线粒体未折叠蛋白反应的研究进展_李帅峰_胡林_汪加兴_张淑君
- 格式:pdf
- 大小:468.24 KB
- 文档页数:6
未折叠蛋白反应:从应激通路到稳定调节Peter Walter and David Ron细胞分泌或展示在起表面的大多蛋白质进入它们折叠组装的场所内质网,只有合适的组装蛋白质才能从内质网进入细胞表面。
细胞会根据需要来调节内质网内部蛋白质组装能力,从而确保蛋白质折叠的精确性。
分泌蛋白或膜蛋白在它们被分派到内膜系统其他细胞器、分泌到细胞表面、或释放到胞外之前都在内质网腔内折叠、成熟。
内质网通过激活包内信号转导来反应腔内未折叠蛋白的压力,这统称为未折叠蛋白反应(UPR)。
而且,至少三种明显不同的UPR通路来调节各种不同基因的表达使内质网保持稳态或当内质网应激得不到消除时诱导细胞凋亡。
最近研究进展给UPR的复杂机制及其在各种疾病中扮演的角色带来了一线光明。
分泌蛋白或膜蛋白在它们被分派到内膜系统其他细胞器、分泌到细胞表面、或释放到胞外之前都在内质网腔内折叠、成熟。
UPR,一种保守系统发生信号路径,是内质网的检测器,检测折叠能力的不足并,感知错误折叠的胁迫,从而根据内质网状态来交流信息来调控振和基因表达。
UPR的激活是通过对内质网膜表达的调节,用新合成的蛋白质折叠基质填充来满足需要。
这种长期大范围转录调控伴随着进入内质网的蛋白质流量瞬间减少。
这样UPR建立并维持的稳态的无数其他循环的一个范例。
复杂的细胞器安排发生元件的分子水平上得到阐明时,细胞生物学进展才能完美体现。
UPR就是其中一个例子,他详细表述的分子机制说明了一个真核细胞调控器内质网的能力。
令人感到意外的是,由于这些机制的激增,关于UPR是如何与细胞生理杂乱的各方面协调并维持稳态的,这方面的发现的大门被打开了。
事实上,真核细胞所有用来与环境惊醒信息交流的蛋白都在内质网组装。
它们传出传入的信息决定了器官的健康,比如传递细胞分裂、成熟、分化或死亡的信号。
一个阈值来保证各部分组装的精确性,离开了这些质量控制集体就会陷入混乱局面。
ER的基本功能就是运用对蛋白质的质量控制,使得只有经过正确折叠的蛋白质才能装入内质网囊泡被运网细胞表面。
线粒体未折叠蛋白反应-mapk信号通路下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!线粒体未折叠蛋白反应-Mapk信号通路在细胞生物学领域备受关注。
线粒体未折叠蛋白反应
线粒体未折叠蛋白反应(Unfolded Protein Response,UPR)是
一种由线粒体未折叠蛋白质所驱动的信号通路,主要发生在细胞受到
线粒体内未折叠蛋白质超载压力时,该反应会提升细胞质量控制系统
的机能。
线粒体未折叠蛋白反应包括实体状线粒体内未折叠蛋白质聚集后,细胞就会介导三种不同的分子信号通路,以及其它弹性性信号通路来
应对此类蛋白质超载压力的情况发生。
这些通路大体上分为核内和核
外两个部分,前者包括转录因子ATF6和Gadd15,而后者则包括细胞膜
上的磷脂酶所催化的IRAK1蛋白信号通路,以及称为IRE1的内含子信
号通路。
ATF6是个膜融合蛋白,当它感知到线粒体内未折叠蛋白堆积压力时,它会从信号传导蛋白质中被释放出来,并与核内转录因子结合,
从而促进相关基因转录水平的提升,如ER钙泵基因等,以及线粒体钙
池容量的提升,从而缓解未折叠蛋白堆积压力。
Gadd15是一种核因子,它也被认为对非正常蛋白质堆积压力有重
要作用,主要负责触发细胞增殖,以缓解未折叠蛋白质堆积压力。
线粒体外膜上的磷脂酶IRE1作为一种内含子信号通路分子,能够
响应线粒体内未折叠蛋白质堆积压力并调控线粒体内蛋白质合成和未
折叠蛋白质重新折叠的过程,促进线粒体蛋白质翻译质量的提高,从
而延缓或终止未折叠蛋白质的堆积。
总的来说,线粒体内未折叠蛋白质反应能够帮助细胞应对线粒体
内未折叠蛋白质堆积压力的情况,这种反应既改善细胞质量控制系统,又能诱导抗逆性机制,以便有效地调节线粒体蛋白质的合成与折叠。
其目的就是维持蛋白质结构、线粒体功能与细胞行为的正常。
线粒体非折叠蛋白反应检测方法
线粒体非折叠蛋白反应检测方法
线粒体非折叠蛋白(unfolded protein)是指位于线粒体内的蛋白质在运输和折叠过程中未能达到正常状态的状态,它们通常与线粒体机能异常相关联。
因此,检测线粒体非折叠蛋白反应可以为线粒体疾病的筛查和预后提供重要参考。
目前,主要的检测方法包括以下几种:
1. 单克隆抗体检测
单克隆抗体是指由单一的B细胞克隆所产生的同种异体抗体,可以高度专一地识别非折叠蛋白。
采用间接ELISA法,将纯化的蛋白固定于微孔板上,加入非折叠蛋白单克隆抗体和标记抗体进行检测,阳性反应会出现发光信号或颜色变化。
2. 质谱分析法
利用质谱分析技术,可以测定非折叠蛋白的表达和分布情况。
这种方法不需要特异性抗体,也不受抗体交叉反应影响,但是需要高水平仪器和技术人员操作。
3. 基因测序法
基因测序法可以检测非折叠蛋白基因突变和对应蛋白质水平表达的变化,进而评估其对线粒体机能的影响。
这种方法可以精确检测非折叠蛋白相关遗传突变,也可发现一些未知的蛋白质突变,但需要较长的时间和较高的费用。
4. 蛋白微阵列法
利用蛋白微阵列技术,可以同时检测多个非折叠蛋白在不同疾病和正常状态下的表达和分布情况。
这种方法具有高通量、可靠性高、花费相对较低等优点,但需要多个样品的比较分析才能得到准确的结果。
总之,现有的线粒体非折叠蛋白反应检测方法各有优缺点,需要根据具体的情况选择合适的方法进行检测。
未来,随着科技的不断发展,线粒体非折叠蛋白的检测方法也将不断完善,为线粒体疾病的防治提供重要支持。
未折叠蛋白反应一、未折叠蛋白1、什么是未折叠蛋白未折叠蛋白是那些仍然保持原来的结构和形状,未经折叠处理的蛋白质。
它完全没有折叠,没有失去氢键,并能够保持原始状态。
2、未折叠蛋白的结构未折叠蛋白通常有两个部分:折叠域和自由域。
折叠域包括折叠折叠域,结构域和功能域。
这些部分由多肽链键构成,具有广泛的功能,而自由域则受氢键结合保护,无自组装的功能。
3、未折叠蛋白的机制未折叠蛋白部分是从溶解剂中抽取的原始单体。
此外,当蛋白质的环境条件发生变化时,未折叠的蛋白质还可能在更复杂的形式中出现,例如凝胶床、纳米结构和/或穗状蛋白质。
未折叠的蛋白质结构受到氢键作用,氢键维持蛋白质结构。
二、未折叠蛋白反应1、胞外信号传导未折叠蛋白反应是一种由抗原激活的信号通路,其中抗原通过受体结合,激活信号传导通路以调节免疫应答。
未折叠蛋白反应可以促进多种胞外信号传导,例如激活多种基因表达、靶向细胞促进免疫应答。
2、激活T细胞未折叠蛋白反应可以激活T细胞,调节免疫应答,促进细胞间协同作用,例如活化T细胞可以增强细胞间通讯和协同Regulatory作用,促进有效的免疫反应。
3、解离颗粒未折叠蛋白可以激活麦克维尔效应,解离膜蛋白球,改变细胞的表面属性,使膜蛋白球脱落,改变细胞表面与外界的相互作用。
三、未折叠蛋白的作用1、抗血清病毒未折叠蛋白可通过竞争性结合病毒的受体来抑制病毒的结合并阻止病毒的复制,从而抵抗血清病毒的感染。
2、抗癌未折叠蛋白也可以作为抗癌药物,因为它能够抑制肿瘤生长、凋亡和重组,促进肿瘤消退。
此外,未折叠蛋白也可以抗击癌细胞抗逆性,抗击药物耐药性。
3、蛋白质稳定未折叠蛋白还可能作为保护剂增强蛋白质的稳定性,防止蛋白质失活。
它可以降低复杂的蛋白质结构的改变,并增强蛋白质的有效发挥作用的能力,从而实现对蛋白质的良好保护。
线粒体未折叠蛋白反应和线粒体自噬线粒体是细胞内的重要器官,它们是细胞内能量的主要来源。
线粒体的功能异常与多种疾病的发生有关,如神经退行性疾病、心肌病等。
线粒体的正常功能依赖于其内部的蛋白质结构,其中未折叠蛋白是线粒体内的重要组成部分。
线粒体未折叠蛋白反应和线粒体自噬是线粒体维持正常功能的重要机制。
一、线粒体未折叠蛋白反应线粒体未折叠蛋白反应是线粒体内蛋白质折叠和降解的重要机制。
线粒体内的蛋白质折叠和降解是由一系列酶和蛋白质协同完成的。
其中,Hsp70和Hsp60是线粒体内的两个重要蛋白质,它们能够协同完成线粒体内蛋白质的折叠和降解。
线粒体未折叠蛋白反应的异常会导致线粒体内蛋白质的异常积累,从而影响线粒体的正常功能。
二、线粒体自噬线粒体自噬是细胞内的一种重要的自噬过程,它能够清除线粒体内的异常或老化的线粒体,从而维持线粒体的正常功能。
线粒体自噬的过程包括线粒体的识别、包裹和降解。
线粒体的识别是由线粒体膜上的受体完成的,它们能够识别线粒体内的异常或老化的线粒体。
线粒体的包裹是由自噬体完成的,它们能够将线粒体包裹在内部,形成自噬体。
线粒体的降解是由自噬体内的酶完成的,它们能够将线粒体内的蛋白质降解为小分子物质,从而清除异常或老化的线粒体。
三、线粒体未折叠蛋白反应和线粒体自噬的关系线粒体未折叠蛋白反应和线粒体自噬是相互关联的。
线粒体未折叠蛋白反应的异常会导致线粒体内蛋白质的异常积累,从而影响线粒体的正常功能。
这些异常积累的蛋白质可能会被线粒体自噬清除,从而维持线粒体的正常功能。
另一方面,线粒体自噬的过程也需要线粒体内的蛋白质参与,这些蛋白质需要通过线粒体未折叠蛋白反应完成折叠和降解,从而参与线粒体自噬的过程。
综上所述,线粒体未折叠蛋白反应和线粒体自噬是线粒体维持正常功能的重要机制。
线粒体未折叠蛋白反应的异常会影响线粒体自噬的过程,从而影响线粒体的正常功能。
因此,研究线粒体未折叠蛋白反应和线粒体自噬的关系,对于预防和治疗与线粒体功能异常相关的疾病具有重要意义。
线粒体未折叠蛋白质反应的激活剂线粒体未折叠蛋白质是指在线粒体内部由于各种原因无法正确折叠的蛋白质。
这些未折叠的蛋白质会积累在线粒体中,导致线粒体功能受损,从而引发一系列疾病。
为了解决线粒体未折叠蛋白质的问题,科学家们进行了大量的研究,并发现了一些可以促进线粒体未折叠蛋白质反应的激活剂。
一、胞内热休克蛋白(Hsp70)胞内热休克蛋白(Hsp70)是一类在细胞内广泛存在的重要分子伴侣。
它可以通过与线粒体未折叠蛋白质结合,并提供正确的环境来促进其正确折叠。
Hsp70通过其ATPase活性,可以将线粒体未折叠蛋白质从固定的构象中解开,使其能够进行正确的折叠。
二、蛋白质去磷酸酶1(PP1)蛋白质去磷酸酶1(PP1)是一种重要的酶类分子,它在细胞中起到去除磷酸基团的作用。
研究发现,PP1可以与线粒体未折叠蛋白质结合,并通过去除其上的磷酸基团,促进其正确折叠。
PP1可以与其他蛋白质一起形成复合物,从而在线粒体内提供一个适合的环境,使未折叠蛋白质得以正确折叠。
三、蛋白质氧化还原酶线粒体未折叠蛋白质的正确折叠还受到蛋白质氧化还原酶的调控。
蛋白质氧化还原酶可以通过在线粒体内提供还原剂或氧化剂的作用,调节线粒体内的氧化还原平衡,从而促进未折叠蛋白质的正确折叠。
此外,蛋白质氧化还原酶还可以与其他分子伴侣一起协同作用,为线粒体未折叠蛋白质的折叠提供帮助。
四、分子伴侣蛋白分子伴侣蛋白是一类能够与未折叠蛋白质结合,并提供正确折叠环境的蛋白质。
研究发现,线粒体内存在多种分子伴侣蛋白,如Hsp60和Hsp90等。
这些分子伴侣蛋白可以与线粒体未折叠蛋白质结合,通过调节其折叠状态来促进其正确折叠。
五、蛋白质分子伴侣的调控因子除了分子伴侣蛋白外,还有一些蛋白质分子伴侣的调控因子也可以作为线粒体未折叠蛋白质反应的激活剂。
这些调控因子可以通过与分子伴侣蛋白结合,调节其活性,从而促进线粒体未折叠蛋白质的正确折叠。
总结起来,线粒体未折叠蛋白质反应的激活剂包括胞内热休克蛋白、蛋白质去磷酸酶1、蛋白质氧化还原酶、分子伴侣蛋白及其调控因子等。
270新医学综述2024年4月第55卷第4期线粒体动力学相关蛋白与缺血性脑卒中研究进展李婷婷 王钦鹏 刘晓庆 蔡珂 魏阳阳 梁成【摘要】缺血性脑卒中是临床常见的急危脑血管病,对人类健康构成了极大的威胁。
近年来,随着对缺血性脑卒中的深入了解,其诊断和治疗取得了显著进展。
然而缺血性脑卒中的病理机制极其复杂,目前的治疗手段也受到部分限制。
研究显示,线粒体功能障碍在缺血性脑卒中的发病机制中起着重要的作用。
通过线粒体动力学调控线粒体功能对于改善脑缺血神经细胞的损伤至关重要。
文章就线粒体动力学的分子机制及对缺血性脑卒中的作用进行综述,以期为缺血性脑卒中的治疗提供有益的参考。
【关键词】缺血缺氧;线粒体动力学;氧化应激;炎症反应;细胞凋亡;坏死性凋亡;铁死亡Research progress in mitochondrial dynamics-related proteins and ischemic stroke Li Tingting△, Wang Qinpeng, Liu Xiaoqing, Cai Ke, Wei Yangyang, Liang Cheng.△The Second Clinical Medical School of Lanzhou University, Lanzhou 730030, China Corresponding author: Liang Cheng, E-mail:*********************【Abstract】Ischemic stroke is a common acute cerebrovascular disease in clinical practice, which poses a severe threat to human health. In recent years, with deepening understanding of ischemic stroke, signi fi cant progress has been made in the diagnosis and treatment. However, current treatments for ischemic stroke are partially limited due to extremely complex pathological mechanisms. Studies have shown that mitochondrial dysfunction plays an important role in the pathogenesis of ischemic stroke. Therefore, modulation of mitochondrial function through mitochondrial dynamics is essential to ameliorate the damage of cerebral ischemic neuronal cells. In this article, the molecular mechanism of mitochondrial dynamics and its role in ischemic stroke were reviewed, aiming to provide useful reference for the treatment of ischemic stroke.【Key words】Ischemia and hypoxia; Mitochondrial dynamics; Oxidative stress; Inflammatory reaction; Apoptosis;Necroptosis; Ferroptosis脑卒中是高患病率、高致残率和高病死率的疾病。