2015届九年级数学第一次月考试题
- 格式:doc
- 大小:440.00 KB
- 文档页数:3
甘肃省兰州市兰炼三中2015-2016学年九年级数学上学期第一次月考试题一、选择题(本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1 B.2 C.3 D.42.下列说法正确的是()A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似3.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)2=438 D.438(1+2x)2=3894.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形 B.菱形 C.正方形D.平行四边形5.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.86.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.57.掷两枚普通正六面体骰子,所得点数之和为11的概率为()A.B.C.D.8.已知x1、x2是方程x2=2x+1的两个根,则的值为()A. B.2 C.D.﹣29.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm210.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm11.若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<﹣1 C.k≥﹣1且k≠0D.k>﹣1且k≠012.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④13.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)14.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A.28个B.30个C.36个D.42个15.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABCC.S△BCD=S△BOD D.点D为线段AC的黄金分割点二、填空题(本大题共5小题,每小题4分,共20分)16.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b= .17.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积是.18.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖(如图),突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是.19.设m、n是一元二次方程x2+3x﹣7=0的两个根,则m2+4m+n= .20.已知(a+b+c≠0),那么函数y=kx+k的图象一定不经过第象限.三、解答题(共70分)21.(16分)(2015秋•兰州校级月考)选择适当方法解下列方程:(1)x2﹣4x+1=0(用配方法);(2)3(x﹣2)2=x(x﹣2);(3)x2﹣x﹣6=0;(4)(y+2)2=(3y﹣1)2.22.如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.23.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.24.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.25.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.26.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.27.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.2015-2016学年甘肃省兰州市兰炼三中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.【解答】解:①ax2+bx+c=0的二次项系数可能为0;②3(x﹣9)2﹣(x+1)2=1是一元二次方程;③x+3=不是整式方程;④(a2+a+1)x2﹣a=0整理得[(a+)2+]x2﹣a=0,由于[(a+)2+]>0,故(a2+a+1)x2﹣a=0是一元二次方程;⑤=x﹣1不是整式方程.故选B.【点评】一元二次方程必须满足三个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程.2.下列说法正确的是()A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似【考点】相似图形.【专题】几何图形问题.【分析】根据相似图形的定义,对选项一一分析,排除错误答案.【解答】解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选C.【点评】本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.3.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)2=438 D.438(1+2x)2=389 【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】先用含x的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)2元,由题意,得:389(1+x)2=438.故选B.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.4.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0),B(0,2),C(3,0),D(0,﹣2),则四边形ABCD是()A.矩形 B.菱形 C.正方形D.平行四边形【考点】菱形的判定;坐标与图形性质.【分析】在平面直角坐标系中,根据点的坐标画出四边形ABCD,再根据对角线互相垂直的平行四边形是菱形得出四边形ABCD是菱形.【解答】解:如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=0C,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B【点评】本题考查了菱形的判定,坐标与图形性质,掌握菱形的判定方法利用数形结合是解题的关键.5.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【考点】矩形的性质;三角形中位线定理.【分析】阴影部分的面积等于矩形面积减去四个直角三角形的面积.【解答】解:矩形的面积=2×4=8;S△AEF=×1×2=1;∴阴影部分的面积=8﹣1×4=4.故选B.【点评】本题另外的解法是:利用菱形的面积公式计算.6.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.7.掷两枚普通正六面体骰子,所得点数之和为11的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意列表,然后根据表格求得所有等可能的情况与所得点数之和为11的情况,然后利用概率公式求解即可求得答案.【解答】解:列表得:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵共有36种等可能的结果,所得点数之和为11的有2种情况,∴所得点数之和为11的概率为:=.故选A.【点评】此题考查的是用列表法或树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.8.已知x1、x2是方程x2=2x+1的两个根,则的值为()A. B.2 C.D.﹣2【考点】根与系数的关系.【专题】计算题.【分析】先把方程化为一般式得x2﹣2x﹣1=0,根据根与系数的关系得到x1+x2=﹣2,x1•x2=﹣1,再把原式通分得,然后利用整体思想进行计算.【解答】解:方程化为一般式得x2﹣2x﹣1=0,根据题意得x1+x2=﹣2,x1•x2=﹣1,∴原式===﹣2.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.9.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】三角形中位线定理;菱形的性质;矩形的性质.【分析】矩形对折两次后,再沿两邻边中点的连线剪下,所得菱形的两条对角线的长分别原来矩形长和宽的一半,即5cm,4cm,所以菱形的面积可求.【解答】解:矩形对折两次后,所得的矩形的长、宽分别为原来的一半,即为5cm,4cm,而沿两邻边中点的连线剪下,剪下的部分打开前相当于所得菱形的沿对角线两次对折的图形,所以菱形的两条对角线的长分别为5cm,4cm,所以S菱形=×5×4=10 cm2.故选A.【点评】本题考查了三角形中位线的性质、矩形、菱形的面积的计算等知识点.易错易混点:学生在求菱形面积时,易把对角线乘积当成菱形的面积,或是错误判断对角线的长而误选.10.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm【考点】翻折变换(折叠问题);正方形的性质.【专题】压轴题.【分析】由题意知,四边形CEFD是正方形,利用正方形的性质可求得CE=EF=CD=10﹣6=4cm.【解答】解:∵四边形CEFD是正方形,AD=BC=10,BE=6∴CE=EF=CD=10﹣6=4cm.故选A.【点评】本题利用了矩形的对边相等和正方形四边相等的性质求解.11.若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<﹣1 C.k≥﹣1且k≠0D.k>﹣1且k≠0【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据△的意义得到k≠0且△=4﹣4k×(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:∵x的方程kx2+2x﹣1=0有两个不相等的实数根,∴k≠0且△=4﹣4k×(﹣1)>0,解得k>﹣1,∴k的取值范围为k>﹣1且k≠0.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.12.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【考点】相似三角形的判定.【专题】网格型.【分析】本题主要应用两三角形相似的判定定理,有两个对应角相等的三角形相似,即可完成题目.【解答】解:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;由勾股定理求出③的各边长分别为2、2、2,∴=,=,即==,∴两三角形的三边对应边成比例,∴①③相似.故选C.【点评】此题主要考查三组对应边的比相等的两个三角形相似的运用.13.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)【考点】概率的意义;随机事件.【专题】压轴题.【分析】根据随机事件,必然事件,不可能事件分别求出P(A)、P(B)、P(C),然后排序即可得解.【解答】解:事件A:打开电视,它正在播广告是随机事件,0<P(A)<1;事件B:抛掷一个均匀的骰子,朝上的点数小于7是必然事件,P(B)=1;事件C:在标准大气压下,温度低于0℃时冰融化是不可能事件,P(C)=0,所以,P(C)<P(A)<P(B).故选:B.【点评】本题考查了概率的意义,必然发生的事件就是一定发生的事件,因而概率是1.不可能发生的事件就是一定不会发生的事件,因而概率为0.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率>0并且<1.14.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A.28个B.30个C.36个D.42个【考点】利用频率估计概率.【专题】计算题;压轴题.【分析】共摸球400次,其中88次摸到黑球,那么有312次摸到白球;由此可知:摸到黑球与摸到白球的次数之比为88:312;已知有8个黑球,那么按照比例,白球数量即可求出.【解答】解:由题意得:白球有×8≈28个.故选A.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.15.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABCC.S△BCD=S△BOD D.点D为线段AC的黄金分割点【考点】线段垂直平分线的性质;等腰三角形的性质;黄金分割.【分析】求出∠C的度数即可判断A;求出∠ABC和∠ABD的度数,求出∠DBC的度数,即可判断B;根据三角形面积即可判断C;求出△DBC∽△CAB,得出BC2=BC•AC,求出AD=BC,即可判断D.【解答】解:A、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,B、∵DO是AB垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD,∴BD是∠ABC的角平分线,正确,C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,D、∵∠C=∠C,∠DBC=∠A=36°,∴△DBC∽△CAB,∴=,∴BC2=CD•AC,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C,∴BC=BD,∵AD=BD,∴AD=BC,∴AD2=CD•AC,即点D是AC的黄金分割点,正确,故选C.【点评】本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力.二、填空题(本大题共5小题,每小题4分,共20分)16.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b= 2015 .【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2015=0得:a+b﹣2015=0,即a+b=2015.故答案是:2015.【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.17.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积是96 .【考点】菱形的性质;勾股定理.【专题】计算题.【分析】画出草图分析.因为周长是40,所以边长是10.根据对角线互相垂直平分得直角三角形,运用勾股定理求另一条对角线的长,最后根据菱形的面积等于对角线乘积的一半计算求解.【解答】解:因为周长是40,所以边长是10.如图所示:AB=10,AC=12.根据菱形的性质,AC⊥BD,AO=6,∴BO=8,BD=16.∴面积S=AC×BD=12×16×=96.故答案为96.【点评】本题考查了菱形的性质及其面积计算,主要利用菱形的对角线互相垂直平分及勾股定理来解决,要掌握菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=12×两条对角线的乘积,具体用哪种方法要看已知条件来填空.18.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖(如图),突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是.【考点】概率公式.【专题】压轴题.【分析】列举出所有情况,看花色完全搭配正确的情况占所有情况的多少即为所求的概率.【解答】解:因为三个茶杯只有花色不同,两个盖杯随机地搭配在一起,共3×2=6种结果,所以其概率是.法二:解:总共有6种搭配结果,依次是:第一种:杯1 盖1;杯2 盖2;杯3;第二种:杯1 盖1;杯2;杯3盖2;第三种:杯1 盖2;杯2 盖1;杯3;第四种:杯1 盖2;杯2;杯3盖1;第五种:杯1;杯2 盖1;杯3盖2;第六种:第五种:杯1;杯2 盖2;杯3盖1;共6种搭配方式,只有第一种符合完全满足颜色正确搭配,故概率为.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.设m、n是一元二次方程x2+3x﹣7=0的两个根,则m2+4m+n= 4 .【考点】根与系数的关系;一元二次方程的解.【专题】计算题.【分析】先根据一元二次方程的解的定义得到m2+3m﹣7=0,则m2=﹣3m+7,代入m2+4m+n得到m+n+7,然后根据根与系数的关系得到m+n=﹣3,再利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2+3x﹣7=0的根,∴m2+3m﹣7=0,即m2=﹣3m+7,∴m2+4m+n=﹣3m+7+4m+n=m+n+7,∵m、n为方程x2+3x﹣7=0的两个根,∴m+n=﹣3,∴m2+4m+n=﹣3+7=4.故答案为4.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.20.已知(a+b+c≠0),那么函数y=kx+k的图象一定不经过第四象限.【考点】一次函数图象与系数的关系;比例的性质.【分析】利用比例的等比性质正确求得k的值,然后根据直线解析式中的k,b的值正确判断直线经过的象限.【解答】解:当a+b+c≠0时,根据比例的等比性质,得k==2,则直线解析式是y=2x+2,则图象一定经过一、二、三象限.故答案为:四.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象在一、二、三象限是解答此题的关键.三、解答题(共70分)21.(16分)(2015秋•兰州校级月考)选择适当方法解下列方程:(1)x2﹣4x+1=0(用配方法);(2)3(x﹣2)2=x(x﹣2);(3)x2﹣x﹣6=0;(4)(y+2)2=(3y﹣1)2.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)方程整理后,利用完全平方公式配方,开方即可求出解;(2)方程移项后,利用因式分解法求出解即可;(3)方程利用因式分解法求出解即可;(4)方程利用两数的平方相等,两数相等或互为相反数转化为两个一元一次方程来求解.【解答】解:(1)方程整理得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)方程移项得:3(x﹣2)2﹣x(x﹣2)=0,分解因式得:(x﹣2)(3x﹣6﹣x)=0,解得:x1=2,x2=3;(3)分解因式得:(x﹣3)(x+2)=0,解得:x1=3,x2=﹣2;(4)开方得:y+2=3y﹣1或y+2=1﹣3y,解得:y1=1.5,y2=﹣0.25.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.22.如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.【考点】相似三角形的应用.【专题】几何综合题.【分析】(1)利用“两角法”证得这两个三角形相似;(2)由(1)中相似三角形的对应边成比例来求线段CF的长度.【解答】(1)证明:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;(2)解:∵由(1)知,△BEF∽△CDF.∴=,即=,解得:CF=169.即:CF的长度是169cm.【点评】本题考查了相似三角形的应用.此题利用了“相似三角形的对应边成比例”推知所求线段CF与已知线段间的数量关系的.23.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.【考点】矩形的性质;全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.【专题】压轴题.【分析】(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=DN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MA B和△NDC中,∵,∴△MBA≌△NDC(SAS);(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∵AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵,∴△MQD≌△NPB(SAS).∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=BM,∵MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.【点评】本题考查了矩形的性质、全等三角形的判定和全等三角形的性质、三角形中位线定理以及平行四边形的判定和菱形的判定方法,属于基础题目.24.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)由于x的方程kx2+(k+2)x+=0有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于k的不等式,解不等式即可求解;(2)不存在符合条件的实数k.设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又+=,然后把前面的等式代入其中即可求k,然后利用(1)即可判定结果【解答】解:(1)由△=[(k+2)]2﹣4×k•>0,∴k>﹣1又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又∵+==0,解得k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值.【点评】此题主要考查了一元二次方程的判别式和根与系数的关系,解题时将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.【考点】相似三角形的性质.【专题】动点型.【分析】首先设经x秒钟△PBQ与△ABC相似,由题意可得AP=2xcm,BQ=4xcm,BP=AB﹣AP=(8﹣2x)cm,又由∠B是公共角,分别从与分析,即可求得答案.【解答】解:设经x秒钟△PBQ与△ABC相似,则AP=2xcm,BQ=4xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣2x)cm,∵∠B是公共角,∵①当,即时,△PBQ∽△ABC,解得:x=2;②当,即时,△QBP∽△A BC,解得:x=0.8,∴经2或0.8秒钟△PBQ与△ABC相似.【点评】此题考查了相似三角形的判定.此题难度适中,属于动点型题目,注意掌握数形结合思想、分类讨论思想与方程思想的应用.26.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.【考点】矩形的判定;勾股定理;菱形的性质.【专题】证明题.【分析】(1)根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==4,所以,S菱形ABCD=8×4=32.【点评】本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.27.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.。
九年级第一次月考数学试卷考生注意:本试卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)1.二次函数y=x 2的图象向下平移2个单位,得到新图象的二次函数表达式………( ) A .y =x 2-2 B .y =(x -2)2C .y =x 2+2 D .y =(x +2)22.若二次函数y=2x 2-2mx+2m 2-2的图象的顶点在y 轴上,则m 的值是………………( ) A.0 B.±1 C.±2 D.±23.已知(-1,y 1)(-2,y 2)(-4,y 3)是抛物线y=-2x 2-8x+m 上的点,则………………( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 2>y 1>y 3D. y 2>y 3>y 1 4.已知反比例函数y =xm2-1的图像上有两点A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时, 有y 1<y 2。
则m 的取值范围是 ………………………………………………………( ) A 、m <0 B.、m >0 C 、m >21 D 、m <21 5.等边三角形的一条中线与一条中位线的比值是………………………………… ( ) A 、1:3 B 、2:3 C 、3:1 D 、1:36.下列各组线段:①a=1,b=2,c=3,d=4;②a=1,b=2,c=2,d=4;③a=2,b=5,c=8,d=20;④a=3, b=2,c=3,d=2;其中各组线段的长度成比例的有………………………………………………………………………………………( ) A .1组 B. 2组 C. 3组 D. 4组7. 下列关于二次函数的说法错误..的是………………………………………………( ) A.抛物线1322++-=x x y 的对称轴是直线x =34; B.点A(3,0)不在抛物线322--=x x y 的图象上; C.二次函数y=(x +2)2-2的顶点坐标是(-2,-2);D.函数y=2x 2+4x-3的图象的最低点在(-1,-5)8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 ………………………………………………………………( ) 9.抛物线2y a x b x c =++ 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y 随x 增大而减小。
2014--2015学年度安徽省怀宁县金拱初中九年级(沪科版)数学第一次月考试题一.选择题(每题4分,满分40分)1.抛物线1822-+-=x x y 的顶点坐标为( ) A (-2,7) B (-2,-25) C (2,7) D (2,-9) 2.抛物线y=a(x+1)(x-3)(a ≠0)的对称轴是( ) A .x=1 B .x=-1 C .x= - 3 D .x=33..二次函数c bx x y ++-=2的图像的最高点是(-1,-3),则b ,c 的值是( ) A.b =2,c =4 B.b =2,c =-4 C.b=-2 ,c=4 D.b= -2,c= -4.4.若M(-1,y 1),N(1,y 2),P(2,y 3)三点都在函数y=kx(k<0)的图像上,则y 1,y 2,y 3的大小关系为( )A y 1>y 2>y 3 B. y 1>y 3 >y 2 C. y 3 >y 1>y 2 D. y 3> y 2> y 15.把抛物线y=12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线的表达式为( )A.y=12 (x+3)2+2B.y=12 (x-3)2+2C.y=12 (x-2)2+3D.y=12 (x+3)2-26. 在同一坐标系中,一次函数y=kx-1与函数y=kx的图象形状大致是( )7.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限C .y 随x 的增大而减小D .当0x <时,y 随x 的增大而减小 8.给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =.0<x 时,y 随x 的增大而减小的函数有( )A .1个B .2个C .3个D .4个9.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是( )①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大A .1B .2C .3D .410.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③ a ﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )x … 2- 1- 01 2 … y … 0 4 6 6 4 …x y O x yO O xyO xyABCDA. ①②③B. ①③④C.①②④D.②③④二.填空题(每题5分,满分20分) 11.写一个开口向上,对称轴为x=1,且与y 轴的交点坐标为(0,2)的抛物线的解析式 . 12.已知函数12++=x kx y 的图象与x 轴只有一个交点,则k=___________.13.如图,在平面直角坐标系中,反比例函数y 1=的图象与一次函数y 2=kx+b 的图象交于A 、B 两点.若y 1<y 2,则x 的取值范围是________________.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数xky =的图像上,OA=1,OC=6,则正方形ADEF 的边长为 . 三.(每小题8分,满分16分)15.已知y=y 1+y 2,y 1与x 成反比例,y 2与x 成正比例,并且当x=2时y=7,当x=3时,y=8,求y 与x 的函数解析式.16.抛物线()20y ax bx c a =++≠与x 轴交于点A(- 1,0),B(3,0)两点,与y 轴交于点C(0,- 3).(1)求该抛物线的解析式及顶点M 的坐标;(2)求△BCM 的面积与△ABC 的面积的比. 四.(每小题8分,满分16分) 17.如图,二次函数32++-=mx x y 的图象与y 轴交于点A ,与x 轴的负半轴交于点B,且△AOB 的面积为6.(1)求该二次函数的表达式;(2)如果点P 在x 轴上,且△ABP 是等腰三角形,请直接写出点P 的坐标.第14题 第13题第10题18.如图,在平面直角坐标系中,过点M(0,2)的直线与x 轴平行,且直线分别与反比例函数6y x x =(>0)和0y x x =<()k的图象交于点P 、点Q . ⑴ 求点P 的坐标;⑵ 若△POQ 的面积为8 ,求k 的值 .五.(每小题10分,满分20分)19.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)商场的营销部结合上述情况,提出了A 、B 两种营销方案 方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元 请比较哪种方案的最大利润更高,并说明理由.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=﹣200x 2+400x 刻画;1.5小时后(包括1.5小时)y 与x 可近似地用反比例函数y=(k >0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少? ②当x=5时,y=45,求k 的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.Q yo x P M六.(本题满分12分)21.某体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表: 卖出价格x (元/件) 50 51 52 53 …… 销售量p (件) 500 490 480 470 ……(1)以x 作为点的横坐标,p 作为纵坐标,把表中的数据,在如图所示的直角坐标系中描出相应的点,观察连结各点所得的图形,判断p 与x 的函数关系式;(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x (元/件)的函数关系式(销售利润=销售收入-买入支出); (3)在(2)的条件下,当卖出价为多少时,能获得最大利润?七.(本题满分12分)22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A 、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min 时,A 、B 两组材料的温度分别为y A ℃、y B ℃,y A 、y B 与x 的函数关系式分别为y A =kx+b ,y B =(x ﹣60)2+m (部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A 、y B 关于x 的函数关系式;(2)当A 组材料的温度降至120℃时,B 组材料的温度是多少? (3)在0<x <40的什么时刻,两组材料温差最大?八.(本题满分14分)23、已知抛物线y=x 2+(2n-1)x+n 2-1 (n 为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出抛物线的函数关系式;并求出对称轴方程。
黄冈市长冲中学2014-2015学年上学期第一次月考九年级数学试题时间:120分钟,总分120分一、选择填空(从四个答案中选择一个正确答案3分×8=24分)1、下列方程中一定是关于x 的一元二次方程的个数有( )①02=++c bx ax ②022=x ③0222=++y xy x ④()013222=++++x x m mA 、1个B 、2个C 、3个D 、4个2、下列方程中有两个相等的实数根的方程是( )A 、022=+x xB 、0222=++a ax xC 、0442=--x xD 、022=++a ax ax3、方程()6232=+-x x 的解是( ) A 、321==x x B 、5,321=-=x xC 、1,321==x xD 、1,321-==x x4、若关于x 的一元二次方程()01122=++--k x k kx 有实数根,则k 的取值范围是( ) A 、031≠<k k 且 B 、31≤k C 、031≠≤k k 且 D 、k 为任意数 5、若函数()1222--+=m m x m m y 是二次函数,则m 的值是( )A 、-1B 、-1或3C 、2D 、36、若二次函数2ax y =的图象经过点 ()4,2-p ,则该图象必经过点( ) A 、(2,4) B 、(-2,-4) C 、(-4,2) D 、(4,-2)7、若βα、是一元二次方程,0132=+-x x 的两根,则22βα+的值是( )A 、6B 、7C 、8D 、98、计算机网络中有关节点的规定是:有一个总节点下分支出若干支节点,每个支节点下又分支出相同数量的次分支节点,所有的节点都是一台计算机,若在某一局域网络中共有计算机189台,设每个节点下分支出x 个支节点,则可列方程为( )A 、()1891=+x xB 、18912=++x xC 、()18911=+++x x xD 、()18912=+x x9、若抛物线的顶点坐标为(0,3),开口向下,请写出一个符合条件的抛物线的解析式:10、一元二次方程02=++c bx ax 有实根的条件是:11、方程()()03222222=-+++x x x x 的解是: 12、若一元二次方程的两根之和为1,两根之积为-1,写出符合条件的一个一元二次方程:13、一个长方形的长减少3cm ,宽增加2cm ,得到一个正方形,且这个正方形的面积与原长方形的面积相等,若设正方形的边长为x cm ,可列方程为:14、已知抛物线632-=x y ,则该抛物线的最低点的坐标为15、若a 是0132=+-x x 的解,则:=+-383a a16、若关于x 的一元二次方程0122=-++a x x 有两根为21,x x 且02121=⋅-x x x ,则a 的值是三、解答题(72分)(一)按要求解下 列方程(4分×5=20分)17、(配方法)522=-x x 18、(公式法)01522=+-x x19、(因式分解法)()102922-=--x x20、()()221429+=-x x 21、()()()()84321=++++x x x x22、已知实数b a ,是直角△ABC 的两条直角边,且满足()()025252222=-+++b a b a , 212+=+b a ,求△ABC 的面积(6分)23、(8分)已知关于x 的方程()0471222=--+-+a a x a x 的两根21,x x 且满足02332121=---⋅x x x x ,求aa a 24412+⋅⎪⎭⎫ ⎝⎛-+的值。
2014~2015学年度第一学期九年级数学第一次月考试题(总分150分,时间120分钟)A (卷)100分1、下列方程是一元二次方程的是( )A 、x 2+3x-2y =5B 、1x 2 -2x =1 C 、(x-1) 2 +1= x 2 D 、 5 x 2-8= 3 x 2、在用配方法解方程x 2-6x+1=0中,下列变形正确的是( ) A 、(x-3) 2=8 B 、(x+3) 2=8 C 、(x-3) 2=10 D 、(x+3) 2=10 3、方程x 2―3x ―5=0的根的情况是( )A .有两个不相等的实数根B . 有两个相等的实数根C .没有实数根D .无法确定4、关于x 的方程032)1(2=-++mx x m 是一元二次方程,则m 的取值是( ) A 、任意实数 B 、m ≠1 C 、m ≠-1 D 、m >-15、某商品经过两次降价,由单价100元调至81元,则平均每次降价的百分率是(A )8.5﹪ (B) 9﹪ (C) 9.5 ﹪ (D)10﹪ 6、某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
若平均 每月增率是x ,则可以列方程( );(A )720)21(500=+x (B )720)1(5002=+x (C )720)1(5002=+x (D )500)1(7202=+x7、三角形三边长分别是3和6,第三边长是方程0862=+-x x 的解,则这个三角形的周长是( )(A )11 (B )13 (C )11或13 (D )11和13 8、方程02=-x x 的根是( )(A )x =0 (B )x =1 (C )1,021==x x (D )1x =112-=x9、方程22(2)5m m x --=是一元二次方程,则m 的值是( )A .2±B .-2C .2D .410、若关于x 的方程0132=--x k x 有实数根,则k 的取值范围为( )A 、k ≥0B 、k >0C 、k ≥94-D 、k >94-二、填空题:(每小题3分,共30分) 11、已知方程x2+kx-6=0的一个根是2,则它的另一个根是 , 12、若070)(3)(22222=-+-+y x y x ,则=+22y x __________. 13、方程x x =2的解是 .14、已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是 15、已知x x +2的值是6,则=++3222x x .16、已知相邻的两个整数的积为12,那么这两个整数为 。
2014-2015学年九年级第一次月考数学试题一.选择题:(每题3分)1.(2005·甘肃兰州)已知m 方程012=--x x 的一个根,则代数式m m -2的值等于( )A.—1B.0C.1D.22.(2005·广东深圳)方程x x 22=的解为( )A.x =2B. x 1=2-,x 2=0C. x 1=2,x 2=0D. x =03.解方程)15(3)15(2-=-x x 的适当方法是( )A 、开平方法B 、配方法C 、公式法D 、因式分解法4.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A.9cm 2B.68cm 2C.8cm 2D.64cm 25.若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .m= —2D .2±≠m6. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)7.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6-B. 1C. 2D. 6-或18. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( )A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<09.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14 且a ≠0D .a >–14且a ≠0 10.对于抛物线21(5)33y x =--+,下列说法正确的是( ) (A )开口向下,顶点坐标(53),(B )开口向上,顶点坐标(53), (C )开口向下,顶点坐标(53)-,(D )开口向上,顶点坐标(53)-,二、填空题(每题3分)11.二次函数23y x bx =++的对称轴是2x =,则 b =_______.12.一元二次方程22310x x -+=的二次项系数为 ,一次项系数为 ,常数项为 ;13.抛物线2y ax bx c =++过点(10)A ,,(30)B ,,则此抛物线的对称轴是直线x = .14.一元二次方程20(0)ax bx c a ++=≠的求根公式为 ; 15.抛物线y=x 2+bx+c, 经过A (-1,0),B(3,0)两点,则这条抛物线的解析式为_____________16.当代数式532++x x 的值等于7时,代数式2932-+x x 的值是 ;17.关于x 的一元二次方程02)12(2=--+x m mx 的根的判别式的值等于4,则 =m ;18.目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x 个人,那么可列方程为 .19.若一个三角形的三边长均满足方程2680x x -+=,则此三角形的周长为 ;20.参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。
某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
2014-2015学年秋季鄂州市一中九年级上第一次月考数学试卷考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(每题3分,共30分)1.下列方程中,是关于x 的一元二次方程的为( )A .2x 2=0B .4x 2=3yC .x 2+1x=-1 D .x 2=(x -1)(x -2)2.将方程x 2+4x+2=0配方后,原方程变形为( )A .(x+4)2=2B .(x+2)2=2C .(x+4)2=-3D .(x+2)2=-53.若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A.()2y x 23=++ B.()2y x 23=-+ C.()2y x 23=+- D.()2y x 23=--4.关于x 的方程m (x+h )2+k=0(m ,h ,k 均为常数,m ≠0)的解是x 1=﹣3,x 2=2,则方程m (x+h ﹣3)2+k=0的解是( )A .x 1=﹣6,x 2=﹣1B .x 1=0,x 2=5C .x 1=﹣3,x 2=5D .x 1=﹣6,x 2=25.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低( )元.A .0.2或0.3B .0.4C .0.3D .0.26.已知关于x 的二次函数y =x 2-2x +c 的图像上有两点A(x 1,y 1), B(x 2,y 2),若x 1<1<x 2且x 1+x 2=2,则y 1与y 2的大小关系是( ) A .y 1<y 2 B .y 1>y 2 C .y 1=y 2 D .不能确定7. 二次函数y=ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )<a - b (m ≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OEF 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为( )9.如图,已知点A 1,A 2,…,A 2015在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2015在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2015在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2014201520152015C A C B 都是正方形,则正方形2014201520152015C A C B 的边长为( )A. 2014B. 2015C. 20142D. 2015210.当-2≤x ≤l 时,二次函数()22y x m m 1=--++有最大值4,则实数m 的值为( )A. 74- B. 3或3- C.2或3- D.2或3或74-第II 卷(非选择题)二、填空题(每题3分,共18分)11.已知(x 2+y 2)(x 2+y 2-1)-12=0,则x 2+y 2的值是_________。12.已知αβ,为方程2420x x ++=的两个实数根,则22αβ+ = .13.已知关于x 的二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根,则k 的取值范围是 .14.若抛物线y =x 2- mx +8的顶点在x 轴上,则m 的值是________.15.已知抛物线y=x 2﹣k 的顶点为P ,与x 轴交于点A 、B ,且△ABP 是正三角形,则k 的值是 。
学校 班级 考号 姓名_________________试场号______________装订线内不要答题2014—2015学年度上学期第一次考试初三数学试题第Ⅰ卷(选择题 共60分)一、选择题(每小题3分,共60分)1、在R t △ABC 中,∠C=90°,a=1,c=4,则sinA 的值是( ) A、14 C 、13 D2、在△ABC 中,∠C=900,如果tanA=512,那么sinB 的值的等于( ) A 、513 B 、1213 C 、512 D 、1253、在R t △ABC 中,∠C=900,若sinA=2,则cosB 的值为( ) A 、12 B、2 C、14. 如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( )(A)1对 (B)2对 (C)3对 (D)4对5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD,只要CD 等于( )A.c b 2B.a b 2C.c abD.ca 2(第4题图) (第5题图) (第6题图) (第 7题图)6.如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( ) (A)1条 (B)2条 (C)3条 (D)4条7.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) (A)ACAE ABAD = (B)FBEA CFCE = (C)BDAD BCDE = (D)CBCF ABEF =8.如图,ΔABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP=∠B ;②∠APC=∠ACB ;③AC 2=AP •AB ;④AB •CP=AP •CB ,能满足ΔAPC 与ΔACB 相似的条件是( ) (A)①②③ (B)①③④ (C)②③④ (D)①②④ 9.如图,ΔADE 绕正方形ABCD 的顶点A 顺时针旋转90°,得ΔABF ,连结EF 交AB 于H ,则下列结论错误的是( )(A)AE ⊥AF (B)EF ∶AF=2∶1 (C)AF 2=FH •FE (D)FB ∶FC=HB ∶EC(第8题图) (第9题图)10.三角形三边之比3:5:7,与它相似的三角形最长边是21cm ,另两边之和是( )。
初中2014-2015学年九(上)第一次月考数 学 试 题一、选择题(本题共8个小题,每小题3分,共24分)1.下列方程中,关于x 的一元二次方程是 ( ) A.223(1)x x x +=- B 21120x x +-=C. 20ax bx c ++=D. 2(1)1x x +=+ 2.如图,AB 是⊙O 直径,∠AOC=130°,则∠D=( ) A . 65° B .35° C .25°D .15°第2题图 第3题图 第4题图3.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A . 6B .5C .4D . 34. 如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若∠B =25°,则∠C 的大小等于( )A . 20°B .25°C .40°D . 50°5.已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x ⋅等于( )A . 4-B . 1-C . 1D . 46.在△ABC 中,O 为内心,∠A=70°,则∠BOC=( D )A . 140°B . 135°C . 130°D . 125° 7. 下列语句:①相等的圆周角所对的弧是等弧;②经过三个点一定可以作一个圆;③等腰直角三角形的外心不在这个三角形顶角的角平分线上;④等边三角形的内心到三角形三个顶点的距离相等,正确的个数为( )A .1B .2C .3D .48.已知Rt △ABC 中,∠C=90°,AC=3,BC=4,以C 为圆心,r 为半径的圆与边AB 有两个交点,则r 的取值范围是( )A .512=rB .512>rC .3<r <4D .3512≤<r 二、填空题(本题共10个小题,每小题3分,共30分)211.如图,⊙O 的半径为3,P 是CB 延长线上一点,PO =5,P A 切⊙O 于A 点,则P A = . 第11题图12.如图,AD 是正五边形ABCDE 的一条对角线,则∠BAD = °. 13.如图,量角器上的C 、D 两点所表示的读数分别是80°、50°,则∠DBC 的度数为 .14.如图,AB 是⊙O 的直径,CB 切⊙O 于B ,连结AC 交⊙O 于D ,若8cm BC =,DO AB ⊥,则⊙O 的半径OA = cm .15.若,a b 是方程x 2﹣2x ﹣1=0的两个实数根,则22a b +=_______。
河北省承德市兴隆县小东区中学2015届九年级数学第一次月考试题
一、选择题(1---6每题2分,7---12每题3分,共30分) 1.一元二次方程x 2
=2x 的解是( )
A . 0
B .0或2
C .2
D .此方程无实数解
2.一元二次方程4x 2=3的二次项系数、一次项系数及常数项分别是( ).
A .4,0,3
B .4,0,-3
C .4,1,3
D .4,1,-3
3.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .开口方向相反 D .都有最小值 4.下列方程中,一定是关于x 的一元二次方程的有( ).
①2x 2
+7=0 ②ax 2
+bx =0 ③(x -2)(x +3)=x 2
-1 ④3x 2
-x
4
+1=0 A .1个
B .2个
C .3个
D .4个
5.抛物线y=4x 2
+3x 与坐标轴交点个数是( )
A .1个
B .2个
C .3个
D .4个 6.下列方程中,没有实数根的方程是( ).
A .01
3+22=x -x B .03+2=x x C .02++2=x x D .
53
21=x
- 7.某厂3月的产值为50万元,5月上升到72万元,设这两个月平均每月增长的百分率为x ,列出的方程是( ).
A .72150
)=+(x B .721501502=)+()++(x x C .722150=×)+(x
D .72150
2=)+(x 8.如图5,已知抛物线c bx x y ++=2的对称轴为2=x , 点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( ) A .(2,3) B .(3,2) C .(3,3) D .(4,3) 9.二次函数2
21y x x =--+图像的顶点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 10.如果抛物线2
6y x x c =++的顶点在x 轴上,那么c 的值为( )
A .0
B .6
C .3
D .9
11.已知二次函数2y ax bx c =++,如果a >0,b <0,c <0,那么这个函数图像的顶点必在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
图5
12.如图所示,满足a >0,b <0的函数2y ax bx =+的图像是( )
二、填空:每题3分,共30分)
13.把方程024+)=)((x -x 化为一般形式_________________后,二次项为 ,一次项为_________,常数项为__________.
14.方程01+32=+)(ax x a -a
是关于x 的一元二次方程,则a = .
15.某住宅郊区准备开辟一块面积为600 m 2
的矩形绿地,要求长比宽多10m ,设绿地宽为x m ,则可列方程为 。
16.若一元二次方程kx 2
+2x -1=0没有实数根,则k 的取值范围是_________________. 17.流感的传染速度较快,现有一患者,若一轮一人传染x 人,经过两轮传染共有 人患病. 18.若a ,b 是方程x 2
+2 014x +1=0的两个根,则(a 2
+2014a )+(b 2
+2014b )= 。
19.化243y x x =++为2()y a x h k =-+的形式是 ,图像的开口向__,顶点是 ,对称轴是 。
20.抛物线2
41y x x =+-的顶点是 ,对称轴是 。
21、把二次函数y=-3
1(x+2)2
的图像向 平移 个单位得到抛物线y=-3
1x 2
.
22. y=-3
1(x+2)2
顶点 对称轴 ,与x 轴交点
与y 轴交点 。
三、解答题(40分)
23、解方程:(8分) (1)(x+2)2
=2x+4 (2)x 2
-12x+5=0
24、(8分)已知抛物线2
12
y x x c =++与x 轴有交点.(1)求c 的取值范围;(2)试确定直线y =cx +l 经过的象限,并说明理由.
25、(10分)金鹰超市新进商品每件价格是120元,在试销期间发现,当每件商品的价格是130元时,每天可售70件,当每件商品的售价高于130元时,每涨1元,日销售量就减少1件,按此规律,请回答:(1)当每件商品的售价定为170元时,每天可售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少时,商场的日盈利可达到1600元?
26、(14分)如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),
点C在y轴的正半轴上,且AB=OC.
(1)求点C的坐标;
(2)求这个二次函数的解析式,并求出该函数的顶点坐标及最大值.
(3)求S△ABC。
(4)抛物线上是否存在一点D,使S△ABC=S△ABD;若存在,求出点D的坐标,若不存在,请说明理由。