数字微波系统框图
- 格式:ppt
- 大小:1.45 MB
- 文档页数:117
一文看懂数字射频存储器(DRFM)的框图及其功能什么是数字射频存储器(DRFM)数字射频存储器(DRFM)是一种微波信号存储系统,用于实现射频信号存储及转发功能。
数字射频存储器通过对接收到的射频信号进行高速采样、存储、变换处理和重构,实现对信号捕获和保存的高速性、干扰技术的多样性和控制的灵活性。
数字射频存储器已成为电子对抗系统中的关键组成部分。
数字射频存储器的基本工作原理数字射频存储(DRFM)的基本工作原理:首先将输入射频信号下变频为中频信号,经A/D变换后成为数字信号,写入高速存储器中。
当需要重发这一信号时,在控制器控制下读出此数字信号并由D/A变换为模拟信号。
然后用同一本振作上变频,得到射频输出信号,完成对输人信号的存储转发。
首先对量化过程进行分析,现假设基带输入信号为一个正弦信号gi(t)=Esinωit,量化位数为N,经过量化后的信号可用阶梯波y(t)表示,y(t)可以被认为是N对矩形波的叠加。
如果A/D变换的量化位数为m,那么正或负半周的量化台阶数为N=2m-1。
阶梯波的表达式为:E2n+1就是量化产生的谐波分量幅度,可由该式计算各阶谐波的功率。
在采样的过程中,为简便起见,以一位量化信号作为输入,则输入信号为:式中:E,ωi分别为输入信号的幅度和角频率。
设采样脉冲信号为fs(t),采样后的信号为fo(t),则采样过程在时域上的数学表示式为fo(t)=fi(t)fs(t),在DRFM中采用等间隔均匀采样,采样周期为Ts,采样时钟频率ωs=2πfs。
在实际电路中,采样是在采样脉冲上升的瞬间完成的。
因此采样脉冲的宽度可以看成一个窄脉宽,用τs。
来表示。
采样脉冲的傅里叶级数为:式中:Es,τs,Ts和ωs分别为采样信号的幅度、脉宽、周期和角频率。
则:。
数字信号无线传输技术摘要:数字信号已进入了现代社会的各个领域,同模拟信号传输相比,数字信号传输有很大的变化。
本文简要阐述了数字信号无线传输特性,以及无线信道对信号的影响,提出了信号改善途径。
关键词:数字信号;信道;无线传输中图分类号:TN 文献标识码:A0 引言在信号传输中,不同的数据必须转换为相应的信号。
模拟数据一般采用模拟信号(Analog Signal),数字数据则采用数字信号(Digital Signal)。
模拟信号的瞬时值的状态数是无限的,如低频正弦信号、语音信号、图像信号等;而数字信号的瞬时值的状态数是有限的,如计算机和电报机的输出信号等。
模拟信号在传输过程中,由于噪声的干扰和能量的损失总会发生畸变和衰减,所以模拟传输时,每隔一定的距离就要通过放大器来放大信号的强度。
然而放大信号强度的同时,由噪声引起的信号失真也随之放大。
当传输距离增大时,多级放大器的串联会引起失真的叠加,从而使信号的失真越来越大。
而数字传输,只有代表了0和1变化模式的数据,方波脉冲式的数字信号在传输过程中除了会衰减外,也会发生失真,但它是采用转发器来代替放大器。
转发器可以通过阈值判别等手段,识别并恢复其原来的0和1变化的模式,并重新产生一个新的完全消除了衰减和畸变的信号传输出去,这样多级的转发不会累积噪声引起的失真。
1 数字信号无线传输的特性信道是信号的传输媒质,按传输媒质的不同,信道可分为有线信道和无线信道,其中无线信道随机性较大,变化快,主要有长波信道、中波信道、短波信道、地面微波信道、卫星信道、散射信道、红外信道及空间激光信道等。
现代移动通信系统都使用数字调制技术,随着超大规模集成(VLSI)技术和数字信号处理(DSP)技术的发展,数字传输系统比模拟传输系统更有效。
数字传输有许多优点:(1)数字信号本身具有更好的抗噪能力和更强的抗信道损耗性能。
采用再生中继、纠错编码等差错控制措施后,数字信号可以再生而消除噪声的累积,甚至可在噪声远大于有用信号的情况下,保证获得可接受的保真度和误码率。
!一、1.通信系统的组成:通信系统由信息发送者(信源)、信息接收者(信宿)和处理、传输信息的各种设备共同组成。
2.通信网的组成:从物理结构或从硬件设施方面去看,它由终端设备、交换设备及传输链路三大要素组成。
终端设备主要包括电话机、PC机、移动终端、手机和各种数字传输终端设备,如PDH端机、SDH光端机等。
交换节点包括程控交换机、分组交换机、ATM交换机、移动交换机、路由器、集线器、网关、交叉连接设备等等。
传输链路即为各种传输信道,如电缆信道、光缆信道、微波、卫星信道及其他无线传输信道等。
3.电力系统的主要通信方式:电力线载波通信:是利用高压输电线作为传输通路的载波通信方式,用于电力系统的调度通信、远动、保护、生产指挥、行政业务通信及各种信息传输。
光纤通信:是以光波为载波,以光纤为传输媒介的一种通信方式。
微波通信:是指利用微波(射频)作载波携带信息,通过无线电波空间进行中继(接力)的通信方式。
卫星通信:是利用人造地球卫星作为中继站来转发无线电波,从而进行两个或多个地面站之间的通信。
移动通信:是指通信的双方中至少有一方是在移动中进行信息交换的通信方式。
4.名词解释通信系统:从信息源节点(信源)到信息终节点(信宿)之间完成信息传送全过程的机、线设备的总体,包括通信终端设备及连接设备之间的传输线所构成的有机体系。
二、1.数字通信系统模型:;2.根据是否采用调制,通信系统分为:基带传输系统和频带传输系统。
3.传输多路信号的复用方式有:频分复用(FDM)、时分复用(TDM)、码分复用(CDM)、波分复用(WDM)、空分复用(SDM)。
5.香农公式连续信道的信道容量取决于:信号的功率S;信道带宽B;信道信噪比S/N。
6.按照调制信号m(t)对载波信号c(t)不同参数的控制,调制方式分为:幅度调制、频率调制、相位调制。
7.调制的作用:(1)进行频谱搬移.把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输的已调信号.(2)实现信道多路复用,提高信道的频带利用率.(3)通过选择不同的调制方式改善系统传输的可靠性。
SDH技术在微波通信中的应用摘要:SDH微波通信是新一代的数字微波传输体制。
数字微波通信是用微波作为载体传送数字信息的一种通信手段。
它兼有SDH数字通信和微波通信两者的优点,由于微波在空间直线传输的特点,故这种通信方式又称为视距数字微波中继通信。
本文主要介绍SDH数字微波通信技术的组成、特点及应用。
一、SDH数字微波通信系统的组成(1)数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。
如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。
组成此通信线路设备的连接方框图如图2所示。
它分为以下几个部分:(2)用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。
(3) 交换机。
这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。
这种交换可以是模拟交换,也可以是数字交换。
(4) 数字电话终端复用设备(即数字终端机)。
其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。
(5) 微波站。
按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。
SDH微波终端站的发送端完成主信号的发信基带处理、调制、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收、解调、收信基带处理。
终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。
(6) 数字微波中继站。
主要完成信号的双向接收和转发。
有调制、解调设备的中继站,称再生中继站。
需要上、下话路的中继站称微波分路站,它必须与SDH 的分插复用设备连接。
再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。