高等半导体物理Chapter 3 半导体超晶格物理
- 格式:pdf
- 大小:6.35 MB
- 文档页数:79
半导体超晶格的带间集体激发半导体超晶格是一种由两种或多种不同材料的周期性排列构成的结构。
这种结构的优势在于它们能够利用量子态通过控制带之间的相互作用进行有用的信息存储和处理。
超晶格的物理性质非常丰富,其中包括一系列的带间集体激发。
这些激发在纳米尺度下产生局部化的电子态,被广泛用于制造具有优异性能的半导体元件。
超晶格中的带间集体激发是指激发两个能量能量带之间的横向相干性,通俗来说,就是在跨越价带和导带能隙之间的电子的构型。
超晶格中的原子排列形成了势垒,仅仅在势阱中可以被激发。
这一局部化的电子态形成了被称为“激子”的电荷密集区域。
激子包括激子束缚态和激子连续态两类。
激子束缚态是一类静态的非常规激子,其形成基于类似于氢原子的束缚态的物理机制,具有良好的局部性和强的平面约束性。
激子束缚态在超晶格材料中的产生依赖于电压施加,使得材料中的势垒区域压缩,从而增强束缚态的形成。
另一方面,激子连续态是一类动态的激子,由于其可以自由在整个超晶格材料中传播,因此具有非常好的扩散性和传输性。
激子连续态可以通过各种控制方法来进行操控,包括光照和电场控制等等。
超晶格材料中的激子已经广泛用于制作各种半导体元件。
其中,激子束缚态被广泛应用于传感器、激光器、光开关和太阳能电池等生物、光电等感应器件中。
而激子连续态则广泛用于生物荧光探针、材料非线性光学和信息技术等领域中。
这些应用不仅在半导体超晶格材料研究领域中具有重要意义,而且在实际应用中也为各种领域提供了高效、安全、便携的解决方案。
总之,超晶格中的带间集体激发被广泛应用于各种领域的半导体元件中,包括传感器、激光器、光开关和太阳能电池等生物、光电等感应器件。
激子的形成和操控提供了一种有效的方法来制造具有优异性能的半导体元件,对于解决各种领域的问题具有非常重要的意义。
未来,随着相关技术的不断完善,相信半导体超晶格及其带间集体激发将会有更加广泛的应用和更好的发展。
高等半导体物理课程内容(前置课程: 量子力学,固体物理)第一章能带理论,半导体中得电子态第二章半导体中得电输运第三章半导体中得光学性质第四章超晶格,量子阱前言:半导体理论与器件发展史1926 Bloch 定理1931 Wilson 固体能带论(里程碑)1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。
从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。
1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。
1958 集成电路问世1959 赝势概念得提出,使得固体能带得计算大为简化。
利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。
用赝势方法得到了几乎所有半导体得比较精确得能带结构。
1962 半导体激光器发明1968 硅MOS器件发明及大规模集成电路实现产业化大生产1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥)* 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。
1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。
莲藕批发供货合同模板甲方(供货方):__________地址:_____________________联系电话:_________________法定代表人:_______________身份证号码:______________乙方(采购方):__________地址:_____________________联系电话:_________________法定代表人:_______________身份证号码:______________根据《中华人民共和国合同法》及相关法律法规的规定,甲乙双方本着平等自愿、诚实信用的原则,就莲藕的批发供货事宜,经协商一致,签订本合同,以资共同遵守。
第一条产品信息1. 产品名称:莲藕。
2. 规格型号:______________________。
3. 质量标准:符合国家相关标准及行业规定。
4. 包装要求:应符合运输及储存要求,确保产品在运输过程中不受损害。
第二条供货数量及价格1. 供货数量:乙方每次采购的莲藕数量为______吨,具体数量以乙方订单为准。
2. 单价:每吨莲藕的价格为人民币______元(含税),价格随市场波动可进行调整,双方应提前协商确定。
3. 总价:根据实际供货数量乘以单价计算。
第三条交货时间及地点1. 交货时间:甲方应在乙方下达订单后______天内完成供货。
2. 交货地点:乙方指定的地点,具体地址以乙方订单为准。
第四条运输方式及费用1. 运输方式:______________________。
2. 运输费用:由______方承担。
第五条质量验收1. 乙方在收到货物后______小时内进行验收,如发现质量问题,应在______小时内书面通知甲方。
2. 甲方在接到乙方通知后应及时处理,如确属甲方责任,甲方应负责更换或退货。
第六条付款方式及期限1. 付款方式:乙方应在收到货物并验收合格后______天内支付货款。
2. 付款期限:乙方应在合同约定的付款期限内支付全部货款。
第七章1、功函数:表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。
W m=E0-(E F)m W s=E0-(E F)S2、电子亲和能:使半导体导带底的电子逸出体外所需要的最小能量。
Ꮠ=E0-E c3、接触电势差:一块金属和一块n型半导体,假定wm>ws接触时,半导体中的电子向金属流动,金属电势降低,半导体电势升高,最后达到平衡状态,金属和半导体的费米能级在同一个水平面上,他们之间的电势差完全补偿了原来费米能级的不同。
Vms=(Vs-Vm)/q这个由于接触而产生的电势差称为接触电势差。
4、阻挡层与反阻挡层n pWm>Ws 阻上弯反阻上弯Wm<Ws 反下弯阻下弯阻挡层:在势垒区中,空间电荷主要由电离施主形成,电子浓度要比体内小得多,因此他是一个高阻的区域。
反阻挡层:Wm<Ws,金属与n型半导体接触时,电子将从金属流向半导体,在半导体表面形成负的空间电荷区。
电子浓度比体内大的多,因而是一个高电导的区域。
5、表面势:随着金半之间距离的减少,靠近半导体一侧的半导体表面的正电荷密度增加,由于搬到一中自有电荷密度的限制,这些正电荷分布在半导体表面相当厚的一层表面内,即空间电荷区,这时在空间电荷区内变存在一定的电场,造成能带的弯曲,使半导体表面和内部之间存在电势差。
6、整流作用:金属和半导体接触形成阻挡层,当在金属一侧加外反向电压,金属一边的势垒不随外加电压变化,从金属到半导体的电子流是恒定的,当反向电压继续增加,使半导体到金属的电子流可以忽略不计时。
反向电流达到饱和。
7、扩散理论:应用于厚阻挡层8、发射理论:薄阻挡层9、肖特基势垒:势垒厚度依赖于外加电压的势垒10、欧姆接触:金属和半导体形成非整流接触,不产生明显的附加阻抗,半导体内部的平衡载流子浓度不发生明显变化。
实现:1、Wm<Ws时,金与n形成发阻挡层。
Wm>Ws时,与p形成反阻挡层。
反阻挡层没有整流作用,选用适当的金属材料可得到欧姆接触。
《半导体物理》教学大纲课程名称:半导体物理学英文名称:Semiconductor Physics课程编号:课程类别:专业选修课使用对象:应用物理、电信专业本科生总学时: 48 学分: 3先修课程:热力学与统计物理学;量子力学;固体物理学使用教材:《半导体物理学》刘恩科等主编,电子工业出版社出版一、课程性质、目的和任务本课程是高等学校应用物理专业、电子与信息专业本科生的专业选修课。
本课程的目的和任务是:通过本课程的学习使学生获得半导体物理方面的基本理论、基本知识和方法。
通过本课程的学习要为应用物理与电信专业本科生的半导体集成电路、激光原理与器件、功能材料等后续课程的学习奠定必要的理论基础二、教学内容及要求本课程所使用的教材,共13章,概括可分为四大部分。
第1~5章,晶体半导体的基本知识和性质的阐述;第6~9章归结为半导体的接触现象;第10~12章,半导体的各种特殊效应;第13章,非晶态半导体。
全部课堂教学为48学时,对上述内容作了必要的精简。
10~13章全部不在课堂讲授,留给学生自学或参考,其他各章的内容也作了部分栅减。
具体内容和要求如下:第1章半导体中的电子状态1.半导体的晶格结构和结合性质2.半导体中的电子状态和能带3.半导体中电子的运动有效质量4.本征半导体的导电机构空穴5.回旋共振6.硅和锗的能带结构7.III-V族化合物半导体的能带结构8.II-VI族化合物半导体的能带结构9.Si1-xGex合金的能带10.宽禁带半导体材料基本要求:将固体物理的晶体结构和能带论的知识应用到半导体中,以深入了解半导体中的电子状态;明确回旋共振实验的目的、意义和原理,进而了解主要半导体材料的能带结构。
(限于学时,本章的第7-10节可不讲授,留学生参阅,不作具体要求)。
重点:半导体中的电子运动;有效质量;空穴概念。
难点:能带论的定性描述和理解;锗、硅、砷化镓能带结构第2章半导体中杂质和缺陷能级1.硅、锗晶体中的杂质能级2.III-V族化合物中的杂质能级3.氮化镓、氮化铝、氮化硅中的杂质能级4.缺陷、位错能级基本要求:根据不同杂质在半导体禁带中引入能级的情况,了解其性质和作用,由其分清浅杂质能级(施主和受主)和深能级杂质的性质和作用;了解缺陷、位错能级的特点和作用。
半导体超晶格材料的制造、设计是以固体能带结构的量子力学理论为基础的,也就是说,人为地改变晶体的周期势,做出具有新功能的人工超晶格结构材料。
半导体超晶格材料具有一般半导体材料不能实现的许多新现象,可以说是超薄膜晶体制备技术,量子物理和材料设计理论相结合而出现的第三种类的半导体材料。
利用这种材料,不仅可以显著提高场效应晶体管和半导体激光器等的性能,也可以制备至今还没有的功能更优异的新器件和发现更多的新物理现象,使半导体器件的设计和制造由原来的“杂质工程”发展到“能带工程”。
因此,半导体超晶格是属于高科技范畴的新型功能材料。
电子亲和势是指元素的气态原子得到一个电子时放出的能量,叫做电子亲和势。
(曾用名:电子亲和能EA)单位是kJ/mol或eV。
电子亲和势的常用符号恰好同热力学惯用符号相反。
热力学上把放出能量取为负值,例如,氟原子F(g)+e→F-(g),△H=-322kJ/mol。
而氟的电子亲和势(EA)被定义为322kJ/mol。
为此,有人建议元素的电子亲和势是指从它的气态阴离子分离出一个电子所吸收的能量。
于是,氟离子F-(g)-e→F(g),△H=322kJ/mol。
两者所用符号就趋于统一。
可以认为,原子的电子亲和势在数值上跟它的阴离子的电离能相同。
根据电子亲和势数据可以判断原子得失电子的难易。
非金属元素一般具有较大的电子亲合势,它比金属元素容易得到电子。
电子亲和势由实验测定,但目前还不能精确地测得大多数元素的电子亲和势。
元素的电子亲和势变化的一般规律是:在同一周期中,随着原子序数的增大,元素的电子亲和势一般趋于增大,即原子结合电子的倾向增强,或它的阴离子失去电子的能力减弱。
在同一族中,元素的电子亲合势没有明显的变化规律。
当元素原子的电子排布呈现稳定的s2、p3、p6构型时,EA值趋于减小,甚至ⅡA族和零族元素的EA都是负值,这表明它们结合电子十分困难。
在常见氧化物和硫化物中含有-2价阴离子。
从O-(g)或S-(g)结合第二个电子而变成O2-(g)或S2-(g)时,要受到明显的斥力,所以这类变化是吸热的。
半导体超晶格的光学性质半导体超晶格是一种由多个单晶体相互重叠而形成的一种特殊晶体结构,其结构可用于制备纳米尺度下具有特定光学性质的材料。
在此文中,将重点介绍半导体超晶格的光学性质,包括其吸收、荧光和折射等方面。
一、吸收半导体超晶格中的光吸收是一种复杂的现象,通常需要用到量子力学和计算机模拟等方法来解释其微观机制。
大多数半导体超晶格对可见光谱范围都表现出一定的吸收特征,其中包括从紫外光到红光的连续吸收带。
这些吸收带的宽度和位置通常与超晶格的结构和材料参数有关。
例如,对于由InAs和GaAs单晶体交替组成的InAs/GaAs超晶格,其吸收谱在900~1200nm范围内表现出显著的带状结构,这与超晶格的周期和厚度有关。
二、荧光半导体超晶格的荧光性质是其在光学应用中的重要特征之一。
荧光是半导体超晶格在受到光激发后发出的可见光,其波长通常取决于材料的能隙。
对于由GaAs和AlAs交替组成的超晶格,在晶格匹配度良好时,其荧光光谱呈现出尖锐的峰形结构。
这些峰的位置和强度可能会受到超晶格周期、结构界面的缺陷等因素的影响。
三、折射半导体超晶格的折射率是其光学性质中的一个重要参数,它直接决定了超晶格材料在光学器件中的应用效果。
在正常入射情况下,半导体超晶格的折射率与其周期和材料参数有关。
对于某些特殊的超晶格结构,如由氧化锌和硫化锌交替组成的ZnO/ZnS超晶格,其折射率不仅与周期和材料参数有关,还受到光激发和外加电场的影响。
这些性质使得ZnO/ZnS超晶格在光电器件中具有广泛的应用前景。
总的来说,半导体超晶格的光学性质是其在光电器件中应用的关键因素之一。
对其吸收、荧光和折射等特性的深入研究,可以为制备具有特定光学性质的材料和开发高性能光电器件提供有力支持。