /* processing data buffers */int out_buffer[bufsize];/* functions */static int processing(int *input, int *output);static void dataio(void);static long round(long a);void main(){int *input = &in_buffer[0];int *output = &out_buffer[0];puts("the 1st experiment started\n");/* loop forever */while(true){/** read input data using a probe-point connected to a host file.* write output data to a graph connected through a probe-point.*/// read the input signal.// if the input file is sine1.dat, the signal contains 300hz,400hz and 500hz.// if the input file is sine2.dat, the signal contains 100hz,400hz and 500hz.// the sampling frequency is 1200hz.dataio();/* remove the frequency compoment of 400hz and 500hz*/processing(input, output);// write the output signal.// the output file is result.dat.dataio();}}/** ======== processing ========** function: apply a low-pass fir filter to input signal and remove the frequency higher than 350hz.** parameters: address of input and output buffers.** return value: true.static int processing(int *input, int *output){int i,size = bufsize;short xx0,x,y;// short z[n]={0,0,0,0,0,0,0,0,0};short z[n]={0,0,0,0,0,0,0,0};//short w[2*n+1]={22,356,155,990,466,220,777,216,777,26,466,9,155,0,22};//short w[2*n+1]={6,457,56,1024,224,418,523,382,784,99,784,43,523};// shortw[2*n+1]={330*2,3299*2,1982*2,6867*2,4955*2,1594*2,6607*2,1065*2,4955*2,109*2,1982*2,17*2, 330*2};//short w[2*n+1]={661,6598,3964,13733,9910,3187,13214,2131,9910,217,3964,34,661};// shortw[2*n+1]={58,5628,526,8192,2105,5883,4913,3829,7369,1543,7369,504,4913,102,2105,14,526,1,5 8};//shortw[2*n+1]={28,4432,280,8192,1259,4883,3356,3975,5873,1509,7048,644,5873,142,3356,30,1259,3, 280,0,28};// short w[2*n+1]={26,651,182,1024,545,421,909,247,909,51,545,11,182,1,26};//shortw[2*n+1]={831,20846,5815,32768,17445,13486,29075,7888,29075,1647,17445,349,5815,21,831}; //short w[2*n+1]={208,5211,1454,8192,4361,3371,7269,1972,7269,412,4361,87,1454,5,208};short w[2*n+1]={101,4356,810,8192,2835,3403,5670,2517,7088,605,5670,193,2835,21,810}; // shortw[2*n+1]={101,4356,810,8192,2835,3403,5670,2517,7088,605,5670,193,2835,21,810,2,101};// shortw[2*n+1]={50,3814,454,8192,1815,3504,4235*,3084,6353,831,6353,349,4235,50,1815,8,454,0,50} ;long y0,z0;//22222222222222while(size--){xx0=*input++;x=xx0*6;z0=(long)x<<15;y0=0;for(i=0;i<n;i++){z0-=(long)w[2*i+1]*(long)z[i];y0+=(long)w[2*i+2]*(long)z[i];}y0+=(long)w[0]*(z0>>15);y0=round(y0);for(i=n-1;i>0;i--)z[i]=z[i-1];z0=round(z0);z[0]=(short)(z0>>15);y=(short)(y0>>15);*output++ =y;}/* additional processing load */return(true);/** ======== dataio ========** function: read input signal and write processed output signal. ** parameters: none.** return value: none.*/static void dataio(){/* do data i/o */return;}static long round(long a){long x3;x3=a&(0xffff0000);return x3;}。
fir函数c语言实现FIR滤波器是一种广泛应用于数字信号处理领域的滤波器,它能够实现无限冲击响应(InfiniteImpulseResponse,简称FIR)滤波。
在许多实际应用中,FIR 滤波器被用来对信号进行平滑处理,去除噪声等。
下面将介绍如何使用C语言实现FIR滤波器。
一、FIR滤波器原理FIR滤波器是一种线性时不变系统,它通过一组滤波器系数将输入信号进行加权叠加,从而实现对信号的滤波处理。
FIR滤波器的输出信号与输入信号的关系可以用冲激响应表示,其冲激响应具有有限长度。
二、C语言实现FIR滤波器以下是一个简单的FIR滤波器的C语言实现,它采用递归方法实现滤波器的计算:```c#include<stdio.h>//FIR滤波器参数定义#defineFIR_LEN6//滤波器长度#defineTARGET_SNR10//目标信噪比#defineALPHA0.001//噪声系数//FIR滤波器系数定义floatfir_coeff[]={/*...*/};//滤波器系数数组//FIR滤波器函数实现floatfir_filter(floatinput){floatoutput=0;//滤波器输出floatx=input;//输入信号当前值floaty=x;//输入信号之前值floatz=x;//滤波器输出之前值inti;for(i=0;i<FIR_LEN;i++){y=y*ALPHA+fir_coeff[i]*z;//更新输入信号和滤波器输出output+=y;//更新滤波器输出z=x;//更新滤波器输出之前值}returnoutput/FIR_LEN;//归一化滤波器输出值}```这个代码实现了简单的FIR滤波器,其输入是一个浮点数类型的信号。
滤波器的长度和参数需要根据具体的应用场景进行调整。
此外,还需要准备一个FIR滤波器系数数组,并将其定义在代码中。
三、使用示例下面是一个使用示例,展示了如何使用上述代码对一组信号进行FIR滤波处理:```c#include<stdio.h>#include<stdlib.h>#include<time.h>intmain(){//生成一组随机信号作为输入数据floatsignals[]={/*...*/};//输入信号数组,包含多个样本数据intsignal_len=sizeof(signals)/sizeof(float);//信号长度srand(time(NULL));//设置随机数种子intidx=rand()%signal_len;//随机选择一个样本作为输入信号的起始点floatoutput[signal_len];//输出数组,用于存储滤波处理后的结果inti;for(i=idx;i<idx+signal_len;i++){//对每个样本进行滤波处理output[i-idx]=fir_filter(signals[i]);//使用fir_filter函数进行滤波处理,并将结果存储在output数组中}printf("Filteredsignals:\n");//输出滤波处理后的结果for(i=0;i<signal_len;i++){//输出每个样本的滤波处理结果printf("%f\n",output[i]);}return0;}```这个示例代码生成了一组随机信号作为输入数据,并使用上述实现的FIR滤波器对每个样本进行滤波处理。
DSP的FIR设计低通滤波C语言编写FIR(有限脉冲响应)滤波器是一种常用的数字滤波器,用于数字信号处理中的滤波操作。
FIR滤波器的设计通常包括两个主要步骤:滤波器的规格化和滤波器系数的计算。
滤波器的规格化是指确定滤波器的采样频率,截止频率以及陷波增益等参数。
在设计低通FIR滤波器时,我们需要确定滤波器的截止频率。
假设我们希望设计一个截止频率为Fs/4的低通FIR滤波器,其中Fs是采样频率。
根据滤波器设计的基本原理,我们可以得到滤波器的频率响应公式为:H(k) = (2 * Fs/4 * sin(2 * pi * Fs/4 * k))/(pi * k)其中,k是从0到N-1的整数序列,N是滤波器的长度。
经过频域设计,我们可以通过计算滤波器的频率响应公式来获得滤波器的系数。
接下来,我们将使用C语言编写一个低通FIR滤波器的代码示例。
在这个示例中,我们将实现一个截止频率为Fs/4的低通FIR滤波器,采样频率为Fs。
代码如下:```c#include <stdio.h>#include <stdlib.h>#include <math.h>//定义滤波器的长度#define N 51//定义采样频率//定义滤波器的截止频率#define Fc (Fs/4)//计算滤波器的系数void calculateCoefficients(float* coefficients)float sum = 0;for (int k = 0; k < N; k++)if (k == N/2)coefficients[k] = 2 * Fc/Fs;} elsecoefficients[k] = (sin(2.0 * M_PI * Fc * (k - N/2) / Fs)) / (M_PI * (k - N/2));}sum += coefficients[k];}//归一化滤波器的系数for (int k = 0; k < N; k++)coefficients[k] /= sum;}//应用滤波器void applyFilter(float* input, float* output, float* coefficients, int length)for (int n = 0; n < length; n++)output[n] = 0;for (int k = 0; k < N; k++)if (n - k >= 0)output[n] += input[n - k] * coefficients[k];}}}int mai//定义输入信号和输出信号的长度int length = 100;//为输入信号和输出信号分配内存空间float* input = (float*)malloc(length*sizeof(float));float* output = (float*)malloc(length*sizeof(float));//为滤波器的系数分配内存空间float* coefficients = (float*)malloc(N*sizeof(float));//生成输入信号for (int n = 0; n < length; n++)input[n] = sin(2.0 * M_PI * 1000 * n / Fs);}//计算滤波器的系数calculateCoefficients(coefficients);//应用滤波器applyFilter(input, output, coefficients, length); //打印输出信号for (int n = 0; n < length; n++)printf("%f\n", output[n]);}//释放内存空间free(input);free(output);free(coefficients);return 0;```在上面的代码示例中,我们首先定义了滤波器的长度、采样频率以及截止频率。
FIR滤波器的DSP实现一.实验中出现的错误:错误一/fdacoefs.h 为Matlab 生成的系数表头文件,刚开始没办法正常运行导入到工程的C语言源代码,原因是下面框图所示,修改fdacoefs.h 中的代码后,要将.h 文件与工程文件放入同一个文件夹中。
1.新建工程2.编写C 语言源代码并导入工程#include "stdio.h"#include "fdacoefs.h"#define N 81#define LEN 200long yn;int input[LEN];int output[LEN];void main(){int i,j;int *x;for(j=0;j<LEN-1;j++){x=&input[j];yn = 0;for(i=0; i<N-1; i++)yn += B[i]*(*x++);output[j]=yn>>15;}while(1);}错误二:开始的时候还在工程中导入了rts.libwen文件,结果出现上面显示的错误,最终将.lib从工程中移除后编译成功。
错误三:错误三是最终出打开之前Matlab 生成的input.dat 文件,设置完Address时,Adress不能正确设置,导致出现上述错误。
在将实验全部重新调试多变,找张琼英和江杰都重新将程序重新运行后,仍然得不到解决。
程序运行全部正确,换了台电脑最后做出结果,得出的解释可能是自己的电脑出了问题,因为用记事本打开的inputdat文件全是乱码,而在别人的电脑上打开是正确的。
考虑到系统最近运行不畅,感觉是这个原因。
以上是程序及调试过程中出现的主要错误。
二.实验目的和要求:旨在研究FIR滤波器的DSP实现方法。
软件仿真利用C语言产生一个方波暑假文件fir_in.dat,利用CCS的探针和中断调试功能读入数据文件作为FIR滤波器的输信号,经FIR滤波后输出正弦信号fir_out.dat文件,然后对该输出文件用图形文件显示出来。
DSP的FIR设计C语言编写FIR(Finite Impulse Response)滤波器是数字信号处理中常用的一种滤波器类型。
它具有有限的冲激响应,只对有限长度的输入信号做出响应。
低通滤波器是一种能够通过滤除高频分量而保留低频分量的滤波器。
FIR低通滤波器的设计可以通过数字滤波器设计方法来实现,其中一种常用的方法是窗函数法。
以下是一个用C语言编写的FIR低通滤波器设计实例:```c#include <stdio.h>#include <stdlib.h>#include <math.h>//FIR低通滤波器设计函数void fir_lowpass_filter_design(float *filter, int order, float cutoff_freq, float sampling_freq)int i;float omega_c = 2 * M_PI * cutoff_freq / sampling_freq;//计算滤波器系数for (i = 0; i <= order; i++)if (i == (order / 2))filter[i] = omega_c / M_PI;filter[i] = sin(omega_c * (i - (order / 2))) / (M_PI * (i - (order / 2)));}int mainint order = 51; // 滤波器阶数float cutoff_freq = 1000.0; // 截止频率float sampling_freq = 8000.0; // 采样频率float *filter = malloc((order + 1) * sizeof(float)); // 分配滤波器系数数组内存//调用FIR低通滤波器设计函数fir_lowpass_filter_design(filter, order, cutoff_freq, sampling_freq);//打印滤波器系数printf("Filter Coefficients:\n");for (int i = 0; i <= order; i++)printf("h[%d] = %f\n", i, filter[i]);}free(filter); // 释放滤波器系数数组内存return 0;上述代码中的`fir_lowpass_filter_design`函数用于计算滤波器系数,其参数`filter`是一个指向滤波器系数数组的指针,`order`是滤波器阶数,`cutoff_freq`是截止频率,`sampling_freq`是采样频率。
FIR滤波器设计C语言程序1.确定滤波器的设计规格:包括截止频率、通带衰减和阻带衰减等参数。
2.确定滤波器的阶数:滤波器的阶数决定了它对信号的滤波效果,一般通过经验或者设计规范来确定。
3. 确定滤波器的频率响应:可以通过Matlab等工具进行设计,也可以根据设计规范选择标准的频率响应曲线。
常见的设计方法包括窗函数法、最小最大设计法等。
4.根据频率响应设计滤波器的系数:根据频率响应的定义,可以使用反离散傅里叶变换(IDFT)计算滤波器的系数。
5.实现滤波器的差分方程:根据滤波器的差分方程,可以使用C语言编写对应的代码。
差分方程描述了滤波器的输入和输出之间的关系。
下面是一个简单的FIR滤波器设计的C语言程序示例:```c#include <stdio.h>#include <stdlib.h>#define N 10 // 滤波器的阶数//FIR滤波器系数float h[N] =0.1,0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.1,0.05};//输入信号缓冲区float x[N] = {0};//输出信号float y = 0;//FIR滤波器函数float fir_filter(float input) int i;//将最新的输入信号插入到缓冲区for (i = N - 1; i > 0; i--)x[i]=x[i-1];}x[0] = input;//计算输出信号y=0;for (i = 0; i < N; i++)y+=h[i]*x[i];}return y;int main//输入信号float input_signal[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};//滤波后的输出信号float output_signal[10] = {0};int i;//对输入信号进行滤波for (i = 0; i < 10; i++)output_signal[i] = fir_filter(input_signal[i]);}//打印输出结果for (i = 0; i < 10; i++)printf("Output[%d] = %f\n", i, output_signal[i]);}return 0;```在上面的示例代码中,我们采用了一个长度为10的缓冲区来存储输入信号。
根据fir滤波器的公式y(n)=∑h(m)x(n-m);(m: 0~(N-1)).利用MATLAB产生滤波器系数(h(n))并归一化,下面为一个LP滤波算法void filter(void){uint16 i,j;fp32 sum;int16 x1[2030];fp32 h[19]={ -0.0027, -0.0025, 0.0050, 0.0157, -0.0000, -0.0471, -0.0482, 0.0838, 0.2953, 0.4013,0.2953, 0.0838, -0.0482, -0.0471, -0.0000,0.0157, 0.0050, -0.0025, -0.0027};for(i=0;i<2020;i++)x1[i] = data0[i];for(i=0;i<2020;i++){sum=0.0;for(j=0;j<19;j++){if(i >= j)sum+=h[j]*x1[i-j];else;}data0[i]=(int16)sum;}for(i=0;i<2000;i++){data0[i] = data0[i+20];}}考虑到前19个点为不完全累加和,故抛去前19个点。
(应该是前后各18个点都是不完全累加和,都应该去掉,对于数据分段进入滤波器的情况,应该把前一段的后面数据放到下一段的前面,这段时间我在解调FSK时遇到了这个问题,通过滤波器的数据的分段处理。
)设输入数据x[N],输出数据y[N],滤波器系数h[n]1.直接法(由y(m)=h(0)*x(m)+h(1)*x(m-1)+...+h(N-1)*x(m-n-1));void fir(short x[], short h[], short y[]){int i,j;long long sum;for (j = 0; j < N; j++){sum = 0;for (i = 0; i < n; i++)sum += x[j-i] * h[i];y[j] = sum >> 15;}}乘法器使用次数:N*n2.逆推法:void fir(short x[], short h[], short y[]){int i,j;long sum;for (j = 0; j < n; j++){for (i = 0; i < N; i++){sum = 0;sum = h[j] * x[i]y[i] += sum >> 15;}}}乘法器使用次数:N*n3.倒序法:(输入输出可以是同一量)void fir(short x[], short h[], short y[]) {int i,j;long long sum;for (j = N; j > 0; j--){sum = 0;for (i = n; i > 0; i--)sum += x[j-i] * h[i];y[j] = sum >> 15;}}#include<stdio.h>#include<math.h>#define true 1#define false 0#define n 8#define bufsize 100 /* the buffer size is 100 *//* global declarations */int in_buffer[bufsize]; /* processing data buffers */int out_buffer[bufsize];/* functions */static int processing(int *input, int *output);static void dataio(void);static long round(long a);void main(){int *input = &in_buffer[0];int *output = &out_buffer[0];puts("the 1st experiment started\n");/* loop forever */while(true){/** read input data using a probe-point connected to a host file.* write output data to a graph connected through a probe-point.*/// read the input signal.// if the input file is sine1.dat, the signal contains 300hz,400hz and 500hz.// if the input file is sine2.dat, the signal contains 100hz,400hz and 500hz.// the sampling frequency is 1200hz.dataio();/* remove the frequency compoment of 400hz and 500hz*/processing(input, output);// write the output signal.// the output file is result.dat.dataio();}}/** ======== processing ========** function: apply a low-pass fir filter to input signal and remove the frequency higher than 350hz.** parameters: address of input and output buffers.** return value: true.static int processing(int *input, int *output){int i,size = bufsize;short xx0,x,y;// short z[n]={0,0,0,0,0,0,0,0,0};short z[n]={0,0,0,0,0,0,0,0};//short w[2*n+1]={22,356,155,990,466,220,777,216,777,26,466,9,155,0,22};//short w[2*n+1]={6,457,56,1024,224,418,523,382,784,99,784,43,523};// shortw[2*n+1]={330*2,3299*2,1982*2,6867*2,4955*2,1594*2,6607*2,1065*2,4955*2,109*2,1982*2,17*2, 330*2};//short w[2*n+1]={661,6598,3964,13733,9910,3187,13214,2131,9910,217,3964,34,661};// shortw[2*n+1]={58,5628,526,8192,2105,5883,4913,3829,7369,1543,7369,504,4913,102,2105,14,526,1,5 8};//shortw[2*n+1]={28,4432,280,8192,1259,4883,3356,3975,5873,1509,7048,644,5873,142,3356,30,1259,3, 280,0,28};// short w[2*n+1]={26,651,182,1024,545,421,909,247,909,51,545,11,182,1,26};//shortw[2*n+1]={831,20846,5815,32768,17445,13486,29075,7888,29075,1647,17445,349,5815,21,831}; //short w[2*n+1]={208,5211,1454,8192,4361,3371,7269,1972,7269,412,4361,87,1454,5,208};short w[2*n+1]={101,4356,810,8192,2835,3403,5670,2517,7088,605,5670,193,2835,21,810}; // shortw[2*n+1]={101,4356,810,8192,2835,3403,5670,2517,7088,605,5670,193,2835,21,810,2,101};// shortw[2*n+1]={50,3814,454,8192,1815,3504,4235*,3084,6353,831,6353,349,4235,50,1815,8,454,0,50} ;long y0,z0;//22222222222222while(size--){xx0=*input++;x=xx0*6;z0=(long)x<<15;y0=0;for(i=0;i<n;i++){z0-=(long)w[2*i+1]*(long)z[i];y0+=(long)w[2*i+2]*(long)z[i];}y0+=(long)w[0]*(z0>>15);y0=round(y0);for(i=n-1;i>0;i--)z[i]=z[i-1];z0=round(z0);z[0]=(short)(z0>>15);y=(short)(y0>>15);*output++ =y;}/* additional processing load */return(true);/** ======== dataio ========** function: read input signal and write processed output signal. ** parameters: none.** return value: none.*/static void dataio(){/* do data i/o */return;}static long round(long a){long x3;x3=a&(0xffff0000);return x3;}。
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*根据fir滤波器的公式y(n)=∑h(m)x(n-m);(m: 0~(N-1)).利用MATLAB产生滤波器系数(h(n))并归一化,下面为一个LP滤波算法void filter(void){uint16 i,j;fp32 sum;int16 x1[2030];fp32 h[19]={ -0.0027, -0.0025, 0.0050, 0.0157, -0.0000, -0.0471, -0.0482, 0.0838, 0.2953, 0.4013,0.2953, 0.0838, -0.0482, -0.0471, -0.0000,0.0157, 0.0050, -0.0025, -0.0027};for(i=0;i<2020;i++)x1[i] = data0[i];for(i=0;i<2020;i++){sum=0.0;for(j=0;j<19;j++){if(i >= j)sum+=h[j]*x1[i-j];else;}data0[i]=(int16)sum;}for(i=0;i<2000;i++){data0[i] = data0[i+20];}}考虑到前19个点为不完全累加和,故抛去前19个点。
(应该是前后各18个点都是不完全累加和,都应该去掉,对于数据分段进入滤波器的情况,应该把前一段的后面数据放到下一段的前面,这段时间我在解调FSK时遇到了这个问题,通过滤波器的数据的分段处理。
)设输入数据x[N],输出数据y[N],滤波器系数h[n]1.直接法(由y(m)=h(0)*x(m)+h(1)*x(m-1)+...+h(N-1)*x(m-n-1));void fir(short x[], short h[], short y[]){int i,j;long long sum;for (j = 0; j < N; j++){sum = 0;for (i = 0; i < n; i++)sum += x[j-i] * h[i];y[j] = sum >> 15;}}乘法器使用次数:N*n2.逆推法:void fir(short x[], short h[], short y[]){int i,j;long sum;for (j = 0; j < n; j++){for (i = 0; i < N; i++){sum = 0;sum = h[j] * x[i]y[i] += sum >> 15;创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*}}}乘法器使用次数:N*n3.倒序法:(输入输出可以是同一量)void fir(short x[], short h[], short y[]){int i,j;long long sum;for (j = N; j > 0; j--){sum = 0;for (i = n; i > 0; i--)sum += x[j-i] * h[i];y[j] = sum >> 15;}}#include<stdio.h>#include<math.h>#define true 1#define false 0#define n 8#define bufsize 100 /* the buffer size is 100 *//* global declarations */int in_buffer[bufsize]; /* processing data buffers */int out_buffer[bufsize];/* functions */static int processing(int *input, int *output);static void dataio(void);static long round(long a);void main(){int *input = &in_buffer[0];int *output = &out_buffer[0];puts("the 1st experiment started\n");/* loop forever */while(true){/** read input data using a probe-point connected to a host file.* write output data to a graph connected through a probe-point.*/// read the input signal.// if the input file is sine1.dat, the signal contains 300hz,400hz and 500hz.// if the input file is sine2.dat, the signal contains 100hz,400hz and 500hz.// the sampling frequency is 1200hz.dataio();/* remove the frequency compoment of 400hz and 500hz*/processing(input, output);// write the output signal.// the output file is result.dat.dataio();}}/** ======== processing ========** function: apply a low-pass fir filter to input signal and remove the frequency higher than 350hz.** parameters: address of input and output buffers.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*** return value: true.*/static int processing(int *input, int *output){int i,size = bufsize;short xx0,x,y;// short z[n]={0,0,0,0,0,0,0,0,0};short z[n]={0,0,0,0,0,0,0,0};//short w[2*n+1]={22,356,155,990,466,220,777,216,777,26,466,9,155,0,22};//short w[2*n+1]={6,457,56,1024,224,418,523,382,784,99,784,43,523};// shortw[2*n+1]={330*2,3299*2,1982*2,6867*2,4955*2,1594*2,6607*2,1065*2,4955*2,109*2,1982*2, 17*2,330*2};//short w[2*n+1]={661,6598,3964,13733,9910,3187,13214,2131,9910,217,3964,34,661};// shortw[2*n+1]={58,5628,526,8192,2105,5883,4913,3829,7369,1543,7369,504,4913,102,2105,14,52 6,1,58};//shortw[2*n+1]={28,4432,280,8192,1259,4883,3356,3975,5873,1509,7048,644,5873,142,3356,30,12 59,3,280,0,28};// short w[2*n+1]={26,651,182,1024,545,421,909,247,909,51,545,11,182,1,26};//shortw[2*n+1]={831,20846,5815,32768,17445,13486,29075,7888,29075,1647,17445,349,5815,21,83 1};//shortw[2*n+1]={208,5211,1454,8192,4361,3371,7269,1972,7269,412,4361,87,1454,5,208};shortw[2*n+1]={101,4356,810,8192,2835,3403,5670,2517,7088,605,5670,193,2835,21,810};// shortw[2*n+1]={101,4356,810,8192,2835,3403,5670,2517,7088,605,5670,193,2835,21,810,2,101}; // shortw[2*n+1]={50,3814,454,8192,1815,3504,4235*,3084,6353,831,6353,349,4235,50,1815,8,454, 0,50};long y0,z0;//22222222222222while(size--){xx0=*input++;x=xx0*6;z0=(long)x<<15;y0=0;for(i=0;i<n;i++){z0-=(long)w[2*i+1]*(long)z[i];y0+=(long)w[2*i+2]*(long)z[i];}y0+=(long)w[0]*(z0>>15);y0=round(y0);for(i=n-1;i>0;i--)z[i]=z[i-1];z0=round(z0);z[0]=(short)(z0>>15);y=(short)(y0>>15);*output++ =y;}/* additional processing load */return(true);}/** ======== dataio ========** function: read input signal and write processed output signal.** parameters: none.** return value: none.*/static void dataio(){/* do data i/o */return;}static long round(long a){long x3;x3=a&(0xffff0000);return x3;}创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*。