中央空调监控系统
- 格式:doc
- 大小:44.50 KB
- 文档页数:6
中央空调自控系统基本原理中央空调自控系统是一种通过自动控制技术,实现对中央空调系统运行状态的监测、调节和控制的系统。
它是现代建筑中不可或缺的一部分,能够提供舒适的室内环境,并且具有节能、智能化的特点。
中央空调自控系统的基本原理是通过传感器、控制器和执行器等组成的硬件设备,以及相应的软件算法,实现对空调系统的自动控制。
首先,传感器会感知室内外的温度、湿度、风速等参数,并将这些数据传输给控制器。
控制器根据预设的温度、湿度等设定值,通过与传感器的数据对比,判断当前的环境状态,并做出相应的控制决策。
最后,控制器会通过执行器控制空调系统的运行,调节室内温度、湿度等参数,以达到预设的舒适目标。
中央空调自控系统的核心是控制器,它是整个系统的大脑。
控制器通常由微处理器、存储器、输入输出接口等组成,能够实现数据的处理、存储和通信等功能。
控制器通过与传感器和执行器的连接,实现对室内环境的监测和控制。
同时,控制器还可以与外部设备进行通信,如与计算机、手机等进行远程监控和控制。
在中央空调自控系统中,传感器起到了收集环境数据的作用。
常见的传感器有温度传感器、湿度传感器、CO2传感器等。
这些传感器能够实时感知室内外的环境参数,并将数据传输给控制器。
控制器通过对传感器数据的分析和处理,能够准确判断当前的环境状态,从而做出相应的控制策略。
执行器是中央空调自控系统中的另一个重要组成部分。
执行器通常包括电动阀门、风机、压缩机等。
控制器通过与执行器的连接,能够控制它们的开关、运行速度等,从而实现对空调系统的调节和控制。
例如,当室内温度过高时,控制器会通过执行器控制空调系统的运行,降低室内温度,使其达到预设的舒适范围。
除了硬件设备,中央空调自控系统还需要相应的软件算法来实现自动控制。
这些算法通常包括PID控制算法、模糊控制算法等。
PID控制算法是一种经典的控制算法,通过对误差、积分和微分的综合调节,实现对系统的稳定控制。
模糊控制算法则是一种基于模糊逻辑的控制方法,能够处理不确定性和模糊性的问题,提高系统的鲁棒性和适应性。
本科毕业设计题目:基于FameView的中央空调监控系统的设计学院: 信息科学与工程学院专业: 自动化学号:学生姓名:指导教师:日期: 二○一六年六月摘要随着科学技术的发展,中央空调系统的应用越来越广泛。
由于中央空调系统是可变的,复杂的,时变系统,它的元素之间的非线性和滞后现象严重。
本文在分析中央空调的结构组成及其工作原理的基础上,研究设计了基于FameView组态软件的中央空调监控系统。
本次设计的中央空调系统采用的是水循环系统。
工作原理是由制冷机组流出的低温的冷冻水,通过冷冻水管道,流通过每一个空调风机盘管的区域然后和房间内的空气进行热交换,从室内吸收大量的热量来达到冷却房间的目的。
制冷机组在降低冷却水温度的同时,其会产生大量的热。
冷却水吸收热,使温度上升,然后由冷却水泵将冷却水泵入到冷却塔。
冷却水和空气在冷却塔中进行热交换,降低了冷却水的温度和最后返回到制冷机组。
冷却水连续地循环并带走由制冷机组释放的热量。
在中央空调系统基础上加上检测装置与执行机构后共同构成的整体即中央空调监控系统。
在该系统中,计算机实现了生产过程的检测、监督和控制功能。
本次设计采用组态软件设计绘制中央空调监控系统的画面,整体画面简洁易于操作,基本能真实监控中央空调系统的整个工作过程,达到了设计的目的。
关键词:中央空调;监控系统;水循环系统;组态软件AbstractWith the development of science and technology, the application of central air-conditioning systems is more and more widely. Since the central air conditioning system is variable and complex, time-varying system, serious nonlinear and hysteresis between its elements. Based on the analysis of the structure and working principle of central air conditioning, on the basis of the study design based on FameView configuration software monitoring and control system of air conditioning.The design of central air conditioning system adopts the water circulation system. The working principle is low temperature of chilled water from flowing out of the refrigeration unit , through the chilled water pipe , flowing through the region of each of the air conditioning fan coil and exchanging heat with the air tube of the blowing plate , taking a lot of heat from the room and achieving the purpose of cooling for room.When the chiller plants decreases the chilled water temperature, it can give off a lot of heat. Cooling water absorbs the heat and makes the temperature rise, and then delivers them to the cooling tower by cooling water pump. Cooling water and air make heat exchange in the cooling tower, reducing the temperature of the cooling water and finally returned to the chiller plants. The cooling water continuously cycles and takes away the heat released by chiller plants.On the basis of the central air conditioning system combined with detection devices and actuators together after the central air conditioning monitoring system as a whole. In this system, computer realize the production process inspection, supervision and control functions.This design adopts configuration software design drawing picture monitoring system of central air conditioning, the overall picture is concise and easy to operation, basic can monitor the whole process of central air conditioning system, achieve the goal of the design.Keywords: The central air conditioning; The monitoring system; Water circulation system; Configuration software目录绪论 (1)1 课题背景 (2)1.1 中央空调发展现状 (2)1.2 组态软件发展现状 (2)1.3 本章小结 (3)2 杰控组态软件简介 (4)2.1 FameView组态软件的特点及功能 (4)2.2 FameView组态软件的系统结构 (4)2.3 FameView组态软件特色 (5)2.4 设计测试环境 (6)2.5 本章小结 (6)3 中央空调系统简介 (7)3.1 中央空调系统组成 (7)3.2 中央空调工作原理 (7)3.3 制冷机组 (8)3.4 冷却塔 (8)3.5 冷却水循环 (8)3.6 冷冻水循环 (9)3.7 风机盘管 (9)3.8 本章小结 (9)4 中央空调监控系统画面制作 (10)4.1 中央空调监控画面制作流程 (10)4.1.1 新建基于FameView的中央空调监控系统 (10)4.1.2 安装相关驱动 (10)4.1.3 建立设备数据表 (11)4.1.4 运行数据库 (12)4.1.5 画面制作 (12)4.2 画面制作具体操作过程 (13)4.2.1 监控系统总流程图 (13)4.2.2 智能控制图 (14)4.2.3 变频控制图 (15)4.2.4 风机运行状态图 (16)4.2.5 数据分析图 (18)4.2.6 管道实时温度曲线 (19)4.2.7 子画面 (19)4.2.8 变量表 (20)4.2.9 报表 (21)4.2.10 用电量柱状图 (22)4.3 本章小结 (23)结束语 (24)参考文献 (25)致谢 (26)附录 (27)绪论随着社会的不断进步,人们生活水平得到不断地改善,已经从原来的温饱阶段过渡到追求更舒适的生活环境的小康阶段。
中央空调监控原理
中央空调监控系统是为了实现对中央空调设备的实时监测和管理而设计的。
该系统基于传感器技术和通信技术,通过采集和传输各种参数和状态数据,实现对中央空调设备的监控和控制。
首先,中央空调监控系统利用传感器对中央空调设备的各种参数进行实时监测。
例如,温度传感器可以测量空调系统的进出风口温度,湿度传感器可以监测空调系统的湿度水平,压力传感器可以测量系统中的压力变化等。
这些传感器将实时采集的数据转化为电信号,并传输到监控系统中进行处理。
其次,中央空调监控系统通过通信技术将采集到的数据传输到监控中心。
常见的通信方式包括以太网、无线网络、RS485总线等。
监控中心接收到数据后,通过数据解析和处理,可以实时显示中央空调设备的参数和状态信息。
监控中心通常配备有人机界面,操作人员可以通过界面进行实时监测和控制。
此外,中央空调监控系统还可以通过设定阈值来实现报警功能。
当某个参数超出设定的范围或出现异常时,监控系统会立即发出警报,提醒操作人员及时采取措施。
这样可以有效避免在参数超出范围时对中央空调设备造成进一步的损伤,同时也提高了设备的可靠性和安全性。
总之,中央空调监控系统通过传感器采集中央空调设备的参数数据,并通过通信技术将数据传输到监控中心进行实时监测和控制。
这样可以及时发现设备故障和异常,提高中央空调系统的效率和运行质量。
中央空调监控系统
中央空调监控系统是一套工业远程监控系统。
利用此系统,可以通过电脑对中央空调的主机和管道系统的各类参数进行远程集中监控。
中央空调监控系统包括:空调冷源监控、空调机组监控、新风机组监控、风机盘管监控、膨胀水箱高、低水位监测报警和屋顶排气风机、通风机控制等。
一、系统结构
本系统采用模块化可编程控制器(PLC)进行设计,使用人机界面进行集中操作,保证系统的安全、可靠、连续运行。
整个监控系统由可编程控制器(PLC)、监控电脑和数据通讯网络(TCP/IP以太网)组成。
下图为中央空调监控系统结构示意图
图1 系统结构示意图
二、系统组成
1、空调冷源系统
监测内容:
◇冷水机组运行状态
◇冷冻水泵、冷却水泵、冷却塔风机运行状态
◇冷水机组冷冻水、冷却水管水流状态
◇冷却水供、回水温度
◇冷冻水供、回水温度
◇冷冻水供、回水压差
◇冷冻水总供水流量
◇冷冻水供、回水管电动平衡阀瞬时开度
◇冷水机组冷冻水、冷却水供水阀开关
控制内容:
(1)系统根据事先编制好的工作及节假日作息时间表自动启停机组,并自动累计机组运行时间,提示定时维修;
(2)根据冷冻水供、回水温度及总供水流量计算实际冷负荷,按冷水机组额定制冷量,控制冷水机组运行台数,达到节能目的;(3)根据冷水机组累计运行时间,在不需要开启全部冷水机组时,启动累计运行时间最短的冷水机组,使设备处于均衡运行状态;(4)为保证机组的安全可靠运行,系统按以下顺序进行启停:启动顺序:冷却塔进水蝶阀→冷却塔风机→冷却水蝶阀→冷却水泵→冷冻水蝶阀→冷冻水泵→延时冷水机组;
停止顺序:冷水机组→延时冷冻水泵→冷冻水蝶阀→冷却水泵→冷却水蝶阀→冷却塔风机→冷却塔进水蝶阀;
(5)根据冷冻水供、回水总管压差,调节旁通阀开度,保持冷冻水系统压力的稳定;
(6)通过调整冷却塔风机的运行台数,使冷却水供水温度保持在设定范围内;
(7)根据季节变化进行冬夏季转换。
2、空调机组系统
监测内容:
◇空调机组送风机运行状态、故障状态
◇空调机组过滤器阻塞状态、提醒运行操作人员及时清洗
◇空调机组新风温、湿度
◇空调机组回风温、湿度
◇空调机组送风温、湿度
控制内容:
(1)系统根据事先编制好的工作及节假日作息时间表自动启停机组,并自动累计运行时间,提示定时维修;
(2)根据室内外空气状况,调节新、回风阀开度,合理利用新风,节约能源;
(3)根据回风温度,自动调节表冷器/加热器的冷/热水阀开度,使回风温度控制在设定值;
(4)根据回风湿度,自动调节加湿阀的开关,满足室内湿度要求;
(5)在北方地区冬季气候寒冷,为防止空调机组盘管受冻,在表冷器后端设置防冻开关,当温度低于一定值(一般设定为5ºC)时报
警,并自动停止风机,关闭新风阀,全部打开热水阀,以防盘管
冻裂;
(6)新风阀与送风机联锁,风机停止时自动关闭新风阀。
3、新风机组系统
监测内容:
◇新风机组新风温、湿度
◇新风机组送风温、湿度
◇新风预加热器后端温度
◇过滤器阻塞状态,提醒运行操作人员及时清洗
◇送风机运行状态、故障状态
控制内容:
(1)系统根据事先编制好的工作及节假日作息时间表自动启停机组,并自动累计运行时间,提示定时维修;
(2)根据新风预加热器后端温度,自动调节新风预加热器热水阀开度,使该温度控制在设定值;
(3)根据送风温度,自动调节表冷器/加热器的冷/热水阀开度,使送风温度控制在设定值;
(4)根据送风湿度,自动调节加湿阀开关,使送风湿度控制在设定值;
(5)北方地区冬季气候寒冷,为防止风机盘管受冻,在表冷器后端设置防冻开关,当温度低于一定值(一般设定为5ºC)时报警,并
自动停止风机,关闭新风阀,全部打开热水阀,以防盘管冻裂;
(6)新风阀与风机联锁,风机停止时自动关闭新风阀;
(7)与消防系统联锁,发生火警时,风机自动停机。
4、风机盘管的控制
风机盘管由温控器控制:
A、风机盘管的回水管上安装开关二通阀
B、房间内安装温控器
C、热敏电阻测量房间温度
D、带延时功能,以防二通阀频繁启动
E、风机的开/关功能
F、调节风量高/中/低三档风量
G、可以任意调节温度(10-30ºC)
5、膨胀水箱高、低水位监测报警
6、屋顶排气风机、通风机控制
屋顶排风机、通风机监控内容:
A、风机的运行状态、故障状态
B、风机的手自动状态显示
C、风机开关控制
三、系统功能简介:
1、流程板仿真:以现场配置图为背景,实时显示各监控点之数值与状态。
并可点选进入详细资料。
2、走势曲线图:有实时曲线与历史曲线,可放大和缩小,并可随时打印
出来。
3、可串联多台温湿度控制器,并可连结PLC以监控各空调设备之状态,
构成完整的空调监控系统。
4、可行分布式控制或集中式控制。
5、可作远距离监控。
6、可在计算机上集中设置各监控点之目标值及警报上下限值。
7、实时警报:当监控值超过警报值时,计算机通过音效卡与音箱发生警
报声,通知工作人员。
8、提供历史警报及各监控点PV值资料,以供查询。
9、可利用网络另行架设只观不控的观视站(Viewing Nodes)。