第5章陶瓷材料-清华大学-工程材料讲解
- 格式:ppt
- 大小:800.00 KB
- 文档页数:28
清华大学《工程材料》第5版教材简介《工程材料》第5版教材由清华大学材料学院朱张校教授、姚可夫教授主编,清华大学出版社出版。
《工程材料》第5版教材目录如下:绪论0.1中华民族对材料发展的重大贡献0.2材料的结合键0.3工程材料的分类第1章材料的结构与性能特点1.1金属材料的结构与组织1.2金属材料的性能特点1.3高分子材料的结构与性能特点1.4陶瓷材料的结构与性能特点第2章金属材料组织和性能的控制2.1纯金属的结晶2.2合金的结晶2.3金属的塑性加工2.4钢的热处理2.5钢的合金化2.6表面技术第3章金属材料3.1碳钢3.2合金钢3.3铸钢与铸铁3.4有色金属及其合金第4章高分子材料4.1工程塑料4.2合成纤维4.3合成橡胶第5章陶瓷材料5.1普通陶瓷5.2特种陶瓷第6章复合材料6.1复合材料的复合原则6.2复合材料的性能特点6.3非金属基复合材料6.4金属基复合材料第7章功能材料及新材料7.1电功能材料7.2磁功能材料7.3热功能材料7.4光功能材料7.5隐形材料及智能材料7.6纳米材料第8章零件失效分析与选材原则8.1机械零件的失效8.2机械零件失效分析8.3机械零件选材原则第9章典型工件的选材及工艺路线设计9.1齿轮选材9.2轴类零件选材9.3弹簧选材9.4刃具选材第10章工程材料的应用10.1汽车用材10.2机床用材10.3仪器仪表用材10.4热能设备用材10.5化工设备用材10.6航空航天器用材附录1金属材料室温拉伸试验方法新、旧国家标准性能名称和符号对照表附录2金属热处理工艺的分类及代号(摘自GB/T 12603—2005) 附录3常用钢的临界点附录4钢铁及合金牌号统一数字代号体系(摘自GB/T 17616—1998)附录5国内外常用钢号对照表附录6常用铝及铝合金状态代号与说明(摘编自GB/T 16475—2008)附录7若干物理量单位换算表附录8工程材料常用词汇中英文对照表参考文献本教材有以下特点:(1)体系科学合理,内容丰富新颖,实例丰富。
清华大学《工程材料》第5版教材简介《工程材料》第5版教材由清华大学材料学院朱张校教授、姚可夫教授主编,清华大学出版社出版。
《工程材料》第5版教材目录如下:绪论0.1中华民族对材料发展的重大贡献0.2材料的结合键0.3工程材料的分类第1章材料的结构与性能特点1.1金属材料的结构与组织1.2金属材料的性能特点1.3高分子材料的结构与性能特点1.4陶瓷材料的结构与性能特点第2章金属材料组织和性能的控制2.1纯金属的结晶2.2合金的结晶2.3金属的塑性加工2.4钢的热处理2.5钢的合金化2.6表面技术第3章金属材料3.1碳钢3.2合金钢3.3铸钢与铸铁3.4有色金属及其合金第4章高分子材料4.1工程塑料4.2合成纤维4.3合成橡胶第5章陶瓷材料5.1普通陶瓷5.2特种陶瓷第6章复合材料6.1复合材料的复合原则6.2复合材料的性能特点6.3非金属基复合材料6.4金属基复合材料第7章功能材料及新材料7.1电功能材料7.2磁功能材料7.3热功能材料7.4光功能材料7.5隐形材料及智能材料7.6纳米材料第8章零件失效分析与选材原则8.1机械零件的失效8.2机械零件失效分析8.3机械零件选材原则第9章典型工件的选材及工艺路线设计9.1齿轮选材9.2轴类零件选材9.3弹簧选材9.4刃具选材第10章工程材料的应用10.1汽车用材10.2机床用材10.3仪器仪表用材10.4热能设备用材10.5化工设备用材10.6航空航天器用材附录1金属材料室温拉伸试验方法新、旧国家标准性能名称和符号对照表附录2金属热处理工艺的分类及代号(摘自GB/T 12603—2005) 附录3常用钢的临界点附录4钢铁及合金牌号统一数字代号体系(摘自GB/T 17616—1998)附录5国内外常用钢号对照表附录6常用铝及铝合金状态代号与说明(摘编自GB/T 16475—2008)附录7若干物理量单位换算表附录8工程材料常用词汇中英文对照表参考文献本教材有以下特点:(1)体系科学合理,内容丰富新颖,实例丰富。
《陶瓷材料学》课程教学大纲一、课程名称(中英文)中文名称:陶瓷材料学英文名称:Ceramic Materials二、课程代码及性质课程代码:0801852课程性质:专业核心课,必修课三、学时与学分总学时:40(理论学时:40学时;实践学时:0学时)学分:2.5四、先修课程材料科学基础、材料力学、工程材料学、金属材料学五、授课对象本课程面向材料科学与工程专业、材料成型及控制工程专业学生开设六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程的教学目的:1. 掌握陶瓷材料的晶体结构及平衡相图,具备分析晶体结构并根据相图进行成分设计及工艺制定的能力;2. 掌握陶瓷材料的烧结机理,了解陶瓷材料的烧结工艺及影响因素,具备运用所学知识进行烧结工艺制定、组织结构分析的能力;3. 理解陶瓷材料的脆性断裂失效机理,掌握陶瓷材料的增韧方法及机理,具备运用所学知识进行高强高韧复合陶瓷设计的能力;4. 了解陶瓷材料的发展前沿,掌握其发展特点与动向,具备研发新型陶瓷材料的知识与能力。
七、教学重点与难点:教学重点:具体陶瓷材料的晶体结构,陶瓷材料的平衡相图,陶瓷材料的烧结,陶瓷材料的断裂力学与增韧。
教学难点:典型陶瓷材料的晶体结构分析、三元相图分析、陶瓷材料的断裂韧性分析。
八、教学方法与手段:教学方法:(1)以课堂讲授为主,阐述该课程的基本内容,保证主要教学内容的完成;(2)安排适量的课堂讨论环节,使学生通过课下的资料查阅而掌握基本的专业资料获取方法、途径、整理归纳和讲演能力。
教学手段:(1)运用现代教学工具,在课堂上通过PPT讲授方式,实现图文并茂,形象直观;(2)收集典型陶瓷实物,在课堂上进行针对性讲授。
九、教学内容与学时安排1.总体安排教学内容与学时的总体安排,如表2所示。
各章节的具体内容如下:第一章绪论(2学时)1.1 陶瓷材料的定义1.2 陶瓷材料的发展史1.3 陶瓷材料的键特性与基本性能1.4 典型陶瓷材料及其应用1.5陶瓷材料未来发展及关键问题第二章陶瓷材料的晶体结构(8学时)2.1 离子晶体的结构规则—鲍林规则2.2 几种典型的晶体结构2.2.1 MX结构2.2.2 MX2结构2.2.3 M2X结构2.2.4 M2X3结构2.3 硅酸盐陶瓷的晶体结构2.3.1硅酸盐陶瓷的晶体结构特点及分类2.3.2岛状硅酸盐陶瓷晶体结构2.3.3组群状硅酸盐陶瓷晶体结构2.3.4链状硅酸盐陶瓷晶体结构2.3.5层状硅酸盐陶瓷晶体结构2.3.6架状硅酸盐陶瓷晶体结构第三章非晶态与玻璃结构(4学时)3.1 非晶态原子结构3.1.1 非晶态原子结构特点3.1.2 非晶态物质的结构表征方法3.1.3 非晶态物质的热学参数表征3.1.4 非晶态结构的制备方法3.2 氧化物玻璃3.2.1硅酸盐玻璃3.2.2硼酸盐玻璃3.2.3磷酸盐玻璃第四章陶瓷材料的平衡相图(8学时)4.1陶瓷系统相平衡特点4.2单元系统相图4.2.1 SiO2系统相图4.2.2 ZrO2系统相图4.3 二元系统相图4.3.1 具有低共熔点的二元系统4.3.2 生成一致熔融化合物的二元系统4.3.3 生成不一致熔融化合物的二元系统4.3.4 固相中有化合物形成或分解的系统4.3.5 具有多晶转变的系统4.3.6 具有液相分层的系统4.3.7 形成连续固溶体的系统4.3.8 形成不连续固溶体的系统4.4 三元系统相图4.4.1 具有三元最低共熔点的系统4.4.2 生成一个一致熔融二元化合物的三元系统相图4.4.3 生成一个不一致熔融二元化合物的三元系统4.4.4 生成一个固相分解的二元化合物的三元系统4.4.5 具有低温稳定的二元化合物的三元系统4.4.6 具有同组成熔融三元化合物的系统4.4.7 具有异组成熔融三元化合物的系统4.4.8 具有两种液相分层的三化合物的系统第五章陶瓷材料的烧结(4学时)5.1概述5.2 烧结动力学5.3 固相烧结及机理5.4 液相烧结及机理5.5 陶瓷烧结的影响因素5.6 特色烧结方法及装备第六章陶瓷材料的脆性与增韧(2学时)6.1 陶瓷材料的脆性机理6.2 陶瓷材料的增韧6.2.1 相变增韧6.2.2 微裂纹增韧6.2.3 裂纹偏折和弯曲增韧6.2.4 裂纹分支增韧6.2.5 桥联与拔出增韧6.2.6 延性颗粒增韧6.2.7 残余应力增韧6.2.8 压电效应损耗能量增韧6.2.9 电畴翻转增韧6.2.10 复合韧化机制第七章陶瓷材料的断裂力学(6学时)7.1 陶瓷断裂强度的微裂纹理论7.2裂纹尖端应力和应力场强度因子7.3断裂韧度的测量与计算第八章先进结构陶瓷(6学时)8.1氧化铝(Al2O3)结构陶瓷8.2氮化硅(Si3N4)结构陶瓷8.3碳化硅(SiC)/高温结构陶瓷8.4增韧氧化物结构陶瓷8.5 其他结构陶瓷3.各章节的课后思考题(作业)及讨论要求思考题(课后作业):第1章思考题:(1) 陶瓷材料的键结合有何特点,对性能有何影响?(2) 陶瓷材料的具体应用领域有哪些,其依据是什么?第2章思考题:(1) 分别以Al2O3、ZrO2、Si3N4为例,从结合键的角度分析这上述陶材料的切削加工性。