一种微机电系统器件的建模与仿真
- 格式:pdf
- 大小:366.70 KB
- 文档页数:4
微机电系统器件设计模型仿真及实验验证微机电系统(MEMS)技术是一种集成了机械、光学、电子和计算机技术的新型技术,逐渐应用于各个领域,包括医疗、通信、能源等。
在MEMS器件设计中,模型仿真和实验验证是非常重要的步骤,可以验证器件设计的可行性和性能表现,优化设计方案,提高研发效率。
本文将介绍MEMS器件设计模型仿真及实验验证的流程和方法,并探讨其在实际应用中的意义。
首先,MEMS器件设计的模型仿真是一种基于计算机模型的仿真技术,通过建立数学模型和使用相应的软件工具,对器件的结构和性能进行预测和分析。
常用的仿真软件包括ANSYS、COMSOL等。
模型仿真可以帮助设计人员快速建立和修改器件结构,优化材料选择和几何参数,预测器件的力学、光学、热学等性能指标。
仿真结果可以减少研发时间和成本,提高设计的准确性和可靠性。
其次,实验验证是将设计的MEMS器件制作成实际样品,并通过实验测试来验证器件的性能和功能。
实验验证可以分为两个阶段:样品制作和测试验证。
样品制作包括器件工艺流程的设计与实施,包括光刻、湿法腐蚀、离子刻蚀等工序。
测试验证包括对器件性能的定量测量和质量评估,例如使用扫描电子显微镜(SEM)观察器件结构的形貌和表面粗糙度,使用光学显微镜观察器件是否工作正常,使用激光干涉仪测试其位移或力学性能等。
在实际应用中,MEMS器件设计模型仿真和实验验证具有重要的意义。
首先,通过仿真可以提前预测器件的性能和功能,避免不必要的实验测试,减少研发时间和成本。
其次,仿真可以进行多次参数优化和设计方案的比较,最终选定性能最佳的器件方案。
而实验验证可以验证仿真结果的准确度和可靠性,确保器件在实际制造和使用过程中的性能符合设计要求。
此外,实验验证还可以发现和解决仿真无法考虑到的一些问题,如器件工艺可行性、制造工艺的复杂度等。
当然,MEMS器件设计模型仿真和实验验证也面临一些挑战。
首先,MEMS器件设计的模型仿真在建模过程中需要准确的物理特性参数和材料参数,而这些参数通常需要进行实验测试,并可能受到误差的影响。
目录1 引言 (1)1.1 课题的背景与意义 (1)1.1.1 课题背景 (1)1.1.2 课题意义 (1)1.2 永磁电机发展概况 (1)2 机电能量转换和拉格朗日方程 (2)2.1 机电能量转换 (2)2.2 三相同步电机电磁转矩 (7)2.3 拉格朗日方程 (9)3 三相永磁同步电机的数学模型 (11)3.1 三相PMSM的基本数学模型 (11)3.2 三相PMSM的坐标变换 (13)3.2.1 Clark变换 (13)3.2.2 Park变换 (14)3.3 同步旋转坐标系下PMSM的数学模型 (14)4 三相永磁同步电机的矢量控制 (16)4.1 转速环PI调节器的参数整定 (16)4.2 电流环PI调节器的参数整定 (17)4.3 三相PMSM矢量控制系统的仿真 (19)4.3.1 仿真建模 (19)4.3.2 仿真结果分析 (22)总结 (23)参考文献 (23)三相永磁同步电机矢量控制建模与仿真摘要:永磁同步电机具有体积小、效率和功率因数高等优点,因此越来越多的应用在各种功率等级的场合。
永磁同步电机的控制是永磁同步电机应用的关键技术,永磁同步电机的结构特点使得采用矢量控制系统有很大的优势。
本文首先分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。
此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。
基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性。
关键词:永磁同步电机,矢量控制,Simulink1 引言1.1 课题的背景与意义1.1.1 课题背景交流电机的控制性能在磁场定向矢量控制技术提出后才有了质的飞跃。
磁场定向矢量控制技术采用的是励磁电流和转矩电流的解稱控制,兼顾磁场和转矩的控制,克服了交流电机自身耦合的缺点。
4/200417科技导报4/2004微机电系统(MEM S )技术的研究与应用高世桥1曲大成2(北京理工大学机电工程学院,博士、教授、博士生导师1;信息科学技术学院,博士2北京100081)一、微机电系统的发展在自然界中,人们对未知领域的物理研究越来越呈现出两级化的发展趋势。
一方面是针对宇宙的极大化研究,尺度特征为光年,研究手段以射电望远镜为代表;另一方面是针对原子、分子和电子等的极小化研究,尺度特征为微米、纳米甚至皮米,研究手段以扫描隧道显微镜为代表。
这其中,微型化是近二三十年自然科学和工程技术发展的一个重要趋势,而微/纳米技术的研究则推动了这一领域的蓬勃发展。
微机电系统(M icroelectrom echanical S y stems ,简称MEM S )是微/纳米技术研究的一个重要方向,是继微电子技术之后在微尺度研究领域中的又一次革命。
MEM S 是指将微结构的传感技术、致动技术和微电子控制技术集成于一体,形成同时具有“传感-计算(控制)-执行”功能的智能微型装置或系统。
MEM S 的加工尺寸在微米(μm )量级,系统尺寸在毫米(mm )量级。
它的学科交叉程度大,其研究已延伸至机械、材料、光学、流体、化学、医学、生物等学科,技术影响遍及包括各种传感器件、医疗、生物芯片、通信、机器人、能源、武器、航空航天等领域。
MEM S 的发展源于集成电路,但又与之有所区别;MEM S 能够感知物理世界中的各种信息,并由计算单元对信息进行处理,再通过执行器对环境实施作用与控制。
微型化是MEM S 的一个重要特点,但不是唯一特点。
首先,MEM S 不仅体积小、重量轻,同时具有谐振频率和品质因子高(高Q 值)、能量损失小等特点。
其次,可批量加工特点大大降低了MEM S 产品成本;若借助于MEM S 器件库,MEM S 的设计将更加灵活,重用率更高。
最后,强大的计算能力是MEM S 系统实现信息采集、处理、控制的关键,充分利用集成电路的计算优势将会拓展MEM S 在智能控制等领域的应用。
复杂机电系统的建模与仿真技术研究现代机电技术越来越注重复杂系统的研究和开发,但是复杂系统往往由多个子系统的耦合构成,使得系统的设计、测试和优化等方面变得极为复杂和困难。
在这方面,建模和仿真技术的快速发展为复杂机电系统的研究提供了一种新的途径。
一、复杂机电系统的建模建模是复杂机电系统研究的重要基础,合理的建模可以快速的形成有效的仿真模型。
当然,建模的方法和技术是多种多样的,常见的有基于数学模型的建模方法,基于物理模型的建模方法和神经网络建模方法等等。
但是不管采用何种建模方法,建模效果好坏的关键在于模型的准确性和可靠性。
下面以数学模型为例,对复杂机电系统建模的几个关键点进行探讨。
1. 选择合适的建模工具选择合适的建模工具是建立复杂机电系统的数学模型的首要任务。
例如在机电一体化系统中因为涉及到多学科交叉,如电、机、液体等领域,因此在进行建模时需要采用比较通用的模型语言如Modelica或者MATLAB/Simulink等。
此外在涉及到特定领域,如风电系统、电力工程等,需要采用相应的软件,如ANSYS等。
当然,选择合适的建模工具不仅与领域有关,也需要考虑建模的复杂程度、重复利用性等因素。
2. 建立合理的变量模型建立复杂机电系统的数学模型,还需要考虑变量的建模。
系统中的变量包括输入、输出和控制变量等,它们具有不同的物理意义和参考系。
在模型建立过程中,需要建立一套合理的变量模型来表示系统的物理特征。
通常来说,在进行机电系统的变量建模时,需要将其分为机械、电气、液压和控制四个方面。
对于机械系统,常见的变量有位移、速度和加速度等。
对于电气系统,常见的变量有电流、电势和电磁力等。
液压系统中需要表达变量如液压油压力、流速等。
控制方面常用的变量如误差、控制量等。
理性建立合理的变量模型对模型的准确性和可靠性具有至关重要的意义。
3. 导出正确的物理方程机电的数学模型通常是由一系列的微分方程和代数方程组成的,因此构建数学模型的关键在于正确的表示物理方程。
可靠性仿真技术应用已经到来可靠性仿真技术背景介绍当前全球科技水平的不断提升使得航空航天、军事装备等行业得到空前发展。
高科技产品功能结构复杂、系统组成庞大、研发周期长费用高、可靠性问题突出。
传统的基于统计的可靠性设计分析方法,与性能设计专业技术体系不一致,在设计过程中难以相互融合,造成可靠性设计分析工作往往滞后于性能设计分析工作,可靠性设计分析难以对产品的设计状态产生真正影响。
同时,传统的可靠性试验与评估方法需要大量新研产品进行试验,往往在研制后期才能开展。
通过可靠性试验发现产品薄弱环节再进行设计更改,时间周期长并且代价较大。
工程实践表明,传统的可靠性设计分析与试验评估方法,越来越难满足高科技产品高可靠长寿命的需求。
近年来,数字样机与虚拟仿真等相关技术发展迅速,国内外大部分科研机构都采用虚拟仿真技术进行产品三维建模装配与功能/性能分析,从而在设计阶段早期获得产品性能参数并改进设计。
目前,将可靠性工作融入到产品设计和分析仿真过程,在工程上有着强烈的需求。
可靠性仿真技术充分利用产品现有的功能/性能模型及相关CAD工具,以系统功能/性能模型为内核,以可靠性模型为外壳,联合各专业CAD 工具建立综合集成环境,实现可靠性与性能一体化建模仿真,支持在设计阶段开展基于仿真的可靠性设计、分析与评价。
可靠性仿真结果可以为可靠性与性能的协同设计与分析提供模型与数据支持。
综上可知,可靠性仿真技术对于解决工程中可靠性设计与性能设计“两张皮”问题具有极高的实用价值。
国外可靠性仿真技术的进展与趋势设备可靠性仿真技术美国NASA的AMES研究中心通过C-MAPSS(商用航空推进系统仿真模块)建立飞机发动机系统模型,通过单元退化机理模型和响应面技术构建了发动机性能参数的退化模型。
该方法可以应用单元退化机理来预测系统退化过程和寿命。
美国Sandia国家实验室开发了基于CAD/CAE的可靠性仿真分析工具,通过虚拟仿真和物理加速试验相结合,对微型机械等设备的关键薄弱环节进行定位和评价。
• 97•对单个纳米级物体的可控转动在纳米级微结构的装配、生物微小样品的试验等科技领域中是一项特别重要的科学技术。
这个领域的器件种类较多,可是对于这些用于转动纳米级物体的超声波振动器件的有限元仿真分析相对较少,这就造成了很难对这些器件的性能进行提高。
在本文中,针对该类型的器件进行了振动特性分析,运用3D 有限元分析方法,得到了一些对该类型器件优化提高的方法。
在纳米级微结构的组装、生物学样品的排布、纳米级物体的测量等领域中对纳米级物体的可控转动是一项重要的科学技术。
现阶段存在许多方法,通过各种物理学原理来驱动纳米级物体的转动,比如光柱、电磁场、超声波等。
在所有的方法中,运用超声置。
金属盖板为正方形,材质不锈钢,尺寸为20mm ×20mm ×2mm ,压电陶瓷环的内径为6mm ,外径为12mm ,厚度为1.2mm 。
压电陶瓷环的材料参数如下:压电常数为250×10-12C/N ,机电耦合系数k 33为0.63,机械品质因数Q m 为500,介电损耗因子tan δ为0.6%,密度为7450kg/m 3。
振动传输片为长方形的窄条,长为48mm ,宽为2mm ,高为0.5mm ,固定在金属盖板的一个尖角上,长度方向与金属盖板的角平分线方向重合。
当整套实验设备正常工作时,在液膜中的单根银质纳米棒进入到工作区域后,纳米棒将会被吸附至微小型玻璃纤维针的尖部,绕着纳米棒的中心或者一个端部进行旋转。
一种超声波器件的3D有限元仿真与分析中国船舶集团公司第七一五研究所 王晓飞波来驱动纳米级物体的转动具有很大的优点,它可以驱动没有磁性的物体,不会对样品有高温损伤,相应的器件结构简单成本低。
2014年,研究团队运用振动传输片产生超声学流驱动单根银质的纳米棒绕着微小型玻璃纤维针做圆周运动。
然而,针对这些用于驱动纳米棒转动的超声波换能器的有限元仿真分析并不多。
在本文中,运用有限元软件对用于驱动单根银质纳米棒绕微小型玻璃纤维针转动的换能器进行仿真分析,得到其振动特征。
《微机电系统》课程教学大纲课程代码:010132024课程英文名称:Micro-Electro-Mechanical Systems(MEMS)课程总学时:16 讲课:16 实验:0 上机:0适用专业:机械设计制造及其自动化大纲编写(修订)时间:2010.7一、大纲使用说明(一)课程的地位及教学目标微机电系统是制造工程领域的最重要发展方向之一,也是高新技术发展的前沿技术。
是20世纪末、21世纪初兴起的工程科学前沿,是当前一个十分活跃的研究领域。
它被广泛应用于机械制造工程领域、信息工程领域、医学工程领域、武器装备领域和日常生活中高新技术产品制造领域等,因此,对从事制造工程领域的工程技术人员来说,学习和掌握该知识有着重要的意义。
本课程的教学目标是,通过该课程的教学使学生了解制造工程领域技术的新发展,掌握一定的制造工程领域的最新知识,培养学生的微小机械的设计和制造能力,提高学生的创新思维意识。
通过该课程的教学使学生掌握或了解微机电系统的相关基础知识,为后续工作中的技术水平的提高和发展奠定一定的基础。
同时,将微机电系统领域的新理论、新方法、新技术等传授给学生。
并使学生理解并掌握微机电系统领域理论体系及相关产品在实际中的应用情况。
(二)知识、能力及技能方面的基本要求1.掌握微机电系统的概念、技术范畴;了解微机电系统在国民经济中的地位和作用。
2. 掌握微机电系统的设计方法与理念。
3. 掌握典型微机电系统的制造技术方法的原理及关键问题,针对具体加工对象选择相应的方法。
4. 能适当选择微机电系统的测量技术方法,了解相应的原理。
5. 了解微机电系统的发展动态,以及在高新技术领域与国防领域的应用。
(三)实施说明1. 结合MEMS技术的发展和生产实际,更新教学内容,特别要注重微机电技术发展中新技术的应用。
2. 开展实际工程案例教学,充分利用多媒体等现代化教学手段。
3. 课堂教学要与教师科研实际相结合,培养学生的创新能力和解决工程实际问题的能力。
学院专业姓名学号指导教师邮箱提交日期一、摘要电力系统仿真计算己经成为电力系统设计、运行与控制中不可缺少的手段。
通过设置不同故障类型、不同故障地点运用仿真技术可以对电力系统的暂态稳定进行分析。
本文采用IEEE 3 机9 节点的经典多机模型,基于隐式梯形积分法对系统发生三相金属性短路故障进行仿真,分析系统在这种情况下的暂态稳定。
发电机模型采用经典的二阶模型;负荷采用恒定阻抗负荷。
在Matlab2010 上编写程序进行调试和运行。
电力系统是由不同类型的发电机组、多种电力负荷、不同电压等级的电力网络等组成的十分庞大复杂的动力学系统。
其暂态过渡过程不仅包括电磁方面的过渡过程,而且还有机电方面的过渡过程。
由此可见,电力系统的数学模型是一个强非线性的高维状态方程组。
在动态稳定仿真中使用简单的电力系统模型,通过仿真计算分析说明,此仿真方法可以进行简单的电力系统暂态分析,对提高电力系统暂态稳定具有重要意义。
二、案例本次课程主要应用P. M. Anderson and A. A. Fouad 编写的《Power System Control and Stability》一书中所引用的Western System Coordinated Council (WSCC)三机九节点系统模型。
系统电路结构拓扑图如下:图2-1 3 机9 节点系统系统数据其中,节点数据如下:节点号有无负载类型电压相角有功负荷无功负荷有功出力无功出力电压基准期望电压N=[1 0 3 1.0400 0.00 0.00 0.00 71.60 27.00 16.50 1.0402 0 2 1.0250 0.00 0.00 0.00 163.00 6.70 18.00 1.0253 0 2 1.0250 0.00 0.00 0.00 85.00 -10.90 13.80 1.0254 0 0 1.0000 0.00 0.00 0.00 0.00 0.00 230.00 1.0265 1 0 1.0000 0.00 125.00 50.00 0.00 0.00 0.00 0.9966 1 0 1.0000 0.00 90.00 30.00 0.00 0.00 0.00 1.0137 0 0 1.0000 0.00 0.00 0.00 0.00 0.00 230.00 1.0268 1 0 1.0000 0.00 100.00 35.00 0.00 0.00 0.00 1.0169 0 0 1.0000 0.00 0.00 0.00 0.00 0.00 230.00 1.032]; %支路数据% 从到电阻电抗容纳类型变比B=[1 4 0.0 0.0576 0.0 1 12 7 0.0 0.0625 0.0 1 13 9 0.0 0.0586 0.0 1 14 5 0.010 0.085 0.176 0 04 6 0.017 0.092 0.158 0 05 7 0.032 0.161 0.306 0 06 9 0.039 0.170 0.358 0 07 8 0.0085 0.072 0.149 0 08 9 0.0119 0.1008 0.209 0 0];发电机数据如下:% 发电机母线Xd Xd' Td0' Xq Xq' Tq0’Tj XfGe=[ 1 1 0.1460 0.0608 8.96 0.0969 0.0969 0 47.28 0.05762 2 0.8958 0.1198 6.00 0.8645 0.1969 0.535 12.80 0.06253 3 1.3125 0.1813 8.59 1.2578 0.2500 0.600 6.02 0.0585];三、仿真框图在仿真之前,首先,应明确仿真的所要到达的结果,即仿真目标:本此仿真的结果主要是得到发电机攻角、转速随时间变化的值,包括故障前、故障中、故障后。