煤矿综采工作面液压支架电液控制系统
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
煤矿液压支架电液控制系统研究摘要:煤矿生产中需要使用各种设备,积极对各类设备进行优化有利于提高整体的开采效果。
为了解决液压支架电液控制系统调控速度慢、调节精度差的问题,提出了一种新的煤矿井下液压支架电液控制装置。
通过采用闭环反馈控制的模式,提高了液压支架调控的精确性,通过高精度电磁反馈控制,实现了对电磁先导阀的快速调整,提升了对支架的调节灵敏性。
基于此,本文主要分析了煤矿液压支架电液控制系统。
关键词:煤矿;液压支架;电液控制系统中图分类号:TD672文献标识码:A引言随着煤矿井下智能化和自动化的推进,矿井电液控制系统未来的发展方向为智能化、自动化。
通过利用电液控制技术对综采工作面液压支架进行远程控制系统设计,依据传统人工移架存在安全隐患以及移架效率较低的现状提出智能化移架控制方案,实现了综采工作面液压支架的跟机自移以及单架、成组控制效果。
1液压支架的结构组成根据煤矿液压支架各部分结构在支撑承载过程中所发挥作用的不同,可将煤矿液压支架划分为以下结构:顶梁。
用于支撑顶板,是液压支架主要承载部件。
同时,顶梁还会在反复顶煤过程对顶板煤层进行破碎,提高工作面生产效率;前梁。
用于保障液压支架四根立柱受力均匀性,增强支架顶梁支顶性能,必要时可用于吊装采煤设备;掩护梁。
用于承受液压支架的水平力和侧向力,在顶板岩石垮落时还可以承接垮落岩石压力,为工作面营造安全空间;底座。
用于为立柱、推移等辅助装置形成安全空间,保障液压支架整体稳定性;四连杆机构。
用于调节顶梁与煤壁之间的距离和支护顶板,并在此过程中承受顶板的水平分力和侧向力;推移机构。
用于推动刮板运输机、液压支架向工作面煤壁方向移动;护帮装置。
用于实现护帮板的挑起和收平运动;尾梁。
用于支撑松动顶板,维护工作空间。
上下摆动可控制支架后部放顶煤[1]。
2电液控制系统组成液压支架主要由液压件(立柱、千斤顶),承载结构件(顶梁、掩护梁和底座等),推移装置,控制系统和其他辅助装置组成,往往工作环境极其恶劣复杂。
液压支架电液控制系统用户指南
系统介绍
本系统是由液压支架和电液控制系统组成的,是用于煤矿开采的重要设备。
液压支架主要用于支撑煤壁和顶板,而电液控制系统则控制液压支架的运行。
本用户指南介绍了该系统的使用方法和注意事项。
使用方法
1. 系统启动:先按下电源开关,待系统运行灯亮起后,再打开主控制器开关,系统即可启动。
2. 支架调整:通过操作主控制器上的按键和旋钮,可以控制液压支架的高度和角度。
在操作时应注意避免超载和过载,以免造成支架垮塌和人员伤亡。
3. 系统维护:定期检测液压支架和电液控制系统的状态,如发现异常应及时处理。
定期更换系统中的液压油和滤芯,以保证系统的正常运行。
注意事项
1. 操作前请先熟悉本系统的使用方法,并确保已按照要求进行培训和考核。
2. 操作过程中如遇到异常情况,请立即停止操作,并及时报告处理。
3. 系统维护应由专业技术人员进行,并记录下维护情况和维护时间。
4. 禁止未经授权的人员擅自修改系统参数和程序,以免影响系统的正常运行。
总结
本文档介绍了液压支架电液控制系统的使用方法和注意事项,希望用户能够熟练掌握系统的操作和维护,提高生产效率和保障人员安全。
如有任何问题,请及时联系相关技术人员,以获得及时的帮助和支持。
煤矿综采液压支架中电液控制系统应用分析发布时间:2022-03-11T08:15:51.997Z 来源:《科技新时代》2022年1期作者:李磊[导读] 为了研究煤矿综采液压支架中电液控制系统的设计构成与运用反馈。
淮北矿业集团有限责任公司双龙公司安徽淮北 235000摘要:为了研究煤矿综采液压支架中电液控制系统的设计构成与运用反馈。
本文基于笔者某矿业公司多年相关工作经验,在系统工程原理指引下进行了系统数据采集端、现场执行端、效果反馈端的全过程阐述。
并依据技术发展现状对系统未来发展趋势进行了预估评判。
关键词:煤矿;综采;液压支架;电液控制1引言社会的进步与技术的发展带来了多维导向的机械化替代人工,同时先进的机械化设备也给工作带来了更好的效率指标和安全受控。
以煤矿机械化开采为例,传统的硬连接支架单一应力支护已经不能满足深层煤矿开采带来的复杂应力损害。
而现代综合机械化采煤技术运用的人工智能算法和更加齐全的变应力液压支架中更加适应于非均质性较强的软弱围岩。
加之自动化交变一次表能准确进行不同区域的应力反馈式回传,将数据进行及时的计算融合。
在有限元分析基础上实现实时交互反馈、动态调节以及液压支架电液控制系统的主动介入。
在人机力学、机械防护和安全稳定上都得到了最大化平衡,确保了井下施工人员的本质安全,同时降低了相应岗位的劳动强度,避免了误操作带来的多维安全不受控。
本文基于笔者某矿业公司多年相关工作经验,在系统工程原理指引下进行煤矿综采液压支架中电液控制系统研究,为煤矿本质安全生产提供智能化设备建议和进展描述。
2液压支架中电液控制系统的基本组成由单片机PLC就地远传、现场一次表信号记录和终端控制器分析指挥为代表的计算机自动控制系统能以单线传输、组网运行和数据就地记录3种方式进行自动化鲁棒性的全面保障(图1)。
而依托稳定性较好的网络传输系统、传感系统、控制系统等元器件进行设备保障的液压支架电液控制系统更能适应复杂的煤矿生产环境。
煤矿综采工作面液压支架电液控制系统摘要一种新型的煤矿综采工作面液压支架电液控制系统,使液压支架与采煤机、刮板输送机联动,实现综合机械化采煤工作面的高效、安全、自动化生产。
关键词电液控制系统;支架控制器液压支架电液控制系统是煤矿综采机械的关键设备,是综采工作面的支护设备的控制系统,为煤矿综采工作面上的采煤设备和人员支撑一个安全的工作空间,支护设备控制系统的智能性、可靠性、适应性影响着综合采煤的高效、安全。
目前,国内市场上使用的液压支架电液控制系统有:德国DBT公司的PM4电液控系统、德国MACRO公司的PM31电液控系统、德国EEP公司的PR116电液控系统,国内神坤公司的电液控制系统、国内天玛的电液控制系统等。
这些电液控系统产品各有优缺点,相互间兼容性差,对电液控制系统的维护较复杂。
1 各电液控系统的特点EEP公司的PR116电液控制系统只由防爆电源和支架控制器、能量插头组成主干网终络。
架间电缆是10芯电缆,系统供电电源为单路单向供电,支架控制器的电能传递需要能量插头,电缆的种类较多,比如,其行程传感器连接电缆和压力传感器连接电缆就不能互换,增加了系统的维护难度。
DBT公司的PM4电液控系统由防爆电源、支架控制器、隔离耦合器和电源耦合器组成主干网络。
设备间采用 4 芯电缆连接,两根电源线、一根发送线、一根接收线。
相邻支架控制器采用RS232通信方式,为了使4芯的连接电缆的两个端口统一,要求其设备的左右两个通信接口不统一(比如,隔离耦合器的左右两个接口),一个接口的某芯为接收方式,则另一个接口的某芯则为发送方式,此设备连入系统时,其左右方向不能接错,增加了系统的连接复杂性。
MACRO公司的PM31电液控制系统的主干网络由防爆电源、支架控制器、隔离耦合器组成,另外需要总线提升器和网终终端器。
设备间采用 4 芯电缆连接,两根电源线、一根总线、一根级联线。
其两根通信线均为双向传输的,虽然其隔离耦合器的两个通信接口没有方向性,4芯电缆的两端也做成统一的。
简析煤矿综采液压支架电液控制系统的应用(一)摘要:液压支架电液控制系统是目前液压支架最先进的控制方式,是集机械、液压、电子、计算机和通信网络等技术于一身,技术含量高、难度大,应用于煤矿井下的一项高新技术产品。
液压支架电液控制系统不但可以自动控制液压支架的动作,而且可以实现邻架或远程控制液压支架,此外还可以对工作面液压支架进行监控,使液压支架与其他采煤设备相配合,实现高效采煤。
关键词:综采液压支架电液控制系统0引言液压支架的使用是煤矿井下采煤由人工劳动到机械化生产的根本性转变。
综合机械化采煤在煤矿的推广应用,使我国煤矿生产的技术和生产效率达到世界先进水平。
计算机技术和自动化技术的发展,为煤矿生产自动化和高效生产提供了新的出路。
电液控制系统的应用使井下采煤实现了由机械化向自动化的变革,是煤矿21世纪的高新技术。
电液控制系统集监测与控制于一体,可实现在地面、在顺槽对工作面设备的运作与工况的自动控制与监测,使煤矿井下工作面的生产和管理产生根本性的变化。
1电液控制系统的发展概况自电液控制系统20世纪80年代问世以来,受到各国煤矿的关注。
目前,德国多数综采工作面已经使用了电液控制系统。
在美国、英国、澳大利亚、波兰也得到广泛应用。
20世纪90年代末期在我国神华集团大柳塔矿采用第1套德国DBT生产的电液控制系统以来,先后有5套系统在我国投入使用。
由煤炭科学研究总院(天地科技股份有限公司)与德国玛珂系统分析与开发公司共同提供的第1套综采放顶煤液压支架电液控制系统,代表了当前电液控制系统发展的最新水平。
该系统在兖州兴隆庄煤矿井下正式运行,成为我国及世界综采放顶煤第1套利用电液控制系统的工作面。
多年来困扰综采液压支架电液控制系统在中国推广使用的一个主要问题就是价格问题。
为进一步降低成本,煤炭科学研究总院(天地科技股份有限公司)与德国玛珂系统分析与开发有限公司在北京成立了合资经营公司,即天地玛珂电液控制系统有限公司。
该公司采用德国玛珂公司电液控制系统的关键技术,大部分元件在中国生产,由德中双方技术人员提供高质量的技术服务。
液压支架电液控制系统的发展及简介[摘要]液压支架是煤矿开采的重要设备之一。
液压支架在煤矿开采过程中负责煤层的支撑和控制工作面的顶板,将采空区与作业区相隔离,避免矸石进入回采工作面。
液压支架电液控制系统是目前煤矿支护设备的先进控制方式,是集机械、液压、电子、计算机和通信网络等技术于一身,科技含量高,是煤矿综采的一项高科技产品。
液压支架电液控制系统不仅可以自动控制液压支架的动作,而且可以实现邻架及异地控制液压支架,降低开采一线工人的劳动强度,大大提高一线工人的工作环境,保证煤矿企业的安全生产。
【关键词】煤矿液压支架;电液控制系统随着科学技术的发展,液压支架电液控制系统正逐步应用到我国煤矿企业中。
电液控制系统的推广,使煤矿生产由机械化生产向自动化控制生产迈进。
不仅提高了煤矿生产效率,而且改善了煤矿生产的工作环境及安全条件。
1.电液控制系统的发展概况1.1国外电液控制系统发展为了便于井下开采实现自动化,改善工作环境,美国、德国等国家于20世纪70年代最先开始研制、开发液压支架电液控制系统。
电液控制系统在国外,80年代进入试运行阶段,90年代技术基本成熟,逐步应用于煤矿综采。
国外应用电液控制系统较多的有德国、美国、英国、澳大利亚、波兰等。
其中尤以德国、美国应用最为普及化,其各项技术指标也属领先地位。
德国采矿技术有限公司(DBT)生产的PM4控制器,德国玛坷公司(MARCO)生产的PM31、PM32控制器,美国JOY公司的RS20控制器装配了故障诊断预警装置,通过刮板输送机、采煤机等进行联动、实现远程操控。
1.2国内电液控制系统发展在我国,1991年北京煤机厂和郑州煤机厂首次研发液压支架电液控制系统,在井下工作面进行工业试验,但由于各种原因未能大批量生产。
1996年,煤炭科学研究总院太原分院试制电液控制系统,进行了我国首家整套工作面生产实验。
2001年7月,北京天地玛珂电液控制系统有限公司成立,北京天地玛珂电液控制系统有限公司注册于北京市中关村科技园区昌平科技园,由央企中国煤炭科工集团下属上市公司天地科技股份有限公司与德国玛珂系统分析与开发有限公司合资成立。
公司各矿井:为进一步加强综采工作面供液系统管理,确保矿井安全生产,公司根据《煤矿安全嵋八《机电设备检修使规范》、《煤矿安全生产标准化管理体系基本要求及评分方法》、《煤矿用液压支架第4部分:电液控制系统技术条件》、《液压支架用乳化油、浓缩液及其高含水液压液》、及相关规定重新修订了《综采(放)工作面供液系统及液压支架管理规定》,现印发给你们,请遵照执行。
特此通知综采(放)工作面供液系统及液压支架管理规定第一条综采工作面供液系统包含乳化液泵站、主供液管路、主回液管路、液压支架内供、回液管路、电液控系统、安全阀、各类胶管、立柱、各类千斤顶、液压元件等。
第二条乳化液泵站相关要求1.乳化液泵站设备完好,乳化液泵站压力不小于30MPa,乳化油(浓缩液)浓度符合产品技术标准要求,并在作业规程中明确规定。
2,液压系统无漏、窜液,部件无缺损,管路无挤压,连接销使用规范。
3.采用电液阀控制时,净化水处理装置运行正常,水质、水量满足要求。
4.各种液压设备及附件合格、齐全、完好,控制阀有效,耐压等级符合要求,操作阀手把有限位装置。
第三条乳化液管理规定(一)乳化液用水应采用反渗透处理工艺处理,PH值6-9。
(二)乳化液浓度配比必须使用自动配比仪,使用浓缩液产品的浓度配比要达到10%—2.0%,使用乳化油产品的浓度配比要达到3%—5%。
(三)乳化液泵箱要求每周清洗一次。
(四)电液控支架乳化液泵站按照以下要求进行管理:1.智能高压反冲洗过滤站过滤精度不大于25um,进出口压力压差大于IMPa必须进行反冲洗,压差大于2MPa时必须更换滤芯。
2.反渗透水处理设备自清洗过滤器、纤维过滤、精过滤器每班最少反冲洗一次,一级过滤精度不大于300Unb二级过滤精度不大于200Unb三级过滤精度不大于80Unb四级过滤精度不大于5um,反渗透过滤精度不大于0.OO1um;每级过滤压差大于0.5MPa时必须进行反冲洗。
3.回液反冲洗过滤站一级过滤精度不大于180um,二级过滤精度不大于60um,进口压力和出口压力压差大于0.3MPa必须进行反冲洗,压差大于0.5MPa时必须更换滤芯。
煤矿液压支架电液控制系统煤矿液压支架电液控制系统研究摘要:重点介绍了煤矿液压支架电液控制系统的结构、组成、工作原理,主要功能以及在煤矿液压支架产品中的应用效果。
煤矿液压支架电液控制系统是实现煤矿高产高效的关键技术设备之一。
目前,国外液压支架电液控制技术已发展到相当成熟的阶段,控制功能不断扩大,其对工作面条件的适应能力不断增强,可靠性也得到大幅度提高。
当今国际主流的液压支架电液控制系统主要有德国MARCO公司的PM31型、德国DBT公司的PM4型和美国JOY公司的RS20型三种。
美国、澳大利亚、南非等国家的煤矿新装备的综采工作面几乎全部采用电液控制的液压支架。
一、电液控制系统核心煤矿液压支架电液控制系统即通过电液阀将过去人工控制操作变为由计算机程序控制的电子信号操作。
液压支架不同位置的传感器将工作环境和不同状态的信号传输给计算机,计算机将根据不同的工作状态和工艺要求,对电液阀发出控制信号,达到对工作面设备进行控制的目的。
二、电液控制系统组成、原理、基本功能(一)电液控制系统组成如图1所示:电液控制系统主要有电源、主控制台、支架控制器(SCU)、液电信号转换元件(压力、位移传感器),电液控制阀组、液压系统等组成。
图1 支架电液控制系统组成图(二)电液控制系统基本原理(1)双向邻架控制系统。
综采工作面每一支架均配有架控箱、操作者通过支架架控箱选择邻架控制方式,然后根据指令发出相应控制命令(给出电信号),使邻架上对应的电磁铁或微电机动作,将电信号转化为液压信号,控制主控阀开启,向支架液压缸供液,实现邻架支架相应的动作。
支架工作状态由位移传感器和压力传感器反馈回架控箱,架控箱再根据传感器反馈信号决定支架的下一个动作。
(2)双向成组控制系统。
将工作面的支架编为若干组,在本组内首架上由操作人员按动架控箱的启动键,发出一个指令,邻架就按预定程序动作,移架完成后自动发出控制信号给下一架控箱,下一架开始动作。
依此类推,实现组内支架的自动控制。
煤矿液压支架电液控制系统检测修理工艺1. 引言1.1 煤矿液压支架电液控制系统检测修理工艺概述在煤矿生产中,液压支架是一种非常重要的设备,用于支撑和保护煤矿工作面。
而液压支架的电液控制系统则是支架正常运行的关键。
由于液压支架工作环境恶劣,长时间运行容易引起系统故障。
对液压支架电液控制系统的检测和修理工艺显得尤为重要。
液压支架电液控制系统的故障可能包括液压元件漏油、泄漏、压力不稳定等问题,也可能包括控制回路故障、传感器故障等电气问题。
为了确保煤矿安全生产,必须及时检测和修理这些故障。
在本文中,我们将重点介绍液压系统故障的检测与分析、电气控制系统故障的检测与分析、液压支架修理工艺、电液控制系统维护流程以及安全措施与注意事项。
通过对这些内容的深入探讨,我们可以更好地了解煤矿液压支架电液控制系统的检测修理工艺,保障煤矿生产的顺利进行。
通过对煤矿液压支架电液控制系统检测修理工艺的探讨和总结,我们可以更好地完善相关技术,提高系统的稳定性和可靠性,为煤矿生产安全和高效提供技术支持。
2. 正文2.1 液压系统故障检测与分析液压系统故障检测与分析是煤矿液压支架电液控制系统检测修理工艺中非常重要的一环。
液压系统的故障会直接影响到支架的正常运行,因此及时发现并解决问题至关重要。
液压系统的常见故障包括泄漏、压力不稳定、液压油温过高等。
当出现液压系统故障时,首先要检查液压油的油质、油位和油压是否正常。
如果发现液压油有异常情况,需要及时更换新的液压油并清洗系统。
检查液压泵、液压缸、液压阀等部件是否正常工作。
可以通过观察液压泵的运转声音、液压缸的活塞运动是否顺畅以及液压阀的开关是否灵活来判断是否存在故障。
如果发现部件故障,及时修理或更换是必要的。
还需要检查液压系统的管路连接是否紧密,液压系统的滤芯是否干净等。
这些细节问题也可能导致液压系统故障,因此不能忽视。
液压系统故障检测与分析需要综合考虑液压系统各部件的工作情况,及时发现问题并进行维修,确保支架的正常运行。
电液控制系统在煤矿综采液压支架的应用摘要:随着煤矿开采技术水平的不断提升,液压支架电液控制系统在开采期间得到了广泛应用,确保煤矿综采工作面实现了自动化生产,完成了智能控制。
液压支架电液控制系统不但可以自动控制液压支架的动作,而且可以实现邻架或远程控制液压支架,此外还可以对工作面液压支架进行监控,使液压支架与其他采煤设备相配合,实现高效采煤。
关键词:综采液压支架;电液控制系统煤炭在我国的能源结构中占有非常重要的地位,对于我国的经济发展具有十分重要的现实意义。
为了进一步提高煤炭开采的工作效率,将液压支架电液控制系统有效地运用于综合机械化开采之中,进而提高煤炭开采过程中的机械自动化水平,是实现煤矿综采工作自动化控制的枢纽和核心,能够有效提高煤炭开采过程中的生产条件和煤矿生产的效率。
液压支架的使用是煤矿井下采煤由人工劳动到机械化生产的根本性转变。
综合机械化采煤在煤矿的推广应用,使我国煤矿生产的技术和生产效率达到世界先进水平。
计算机技术和自动化技术的发展,为煤矿生产自动化和高效生产提供了新的出路。
电液控制系统的应用使井下采煤实现了由机械化向自动化的变革,是煤矿21世纪的高新技术。
电液控制系统集监测与控制于一体,可实现在地面、在顺槽对工作面设备的运作与工况的自动控制与监测,使煤矿井下工作面的生产和管理产生根本性的变化。
一、概述1.液压支架电液控制系统的基本组成。
如图1,液压支架电液控制系统主要是由计算机系统、网络传输系统、传感系统、控制系统等器件组成,其中,能够控制支架运行的元件是该系统的核心部分。
计算机系统主要是对整个系统的运行发出指令,并进行相关命令的操作;网络传输系统依靠网络能够及时对井下的生产、运行状况进行传输;传感系统主要有压力、距离、角度、红外传感系统组成,传感系统的有效运行能够使整个开采过程处理技术人员事先设计的开采路线,对煤矿的正常生产具有重要意义。
在煤矿开采过程中,液压支架电液控制系统具有自动化程度较高、操作简单、系统运行安全的优势。
智能工作面液压支架电液控制系统端头控制器设计智能工作面液压支架是矿山开采中的重要装备,通过协调支架的运动速度和力量分布,保障采煤过程中的安全和高效。
而电液控制系统端头控制器作为智能工作面液压支架的核心部件之一,起着关键的控制作用。
在本文中,我们将围绕智能工作面液压支架电液控制系统端头控制器的设计进行详细讨论。
一、控制器的基本原理智能工作面液压支架电液控制系统端头控制器的设计需要基于一定的基本原理。
首先,控制器应该能够接受来自传感器的信号,如液压缸行程等参数。
其次,控制器需要根据接收到的信号进行逻辑判断和计算处理,决定液压支架的各项运动参数,包括速度、力量等。
最后,控制器要能够通过输出信号控制液压装置的运动,调整液压系统的工作状态。
二、设计要求及控制策略在智能工作面液压支架电液控制系统端头控制器的设计中,需要考虑以下几个关键要求和控制策略。
首先,控制器应具备高精度和高灵敏度,能够实时响应传感器的信号变化。
其次,控制器需要具备自适应性,能够根据工况和采煤状态调整系统的工作参数。
此外,控制器还应具备安全保护功能,当系统出现异常情况时能够及时做出响应,避免事故发生。
针对这些要求和策略,可以采用PID控制算法进行控制器的设计。
PID控制器通过比较实际输出值与设定值的偏差,通过比例、积分和微分运算对输出信号进行控制,实现对液压支架运动的精确控制。
此外,通过引入模糊控制算法,可以提高控制器的自适应性,使其能够根据采煤状态和工况实时调整控制参数。
三、控制器硬件设计智能工作面液压支架电液控制系统端头控制器的硬件设计主要包括信号采集电路、控制算法电路和执行器驱动电路。
1. 信号采集电路信号采集电路主要负责接收传感器的输出信号,并将其转化为数字信号。
需要注意的是,采集电路应具备高精度和高速采样能力,以确保控制的准确性和实时性。
2. 控制算法电路控制算法电路是实现控制策略的关键部分。
其中,PID算法电路负责实现PID控制算法,根据输入信号实时计算控制输出。
煤矿液压支架电液控制系统检测修理工艺随着我国煤矿深度开采的不断推进,液压支架已经成为煤矿工作面支护的重要设备。
而液压支架的电液控制系统更是支架的“大脑”,负责控制支架的升降、支柱的伸缩等关键功能。
对于这一重要的系统,定期的检测和维护工作显得尤为重要。
本文将针对煤矿液压支架电液控制系统的检测修理工艺进行介绍,希望能对相关工作人员提供一定的参考。
一、检测准备1. 相关设备准备:在进行电液控制系统的检测修理工作前,需要准备相关的检测设备和工具,包括但不限于压力表、流量计、温度计、电压表、电流表、绝缘电阻测试仪等,以及常用的维修工具和备件。
2. 安全准备:在进行检测修理工作时,需要严格遵守相关的安全操作规程,佩戴好个人防护用具,确保作业环境的安全,不得擅自拆卸设备或操作不熟悉的设备。
二、检测项目1. 液压系统检测:包括液压油的检测、油泵的工作状态检测、液压缸的工作状态检测等。
检测时需注意观察油液的清洁度、粘度和漏油情况,以及油泵的声音、温度和压力表的显示等。
2. 电气系统检测:包括电磁阀的工作状态检测、控制器的输出信号检测、传感器的信号检测等。
检测时需注意观察电磁阀是否正常开闭、控制器是否输出正确的信号、传感器信号是否准确等。
4. 故障诊断:在进行检测的过程中,如发现液压系统压力不稳、电气系统接触不良、控制系统程序错误等故障,需利用相关的故障诊断仪器进行进一步的检测和排除故障。
三、修理工艺1. 液压系统维护:根据液压系统的检测结果,进行相应的维护工作,包括更换液压油、更换油封、更换液压缸密封件等。
在更换液压元件时,要注意液压系统的排气和加油工作,确保系统正常运行。
4. 故障排除:对于故障诊断中发现的故障,需要有系统地分析并对症下药,确保故障得到彻底排除,避免因小失大。
四、总结液压支架电液控制系统是煤矿液压支架的重要组成部分,其正常运行与否直接关系到矿井的生产效率和生产安全。
对电液控制系统的定期检测和维护工作至关重要,只有保障了系统的正常运行,才能更好地保障矿井的安全生产和稳定运行。
自动化控制• Automatic Control126 •电子技术与软件工程 Electronic Technology & Software Engineering【关键词】综采液压支架 电液控制 系统技术液压支架安装移动中基本移架速度对综合工作面生产具有较大限制作用,液压支架电液控制系统应用能全面提升煤矿生产效率。
支架电液控制系统就是将计算机控制技术、电子技术、液压技术进行融合,逐步形成综合性应用技术。
在新时期煤矿生产开发过程中支架电液控制系统是重要应用标志,我国自主研发的综采液压支架安装电液控制系统技术文/王思威支架电液控制系统近年来发展较快,电液控制系统开始发展完善。
1 综采液压支架电液控制系统组成与运行原理在支架电液控制系统组成中,构成内容较多,主要有人机操作界面、行程传感器、压力传感器、支架控制器、红外传感器、电源箱、连接器、主阀、网络变化器、计算机、数据转换器、地面计算机等,如图1所示。
在支架电液控制系统中最小组成单元就是支架控制单元,主要是以支架控制器为基本组成核心,其中主要是融入了自动控制装置中重要应用环节,分别是传感器检测以及动作执行环节。
支架控制器中装有相应软件以及操作系统,技术人员通过按键实施相应命令,通过此支架动作以及相应工况监控采集。
工作面支架属于一个完整整体,通过电液控制能提升其应用功能,比如操作更为便捷,能确保支架控制实现自动化运转,提升安全保障作用,促使各个支架之间进行有效协调运转,发挥出支架控制器互联作用。
将工作面中各个支架控制器进行连接,组成更为完整的通信网络系统。
发挥总线技术应用价值,对控制器之间数据有效传递。
发挥嵌入式操作系统任务管理作用与实时调度作用,促使电液控制系统应用功能可以全面提升。
建立采煤机位置检测应用装置,对采煤机进行精确化定位,保障工作面支架能稳定跟随,实施自动化控制。
在综采支架电液控制系统网络管理中发挥出网络变换器应用作用,对工作面中相应数据进行管理,数据转换器将工作面中具体情况传递到巷道主控计算机中,能实现综合监控管理。
煤矿液压支架电液控制系统检测修理工艺煤矿液压支架电液控制系统是煤矿井下工作面的重要设备之一,负责支撑和稳定工作面。
为了确保支架电液控制系统的正常运行,需要进行定期的检测和修理。
以下是煤矿液压支架电液控制系统检测修理的一般工艺。
1. 检测前的准备工作:a. 确保工作面停机,排放系统内的液压油,切断系统的电源,并进行安全措施,对检测现场进行隔离和标识。
b. 了解液压支架电液控制系统的结构和工作原理,准备相应的检测设备和工具。
c. 检查液压油的质量和油位,如有需要,更换液压油和清洗液压油箱。
2. 检测液压系统的工作状况:a. 进行液压系统的漏油检测,检查各个连接点、接头和密封件是否存在漏油现象。
b. 检查液压泵和液压阀的工作是否正常,如有需要,进行清洗或更换。
c. 检测液压系统的压力是否正常,通过压力表或压力传感器进行监测和调整。
3. 检测电气控制系统:a. 检查电气控制系统的电源线路、接线端子和开关是否正常。
b. 检测电磁阀、传感器和执行器等电气元件的工作状态,修复或更换损坏的元件。
c. 进行电气连接和接地的检测,确保电气系统的安全可靠。
4. 检测液压支架结构:a. 检查液压支架的铰接、滑动和固定部件的磨损和裂纹情况,修复或更换损坏的部件。
b. 检测液压支架的支撑力和稳定性,通过模拟工作面的负荷和震动进行测试。
c. 进行液压支架的涂漆和防腐处理,延长使用寿命。
5. 修理和调试:a. 根据检测结果,对发现的问题进行修理和调整,对液压系统进行清洗和加油。
b. 进行液压系统和电气控制系统的功能调试,确保其正常工作。
c. 对检修后的液压支架电液控制系统进行全面试验,验证修理效果。
6. 编制检测和修理报告:a. 对整个检测修理过程进行记录,包括液压系统的检测结果、修理方法和主要数据。
b. 分析液压支架电液控制系统故障的原因和解决方案,提出优化和改进建议。
c. 编制完整的检测和修理报告,作为日后维护和改进的参考。
煤矿液压支架电液控制系统检测修理工艺煤矿液压支架电液控制系统是煤矿机电设备中的重要部分,其正常运行对于矿井的生产和安全具有重要意义。
长时间的使用和环境的恶劣,可能会导致液压支架电液控制系统出现故障。
对该系统进行检测和修理工艺的研究具有实际意义。
煤矿液压支架电液控制系统主要由电动液压站、控制柜及控制元件等组成。
当出现故障时,我们需要按照以下步骤进行检测和修理。
我们需要对整个系统进行仔细的外观检查。
检查系统是否存在漏油、漏电、腐蚀等情况。
如果发现有异常,应及时清洁和维修。
接下来,我们需要检测电动液压站的工作状态。
检查电动机是否正常运行,有无异常声音或振动。
然后,检查油箱内的液位是否足够,油温是否正常。
如果发现油位不足或油温过高,应及时添加液压油或进行冷却。
我们还需要检查油泵、阀门和油缸等元件的工作状态,确保其没有损坏。
在检测电动液压站的我们还需要检查控制柜的工作状态。
检查控制柜是否有电,电源是否正常。
然后,检查控制柜内的电缆、接线和继电器等是否完好无损。
如果发现有电缆断裂或接线松动,应及时修复。
我们还需要检查控制柜内的各个控制元件是否正常工作,例如按钮、开关、指示灯等。
在检测完整个系统后,如果发现故障无法解决,可能需要进一步进行拆卸和检修。
在拆卸之前,首先需要关闭电动液压站的电源,并排空液压站的液压油。
然后,按照系统的图纸和规范,逐步拆卸系统内的元件,并进行检测。
在检测时,我们需要使用相应的测试仪器,例如压力表、温度计等,确保各个元件的工作正常。
在检修过程中,如果发现有损坏或失效的元件,需要及时更换。
我们还需要对被更换的元件进行封存和标识,以便于后续分析故障原因。
在安装新元件时,要确保连接紧固、接线正确,并进行相应的密封处理。
完成修理工作后,需要进行系统的调试和试运行。
在调试过程中,需按照系统的操作流程,逐步测试各个功能,并记录测试结果。
如果发现异常现象,需要及时进行排除。
煤矿液压支架电液控制系统的检测和修理工艺是一个复杂而重要的过程。
煤矿综采工作面液压支架电液控制系统
摘要一种新型的煤矿综采工作面液压支架电液控制系统,使液压支架与采煤机、刮板输送机联动,实现综合机械化采煤工作面的高效、安全、自动化生产。
关键词电液控制系统;支架控制器
液压支架电液控制系统是煤矿综采机械的关键设备,是综采工作面的支护设备的控制系统,为煤矿综采工作面上的采煤设备和人员支撑一个安全的工作空间,支护设备控制系统的智能性、可靠性、适应性影响着综合采煤的高效、安全。
目前,国内市场上使用的液压支架电液控制系统有:德国DBT公司的PM4电液控系统、德国MACRO公司的PM31电液控系统、德国EEP公司的PR116电液控系统,国内神坤公司的电液控制系统、国内天玛的电液控制系统等。
这些电液控系统产品各有优缺点,相互间兼容性差,对电液控制系统的维护较复杂。
1 各电液控系统的特点
EEP公司的PR116电液控制系统只由防爆电源和支架控制器、能量插头组成主干网终络。
架间电缆是10芯电缆,系统供电电源为单路单向供电,支架控制器的电能传递需要能量插头,电缆的种类较多,比如,其行程传感器连接电缆和压力传感器连接电缆就不能互换,增加了系统的维护难度。
DBT公司的PM4电液控系统由防爆电源、支架控制器、隔离耦合器和电源耦合器组成主干网络。
设备间采用 4 芯电缆连接,两根电源线、一根发送线、一根接收线。
相邻支架控制器采用RS232通信方式,为了使4芯的连接电缆的两个端口统一,要求其设备的左右两个通信接口不统一(比如,隔离耦合器的左右两个接口),一个接口的某芯为接收方式,则另一个接口的某芯则为发送方式,此设备连入系统时,其左右方向不能接错,增加了系统的连接复杂性。
MACRO公司的PM31电液控制系统的主干网络由防爆电源、支架控制器、隔离耦合器组成,另外需要总线提升器和网终终端器。
设备间采用 4 芯电缆连接,两根电源线、一根总线、一根级联线。
其两根通信线均为双向传输的,虽然其隔离耦合器的两个通信接口没有方向性,4芯电缆的两端也做成统一的。
但是它增加了总线提升器和网终终端器两个小设备。
为了减少液压支架电液控系统的维护难度,方便煤矿维护工的维护,提高综合采煤的效率,降低劳动强度,设计一种全新的液压支架电液控制系统,要求组成主干网络的设备种类少、数量少,连接电缆芯数少,连接电缆种类少,电缆的两个端口统一。
2 新型液压支架电液控制系统
新型液压支架电液控制系统的组网图如下图所示,控制系统的主干网络只有
防爆电源和支架控制器,设备之间的连接电缆采用统一的4芯电缆,其中两芯传输电能,两芯传输控制信号。
控制系统的供电方式采用集中与分布相结合,每台电源有两路独立的电源输出,每路电源可给4台支架控制器供电。
每组电源之间实行电气隔离,同时还要满足信息的互联互通。
一个煤矿综采工作面上常有200多台支架控制器连接成一个线性网络。
控制系统的主干网络采用非主从式的总线组网结构,每台支架控制器把自己的状态信息和控制信息传输到总线上,其它支架控制器均从总线上接收信息。
每台支架控制器配置有三个总线接口,比其它电液控系统的支架控制器多了一个,一个为“右邻架接口”,一个为“左邻架接口”,一个为“隔离左邻架接口”。
其连接方式有“隔离连接”和“非隔离连接”,在同一个供电组中采用“非隔离连接”方式,支架控制器的“右邻架接口”通过4芯电缆连接到其右边相邻支架控制器的“左邻架接口”。
在不同的供电组之间采用“隔离连接”方式,支架控制器的“右邻架接口”通过4芯电缆连接到其右边相邻支架控制器的“隔离左邻架接口”,如此连接方式,在把控制信号连通的同时,断开了不同供电组的电气连接,比如,图中的控制器5与控制器6之间的连接。
另外,防爆电源的两个输出口分连接到相邻的两个支架控制器的“左邻架接口”或“右邻架接口”。
每台支架控制器另外再配接有红外接收器、压力传感器、行程传感器、驱动器、换向阀组等,就可以组成一个完整的电液控制系统。
3 新型液压支架电液控制系统的主要产品介绍
3.1 支架控制器
控制器的背部有12个电缆接口。
如图2所示。
其中6个模拟传感器信号输入接口,可连接行程传感器、压力传感器和红外接收器等;3个总线连接口,分别是“左邻架接口”、“右邻架接口”和“隔离右邻架接口”;1个驱动器接口,它连接支架控制器和电液控换向阀组,把支架控制器传来的串行控制信号进行解码后,控制相应的换向动作;2个数字通讯口,用于连接具有数字接口的附属设备。
控制器的正面布局有25个按键,2个急停装锁按钮,1个警示灯和1 个两行16个汉字的LCD显示器。
按键板结构上采用防破坏的多层设计,外层面膜与内层密封层隔离。
控制器的面板布局如图3所示。
控制器壳体采用不锈钢材料制作,达到IP67的防护等级,内部电路采用本安设计,进行高度集成的模块化设计,支架控制器由主板、按键板和显示板三块板组成,电路板之间的采用串行通信进行连接。
3.2 防爆电源
防爆电源采用隔爆兼本安设计,防护等级为IP65。
有4个外接口,两个
127V AC交流电输入/输出口,两个本安的12VDC直流电源输出。
这两个直流电源输出口的接触芯均为4芯,两芯为电源的正极与负极,另两芯为平衡方式的通信线,两个接口的通信线在电气上是隔离的,在信息流上是通过光耦方式连通的。
4 结论
本方案的液压支架电液控制系统与市场上现有的控制系统具有以下的优点:
1)组成系统的产品精简到只有电源和控制器,没有其它电液控制系统所配置的耦合器、终端器、提升器、主机等,系统设备之间的相互连接电缆统一为4芯电缆。
产品种类和产品数量的减少,增强了系统的可靠性,方便了系统的维护。
2)本方案采用了总线的组网方式,其中一台控制器故障后,自动脱离本系统,系统中的其它设备仍可以工作。
本系统用于煤矿采工作面,能大大提高采煤的效率、降低维护的难度,提高煤矿生产安全。