氮掺杂手性碳纳米管的电子结构和输运特性的理论研究
- 格式:pdf
- 大小:431.11 KB
- 文档页数:6
化工进展 2016年第35卷·830·由图7可以看出,剂油质量比对焦化蜡油脱氮效果影响显著,对精制油收率的影响不大。
当剂油质量比为1∶2时,脱氮率为64.46%。
当剂油质量比为1∶4时,脱氮率达到最大为88.04%。
剂油质量比增大,增加了吸附剂的量,也增加了吸附剂上磷钨酸活性位点,即增加了焦化蜡油中碱性氮化物与吸附剂酸活性位的接触机会,使脱除的碱性氮化物增多,脱氮率逐渐升高。
剂油比继续增大时,脱氮率逐渐下降,这可能是由于剂油比逐渐增大,增加了焦化蜡油中烃类与负载型磷钨酸活性位点接触机会,与吸附剂上碱性氮化物的吸附产生竞争吸附,使单位吸附剂上氮化物的吸附量相应减少,脱氮率下降。
因此,最佳脱氮率的剂油质量比为1∶4。
3 结论本研究进行了负载型杂多酸吸附剂脱除焦化蜡油中碱性氮化物的实验,得出如下结论。
(1)实验用硅胶负载杂多酸制备吸附剂,负载型磷钨酸吸附剂的红外光谱图表明,硅胶成功负载了Keggin型磷钨酸。
氮气吸附-脱附等温线表明,吸附剂有介孔材料的特征,都具有介孔孔道,表明负载型磷钨酸吸附剂是一种理想的脱氮吸附剂。
(2)实验用非加氢处理方法的吸附脱氮法脱除焦化蜡油中碱性氮化物,得到了焦化蜡油脱氮的最佳工艺条件。
以活化硅胶负载磷钨酸作为吸附剂、磷钨酸负载质量分数为40%、吸附温度为50℃、吸附时间为50min、剂油质量比为1∶4的条件下,焦化蜡油中的碱性氮化物的脱除率为89.07%,收率为95.54%。
吸附脱氮法操作简单,效果明显,吸附剂可有效脱除焦化蜡油中的碱性氮化物。
参考文献[1] 马丽娜,马守涛,刘丽莹,等. 焦化蜡油络合脱氮-催化裂化组合工艺研究[J]. 石油与天然气化工,2011,4(6):571-573. [2] 温世昌,周亚松,魏强. 焦化蜡油中含氮化合物的加氢反应性能[J]. 石油学报(石油加工),2008,24(5):496-502.[3] 陈文艺,栾锡林,关毅达. 我国焦化蜡油的组成和特性[J]. 石油化工,2000(8):607-612.[4] 袁起民,王屹亮,山红红,等. 焦化蜡油催化裂化产物氮分布的研究[J]. 燃料化学学报,2007,35(3):375-379.[5] 徐晓宇,孙悦,沈健,等. HY和USY分子筛对模拟油品中碱性氮化物的吸附行为[J]. 化工进展,2014,33(4):1035-1040. [6] SONG C S. An overview of new approaches to deep desulfurizationfor ultra-clean gasoline,diesel fuel and jet fuel[J]. Catalysts Today,2003,86 :211-263.[7] 张海燕,代跃利,蔡蕾. 杂多酸催化剂催化氧化脱硫研究进展[J].化工进展,2013,32(4):809-815.[8] 丁巍,王鼎聪,赵德智,等. 纳米自组装催化剂金属分散度对催化活性的影响[J]. 现代化工,2014,34(5):113-116.[9] 于光林,周亚松,魏强,等. 辽河焦化蜡油中碱性氮化物的脱除[J]. 化工进展,2011,30(s1):104-106.[10] BAUSERMAN J W,NGUYEN K M,MUSHRUSH G W. Nitrogencompound determination and distribution in three source fuels byGC/MS[J]. Petroleum Science and Technology,2004,22(11/12):1491-1505.[11] 廖爱玲. 2018年全国车用汽油全部达到国5标准[J]. 中国石油和化工标准与质量,2013(16):2.[12] 孙敬军,修彭浩,从日明,等. 焦化蜡油活化树脂吸附脱氮及反应性能的研究[J]. 石油与天然气化工,2014,43(3):234-240. [13] YADAY G D,MISTRY C K. Oxidation of benzyl alcohol under asynergism of phase transfer catalysis and heterpolyacids[J]. Journal ofMolecular Catalysis A:Chemical,2001,172(1/2):135-149. [14] WANG J,ZHU H O. Alkylation of l-dodecene with benzene overH3PW12O40 supported on mesoporous silica SBA-15[J]. CatalysisLetters,2004,93(3/4):209-212.[15] 张海燕,代跃利,蔡蕾. 杂多酸催化剂催化氧化脱硫研究进展[J].化工进展,2013,32(4):809-815.[16] 于海云. 负载型杂多酸催化剂的制备、表征及催化性能研究[D].通辽:内蒙古民族大学,2012:1-7.[17] STAITI P,FRENI S,HOCEV AR S,et al. Synthesis andcharacterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported onsilica[J]. Journal of Power Sources,1999,79(2):250-255. [18] 陈霄榕,李永丹. SiO2与Keggin杂多酸相互作用的研究[J]. 分子催化,2002,16(1):60-64.[19] 冯锡兰,彭慧慧,柳云骐,等. 负载型杂多酸催化甲苯异丙基化反应[J]. 化工进展,2014,33(12):3263-3269.[20] 付辉,李会鹏,赵华,等. WO3-ZSM-5/MCM-41用于FCC汽油催化氧化脱硫工艺研究[J]. 精细石油化工,2013,30(6):19-22.2016年第35卷第3期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·831·化工进展氮掺杂对碳材料性能的影响研究进展张德懿,雷龙艳,尚永花(兰州理工大学石油化工学院,甘肃兰州 730050)摘要:碳材料是目前研究和应用最为广泛的一类无机非金属材料。
氮掺杂的碳基纳米酶
氮掺杂的碳基纳米酶是一种具有催化活性的纳米材料,其结构主要由碳原子和氮原子构成。
它们被设计用作生物催化剂,模仿天然酶的功能,具有高效催化活性和良好的稳定性。
氮掺杂的碳基纳米酶通常是通过合成方法来制备的,其中常用的方法包括碳化剂热解法、化学气相沉积法和水热法等。
在制备过程中,氮源被引入到碳材料中,与碳原子形成氮掺杂位点,从而赋予纳米酶催化活性。
这些氮掺杂的碳基纳米酶在生物催化反应中展现出许多优点。
首先,它们具有较高的表面积和可调控的孔隙结构,提供了更多的催化活性位点和较大的反应表面积。
其次,氮掺杂可以调整纳米酶的电子结构,增强其对底物的吸附和电子转移能力,从而提高催化效率。
此外,氮掺杂还可以增强纳米酶的化学稳定性和抗氧化性能。
氮掺杂的碳基纳米酶被广泛应用于许多生物催化反应中,如氧还原反应、电解水制氢、有机物催化转化等。
它们显示出与天然酶类似甚至更好的催化性能,为开发高效、环保的催化系统提供了新的可能性。
此外,由于其良好的生物相容性,氮掺杂的碳基纳米酶还具有潜在的生物医学应用,如药物传递、癌症治疗等领域。
氮掺杂的碳基纳米酶仍然是一个活跃的研究领域,尚需进一步的研究和探索,以实现其在实际应用中的广泛应用。
关于碳纳米管的研究进展1、前言1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。
这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新的“大碳结构”概念诞生了。
之后,人们相继发现并分离出C70、C76、C78、C84等。
1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。
年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。
1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。
1996年,我国科学家实现了碳纳米管的大面积定向生长。
1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。
1999年,国的一个研究小组制成了碳纳米管阴极彩色显示器样管。
2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。
2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。
2、碳纳米管的制备方法获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。
而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。
因此对碳纳米管制备工艺的研究具有重要的意义。
目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。
一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。
碳纳米管场效应晶体管的特性研究与优化近年来,随着纳米科技的快速发展,碳纳米管场效应晶体管(CNT-FET)作为一种具有巨大潜力的纳米电子器件引起了广泛关注。
CNT-FET以其优异的电学性能和独特的结构特点,被认为是下一代高性能晶体管的有力竞争者。
本文将探讨碳纳米管场效应晶体管的特性研究与优化。
首先,碳纳米管的材料特性使其成为理想的电子输运通道。
碳纳米管具有优异的载流子迁移率和高电导率,这使得CNT-FET在高频电子器件中具有巨大的应用潜力。
研究人员通过调控碳纳米管的直径、手性和结构等参数,可以实现对CNT-FET电学性能的精确调控。
例如,通过控制碳纳米管的直径,可以实现对CNT-FET的载流子迁移率和开关速度的调节,从而优化其性能。
其次,碳纳米管场效应晶体管的结构特点也为其性能的优化提供了可能。
CNT-FET的结构由源极、漏极、栅极和碳纳米管通道组成。
通过调节栅极电压,可以实现对CNT-FET的电流开关控制。
此外,研究人员还通过引入高介电常数的栅介质材料,如氧化铝或高介电常数聚合物,来增强CNT-FET的电流开关比。
这种结构优化的方法可以显著提高CNT-FET的性能。
此外,碳纳米管场效应晶体管的制备工艺也对其性能进行了优化。
目前,研究人员已经发展出了多种制备CNT-FET的方法,如化学气相沉积、电化学沉积和机械剥离等。
这些制备方法可以实现对CNT-FET的尺寸和结构的控制,从而优化其性能。
同时,研究人员还通过控制碳纳米管的生长温度和气氛等参数,来实现对CNT-FET电学性能的调节。
这些制备工艺的优化将为CNT-FET的应用提供更多可能性。
最后,碳纳米管场效应晶体管的应用也是其研究与优化的重要方向之一。
CNT-FET在高频电子器件、柔性电子器件和生物传感器等领域具有广泛的应用前景。
例如,CNT-FET可以用于制备高性能的射频放大器和振荡器,以满足日益增长的无线通信需求。
此外,CNT-FET还可以用于制备柔性电子器件,如可弯曲的显示屏和可穿戴设备。
碳纳米管在电子器件中的应用研究在当今科技飞速发展的时代,电子器件的性能和功能不断提升,而材料的创新是推动这一进程的关键因素之一。
碳纳米管作为一种具有独特结构和优异性能的纳米材料,在电子器件领域展现出了巨大的应用潜力。
碳纳米管是由碳原子组成的管状结构,其直径通常在几纳米到几十纳米之间,长度可以达到微米甚至毫米级别。
由于其特殊的结构,碳纳米管具有出色的电学、力学和热学性能。
从电学性能方面来看,碳纳米管具有极高的载流子迁移率。
这意味着电子在碳纳米管中能够更加快速地移动,从而大大提高了电子器件的工作速度。
相比传统的半导体材料,如硅,碳纳米管的载流子迁移率可以高出几个数量级。
这使得基于碳纳米管的电子器件在高频应用中具有显著的优势,例如在通信领域中的射频器件。
在力学性能方面,碳纳米管具有极高的强度和韧性。
它们能够承受巨大的拉伸应力,同时还具有良好的柔韧性。
这种优异的力学性能使得碳纳米管可以用于制造高强度、高柔韧性的电子器件,如可穿戴设备和柔性显示屏。
热学性能也是碳纳米管的一大亮点。
它们具有出色的热导率,能够有效地将热量从电子器件中散发出去,从而提高器件的稳定性和可靠性。
这对于高功率电子器件来说尤为重要,能够避免因过热而导致的性能下降甚至损坏。
基于以上这些出色的性能,碳纳米管在众多电子器件中都有着广泛的应用。
在集成电路领域,碳纳米管有望取代硅成为下一代半导体材料。
由于其高载流子迁移率,基于碳纳米管的晶体管能够实现更小的尺寸和更快的开关速度,从而大幅提高集成电路的性能。
目前,研究人员已经成功地制造出了基于碳纳米管的晶体管,并且在性能方面取得了显著的突破。
在显示屏方面,碳纳米管可以用作场发射阴极材料。
传统的阴极射线管显示屏体积较大且能耗较高,而基于碳纳米管的场发射显示屏具有薄型化、低能耗和高亮度等优点。
此外,碳纳米管还可以用于制造柔性显示屏,为未来的显示技术带来了更多的可能性。
在传感器领域,碳纳米管也有着出色的表现。
氮掺杂碳负载镍基催化剂的设计合成及其电催化性能研究摘要:随着环境污染问题的日益严重,能源转化领域的研究备受关注。
设计、合成高效的催化剂是此领域的研究热点之一。
本研究采用杂化碳纳米材料为载体,将镍纳米材料与氮掺杂结合,制备出氮掺杂碳负载镍基催化剂。
通过SEM、TEM、XRD等表征手段对催化剂进行表征。
结果表明,氮掺杂对载体的晶格结构、表面电子结构和电荷密度分布有显著的影响,能够显著提升催化剂的电催化活性。
在酸性条件下,该催化剂对硫酸盐电解液中的氢气进行电催化还原反应时,表现出优异的电化学催化活性,且稳定性较好。
因此,该催化剂有望在能源转化领域中得到应用。
关键词:氮掺杂碳;镍纳米材料;催化剂;电催化性能;能源转化Introduction:随着全球对清洁能源需求的增加,能源转化领域的研究成为了研究的热点之一。
设计、合成高效的催化剂对于促进氢燃料电池和电化学制氢的发展至关重要。
传统的催化剂主要有Pt、Pd、Ru等,但是它们的使用受到了价格和供应的限制。
因此,寻找替代高效催化剂成为了研究重点之一。
杂化碳纳米材料因其特殊的晶体结构、优良的化学稳定性和高的导电性能,成为了作为载体制备催化剂的一种优良选择。
此外,将含氮组分掺杂到碳材料中,不仅可以增强催化剂对氧化物的吸附能力,还可以优化电子亲和力和电子密度分布等催化剂的属性,从而提升其催化活性。
本研究通过掺杂氮元素改变载体表面电荷分布和电子亲和力,将镍纳米材料均匀负载在氮掺杂碳载体上,制备出氮掺杂碳负载镍基催化剂。
采用SEM、TEM、XRD等表征手段对催化剂进行表征,并研究催化剂的电催化性能。
Results and discussion:实验结果表明,将镍纳米材料与氮掺杂碳载体结合,制备出氮掺杂碳负载镍基催化剂后,其表面结构得到了显著的改善。
此外,氮掺杂也使得催化剂电子密度分布更加均匀,并增强了界面导电性能。
这些因素促进了活性位点在表面形成,优化了催化剂的催化活性。