锅炉低氮燃烧器改造
- 格式:doc
- 大小:69.50 KB
- 文档页数:10
燃气锅炉低氮改造方案为了应对环境污染的挑战和改善空气质量,燃气锅炉低氮改造成为了必要的举措。
在本文中,我们将讨论燃气锅炉低氮改造的方案,以期提供有效的解决方案。
一、方案概述燃气锅炉低氮改造的目标是降低氮氧化物(NOx)的排放量。
通过优化燃烧系统和引入额外的氮氧化物控制措施,可以实现降低NOx排放的效果。
具体而言,方案包括以下几个关键步骤:1. 优化燃烧系统:通过更换锅炉燃烧设备,改善燃烧效率,减少NOx的生成。
新一代低氮燃烧器采用先进的燃烧技术,能够更好地控制燃烧反应过程,降低NOx排放。
2. 引入尾气再循环技术:通过将一部分燃烧产生的废气回收再利用,将其混合到新鲜空气中重新参与燃烧,降低燃烧温度,减少NOx的生成。
3. 安装低氮燃烧系统:安装燃气锅炉专用的低氮燃烧系统,包括调节阀、排烟系统等。
这些系统在燃烧过程中能够减少NOx生成的同时,保持燃烧的稳定性和热效率。
二、方案优势1. 环保效益:通过燃气锅炉低氮改造,能够显著减少NOx的排放量,改善空气质量,保护环境。
减少大气污染物的排放对于人类健康和生态平衡都具有积极的影响。
2. 经济效益:低氮改造后的燃气锅炉在燃料利用率和热效率方面表现出色,能够节约能源和运行成本。
长期来看,低氮改造可以为企业带来可观的经济收益。
3. 质量保证:低氮燃烧系统的使用能够确保锅炉稳定运行和燃烧效果的优化。
燃烧过程的控制和调节能够提高锅炉的可靠性和耐久性,延长锅炉的使用寿命。
三、方案实施1. 技术评估:在实施燃气锅炉低氮改造之前,需要进行现有锅炉系统的技术评估。
通过现场勘测和数据分析,确定适合该锅炉的低氮改造方案。
2. 设备选型:根据实际需求和技术评估结果,选择合适的低氮燃烧器和相关设备。
确保设备的质量和性能能够满足要求。
3. 施工安装:根据设计方案,进行施工和设备安装。
确保施工过程中符合安全和质量要求,以及相关环保法规。
4. 调试验收:在施工完成后,进行系统调试和性能测试。
锅炉低氮改造设计方案目录1. 项目概况1.1 项目名称1.2 项目主管单位及建设单位1.3 项目建设地点1.4 项目改造内容及规模1.5 项目建设必要性1.6 设计依据1.7 设计原则及改造目标2. 设计方案2.1 现状情况2.2 更换锅炉燃烧器改造方案2.2.1 更换锅炉燃烧器改造范围2.2.2 更换锅炉燃烧器技术要求2.2.3 控制系统设计原则2.2.4 改造方案:更换低氮燃烧机+FGR 2.2.5 低氮燃烧机技术参数表2.2.6 机具安排表2.2.7 人员安排表2.2.8 建设工期及进度安排2.2.9 产品质量保证2.2.10 售后服务保障2.2.11 质量承诺2.2.11.1 优质服务承诺2.3 燃烧器型式试验证书3. 工程概算3.1 编制范围3.2 编制依据1. 项目概况1.1 项目名称:看守所锅炉房燃烧机低氮改造工程。
1.2 项目主管单位及建设单位未提供。
1.3 项目建设地点:北京市看守所。
1.4 项目改造内容及规模:1.4.1 改造内容1.4.1.1 更换锅炉燃烧器改造为超低氮环保锅炉,单台锅炉容量为0.35MW(0.5t/h)。
1.4.1.2 锅炉烟囱进行更新改造,并按照现行环保标准达到最低排放高度。
2. 设计方案2.1 现状情况锅炉房内设有___生产的ZKW0.35-85/65-YQ燃气热水锅炉2台,原燃烧器为意大利百得BGN100P燃烧机,燃气采用DN40阀组,燃气压力为700KPa,单台耗气量为40立方/每小时,使用状况良好。
旧燃烧器符合现行标准2017年3月31号期限内环保要求低于200毫克/立方米,但2017年4月1日执行新标准值,在用锅炉排放氮氧化物要求低于80毫克/立方米,本次直接改造为氮氧化物排放低于30毫克/立方米。
2.2 更换锅炉燃烧器改造方案2.2.1 更换锅炉燃烧器改造范围:更换为低氮燃烧机+FGR。
2.2.2 更换锅炉燃烧器技术要求:低氮环保锅炉,排放低于30毫克/立方米。
燃气锅炉低氮燃烧改造方案燃气锅炉低氮燃烧改造方案目标1.实施燃气锅炉低氮燃烧改造,使其达到环保要求;2.减少氮氧化物的排放,从而改善大气质量;3.提高燃烧效率,降低能源消耗。
方案概述为了实现以上目标,我们提出以下方案:1. 锅炉氧气控制系统升级通过升级锅炉氧气控制系统,调整气体进入燃烧室的氧气含量,以达到低氮燃烧效果。
具体步骤如下:•安装氧气传感器,实时监测燃烧室内的氧气浓度;•配置氧气控制阀门,根据传感器反馈的氧气浓度进行调节;•通过智能控制系统,稳定氧气浓度在适宜的范围内;•实施定期检测和校准,确保系统稳定可靠运行。
2. 燃烧室结构调整针对燃烧室结构进行调整,以提高燃烧效率和降低氮氧化物的生成。
具体措施如下:•加装预混板,使气体和空气更好地混合;•优化喷嘴设计,实现均匀燃烧;•加设燃烧室过量空气探测器,控制燃烧室内空气流量,降低过量空气率;•配置可调节燃烧器,实现灵活调节燃烧参数。
3. 定期维护与保养为了保证燃气锅炉低氮燃烧效果的持久稳定,需要进行定期维护与保养。
具体措施如下:•清洗和更换燃烧器内的积碳和灰尘;•检查和调整各个传感器和控制阀门的工作状态;•检查和清洗烟道和换热器,以提高热传递效率;•定期监测燃烧室内的氧气浓度、排放氮氧化物的含量。
预期效果通过实施上述方案,我们预计将达到以下效果:1.氮氧化物排放浓度显著降低,满足环保要求;2.锅炉燃烧效率提升,能源利用效率提高;3.燃烧室运行更加稳定,减少故障和维修次数;4.降低锅炉运行成本,节约燃气资源。
结论通过燃气锅炉低氮燃烧改造方案的实施,我们将有效改善大气质量,减少氮氧化物的排放,同时提高能源利用效率。
这一方案将使您的锅炉达到环保要求,并带来长期的经济效益。
如需了解更多详细信息,请与我们联系。
4. 燃气供应系统优化优化燃气供应系统是改造燃气锅炉低氮燃烧的重要环节,可以提高燃烧稳定性和能源利用效率。
具体措施如下:•升级燃气管道和控制阀门,优化气体流量和压力控制;•加装燃气调压装置,稳定供气压力;•安装燃气流量计,精确掌握燃气消耗情况;•配置燃气自动供给系统,实现智能化控制。
天然气锅炉低氮燃烧改造及应用效果分析赵庆新发布时间:2023-06-30T09:35:58.813Z 来源:《工程管理前沿》2023年8期作者:赵庆新[导读] 实施天然气节能减排转型升级行动计划,制定燃气电厂大气污染物排放标准,燃气电厂要按照要求开展节能降耗工作。
低氮燃烧技术以其技术较为成熟、降低NOx排放效果显着等优点被广泛应用于天然气电厂。
在天然气电厂的实际运行中,虽然锅炉采用低氮燃烧技术降低NOx排放达到环保要求,但随着锅炉负荷和燃烧条件的变化,也出现了一系列新的问题:锅炉加热结焦表面、管壁超温、水冷壁高温腐蚀、热蒸汽温度低、空气预热器进/出口排气压差增大等问题。
身份证号:37142519880120xxxx 摘要:实施天然气节能减排转型升级行动计划,制定燃气电厂大气污染物排放标准,燃气电厂要按照要求开展节能降耗工作。
低氮燃烧技术以其技术较为成熟、降低NOx排放效果显着等优点被广泛应用于天然气电厂。
在天然气电厂的实际运行中,虽然锅炉采用低氮燃烧技术降低NOx排放达到环保要求,但随着锅炉负荷和燃烧条件的变化,也出现了一系列新的问题:锅炉加热结焦表面、管壁超温、水冷壁高温腐蚀、热蒸汽温度低、空气预热器进/出口排气压差增大等问题。
该问题的出现不仅影响锅炉主要燃烧参数的控制,还会使锅炉效率明显降低,严重时甚至威胁到整个机组的安全稳定运行。
关键词:低氮燃烧;天然气锅炉;配风方式;优化引言纯锅炉燃烧,氮氧化物的产生主要分为热力NOx、快速NOx、燃料NOx、中间NOxN2O、NNHNOx五种途径。
由于天然气锅炉的燃料成分比较简单,氮氧化物的形成主要是热力和快速的。
能源大数据报告显示,在我国能源消费结构中,在燃烧过程中应用低氮燃烧技术,可有效减少NOx的产生和排放。
目前我国的能源消费结构很大程度上是以天然气为主,当然天然气燃烧过程中会产生一定量的污染物。
这类污染物对空气质量和人们的正常生活有着非常恶劣的影响,天然气燃烧过程中产生的氮气对环境的影响非常明显,因此本文将探讨如何在燃烧过程中控制氮氧化物的形成。
因为低氮锅炉具有普通锅炉不可比拟的优势,因此受到了广大消费者的青睐,纷纷开始对自家的锅炉进行改造。
人们在进行改造的时候需要注意以下这些,以免造成危险:1.现有燃气锅炉低氮排放改造方式包括更换低氮燃烧器或整体更换锅炉,其中更换低氮燃烧器指采用全预混燃烧器或者采用分级燃烧加烟气再循环装置。
使用单位要根据炉膛、锅炉蒸吨和安全质量等情况选择合适改造方式,20蒸吨/小时以上燃气锅炉不建议采用全预混燃烧器。
基本技术路线:一是保留原有锅炉本体,只更换低氮燃烧器;二是锅炉与燃烧器进行整体更新。
鉴于老旧燃烧器的燃烧结构不能与低氮燃烧技术相匹配,通常,不建议在利用燃烧机自身结构进行改造。
承压锅炉低氮改造一般优先选择分级燃烧结合烟气再循环(简称FGR)相结合的燃烧器;小型的低氮冷凝常压锅炉多采用全预混表面燃烧技术(建议使用吨位小于1t/h)。
2.更换燃烧器:若锅炉投运年头较短且受热面积可以满足改造要求时,宜采用只更换燃烧器的模式。
在设备选型时,应根据锅炉受热面尺寸(炉膛直径和深度)、锅炉背压等参数,合理选择燃烧技术。
3.整体更换锅炉:采用整体更换锅炉加燃烧器的方案时,除了选择燃烧技术外,还需考虑可靠性、经济性等因素,从改造技术与改造成本两个方面综合考虑改造方案。
4.鼓励现有燃气锅炉根据气源保障、成本效益核算等情况,采用集中供热、电、地热、太阳能等零排放改造方式,改造后项目按完成验收。
5.为了保障改造工作的顺利实施,有效防范安全风险,预防事故发生,综合安全、环保影响因素,提出如下建议:(1)对于(1.4MW)MW(蒸发量2t/h)以上的在用锅炉,不建议采用预混燃烧的改造方式;(2)对于中心回燃锅炉,不建议采用更换燃烧器的改造方式。
6.燃气锅炉低氮改造后,设备厂家应对锅炉进行全负荷段的调试,确保全负荷段污染物稳定达标排放。
验收监测应包括高、中、低三种负荷条件下的烟尘、二氧化硫和氮氧化物排放浓度(高负荷>75%.中荷50%左右、低负荷<30%)和烟气主要参数(含氧量、流速、温度、压力等).检测单位应严格按照检测规范出具检测报告,对检测结果负责。
#1锅炉低氮燃烧器改造的情况汇报一、项目背景:随着国家环保政策的日趋严格,新颁布的2011版《火电厂大气污染物排放标准》也在排放总量和排放浓度两方面提出更高的要求,新的排污收费制度的实施也对电厂形成了很大的经济压力; 2011版《火电厂大气污染物排放标准》的要求是,2014年7月1日开始所有现役火电厂烟气中氮氧化物排放浓度不大于200mg/m3。
而我公司在锅炉改造前氮氧化物排放浓度是600mg/m3左右,因此对锅炉进行低NOx改造己是势在必行。
二、工程项目概况:1、项目名称:#1锅炉低氮燃烧器改造和等离子点火装置改造;2、实施单位:陕西银河榆林发电有限公司;3、建设地点:陕西银河榆林发电有限公司厂内#1锅炉本体;4、设计安装单位:烟台龙源电力技术股份有限公司5、项目内容:根据工程合同和技术协议,内容主要包括:燃烧系统改造的设计方案、设备和材料采购、制造、供货、安装、系统调试、试验及检查、试运行、消缺、培训和最终交付投产等,实行EPC总承包。
6、项目总投资:498万元;7、项目实施时间:2013年9月3日-10月28日,利用#1机组在9月3日-10月18日期间进行大修时同步进行。
三、锅炉改造前运行现状:1、锅炉概述:电厂#1、#2锅炉型号为HG440/13.7-YM14,是哈尔滨锅炉厂有限公司设计和制造的单锅筒、单炉膛、自然循环、集中下降管、一次中间再热、四角切向燃烧(切圆直径Φ814mm,煤粉射流与两侧墙夹角分别为41.5°和48.5°,逆时针旋转。
)π形布置的固态排渣煤粉锅炉。
2、机组日常NOx排放浓度基本在500~700 mg/Nm3之间。
3、电厂现运行煤种,发热量较高、挥发分高、灰分低,属易燃尽煤,着火燃尽性能较好,锅炉运行时常有结渣情况出现。
四、项目招投标:我公司在#1锅炉低氮燃烧器改造和等离子点火装置改造项目经集团批准后,多次组织公司领导和技术人员到已经建成低氮燃烧器改造的兄弟厂家进行前期市场调研和考察,经过认真科学细致的分析与论证,确定了烟台龙源电力技术股份有限公司、浙江百能会计有限公司、徐州燃控科技股份有限公司等几家实力强、技术成熟和信誉佳的企业确定为投标单位,于2013年6月14日在榆林市招投标服务中心进行招标、开标。
燃气锅炉低氮改造施工方案一、项目概述随着环境意识的增强以及对大气污染的严格控制,燃气锅炉低氮改造成为燃气锅炉必要的技术更新。
本方案将对一台燃气锅炉进行低氮改造,以减少氮氧化物的排放,达到环保要求。
二、项目目标1.实现燃气锅炉氮氧化物排放量低于国家相关标准要求;2.保持燃气锅炉的稳定运行和高效能利用。
三、改造方法1.优化燃烧系统:采用低氮燃烧器进行替换,同时配备烟气再循环装置,降低燃烧温度和燃烧产物中的氮氧化物含量;2.安装SNCR脱硝装置:通过在燃烧过程中加入适量的尿素溶液,并在高温区域进行还原反应,以降低氮氧化物的生成;3.优化燃烧控制系统:通过改善燃烧过程的监控和调节,确保燃烧的稳定性和高效性。
四、施工步骤1.准备工作:a.完成必要的设计方案和施工图纸;b.购买和准备改造所需的设备和材料;c.对施工场地进行准备,确保安全和顺利进行施工。
2.换装低氮燃烧器:a.关停燃气锅炉并进行必要的清洗和检修;b.拆除原有燃烧器及相关管道设备;c.安装新的低氮燃烧器,并与燃气管道连接;d.安装烟气再循环装置,并与相关管道、风机等连接。
3.安装SNCR脱硝装置:a.在燃气锅炉高温区域进行SNCR脱硝装置的安装;b.连接脱硝装置与尿素溶液供应系统,并进行测试与调试。
4.改造燃烧控制系统:a.升级或更换原有燃烧控制系统,确保其能够实现低氮燃烧的要求;b.进行系统的测试与调试,确保其稳定运行。
5.系统联调与调试:a.对整个系统进行联调,确保各部件协调运行;b.优化系统参数,达到低氮排放和高效能利用的最佳状态。
6.安全检查和运行试验:a.进行改造系统的安全检查,确保设备和管道的安全运行;b.启动燃气锅炉进行运行试验,测试改造效果和性能。
五、施工周期根据燃气锅炉的具体型号和规模,施工周期一般为1-2个月(含设计和调试时间)。
六、投资估算具体投资估算需根据燃气锅炉的具体情况进行评估,涉及到燃烧器、烟气回收装置、SNCR脱硝装置、控制系统等设备的购买和安装成本。
环保低氮锅炉改造工程方案一、前言随着全球环境问题日益严重,节能减排已成为全球发展的主要趋势。
作为工业生产中常用的设备,锅炉在能源消耗和环境污染方面面临严峻挑战。
为了减少空气污染和碳排放,提高锅炉的能效,降低能源消耗,我公司决定对现有锅炉进行环保低氮改造。
二、现状分析我公司目前使用的锅炉是XX型号的蒸汽锅炉,采用燃油为燃料,每年平均使用时间为3000小时。
但由于锅炉在燃烧过程中产生的氮氧化物排放过高,不仅对环境造成了严重污染,也影响了锅炉的热效率和使用寿命。
因此,对现有锅炉进行低氮改造已成为迫在眉睫的任务。
三、改造方案1. 技术选型针对我公司现有的XX型号锅炉,选用低氮燃烧器进行改造是十分必要的。
低氮燃烧器采用先进的混合燃烧技术,能够有效地控制燃烧过程中产生的氮氧化物排放,降低锅炉的环境影响。
同时,低氮燃烧器还能提高燃烧效率,减少燃料消耗,达到节能减排的目的。
2. 系统改造在进行低氮燃烧器改造的基础上,我公司还计划对锅炉系统进行一系列的改进。
首先是对燃烧系统进行调整,包括燃烧控制系统的更新和优化,燃气管道的重新布置等。
其次是对锅炉的烟气处理系统进行加强,采用先进的除尘、脱硫、脱硝技术,进一步降低锅炉的排放浓度。
最后是对锅炉运行监测系统进行完善,实时监测锅炉的运行状态和排放参数,及时进行调整和改进。
3. 工程实施为了确保改造工程的顺利进行,我公司将择期进行设备购置、工艺设计、施工施工等相关工作。
在设备选购方面,我们将优先选择品牌知名、技术成熟的低氮燃烧器产品,保证改造的质量和效果。
在工艺设计方面,我们将聘请具有丰富经验和先进技术的专业公司进行整体规划和设计。
在施工实施方面,我们将积极组织相关技术人员和施工队伍,确保改造工程安全、高效地进行。
四、预期效果经过改造后,我公司的锅炉将实现以下目标:1. 高效低排:有效降低锅炉的氮氧化物排放浓度,达到国家环保标准要求;2. 节能降耗:提高锅炉的燃烧效率,降低燃料消耗,实现节能减排;3. 增强稳定性:优化燃烧控制系统,提高锅炉的运行稳定性和可靠性;4. 延长寿命:减少燃烧产物对锅炉内部的损伤,延长设备的使用寿命。
330MW亚临界机组锅炉低氮燃烧改造方案甄选在现代化工业社会中,火力发电是一种重要的能源发电方式。
然而,火力发电也带来了大量的大气污染,尤其是NOx排放。
因此,进行锅炉低氮燃烧改造已成为中国火力发电行业的重要任务之一、本文将以一台330MW亚临界机组锅炉为例,提出一种适用的低氮燃烧改造方案。
首先,对该机组锅炉进行燃烧系统的优化。
通过增加燃烧室的空气预热温度,可以提高燃烧效率,减少燃料消耗和NOx排放。
同时,考虑到该机组锅炉的亚临界特点,可以采用低氮燃烧器进行改造。
低氮燃烧器采用燃烧空气分层技术,通过改变燃烧过程中的空气供应方式,使燃烧区域内的燃料和空气混合更加均匀,减少燃料局部过剩,从而降低NOx的生成。
其次,对该机组锅炉的燃烧控制系统进行升级。
通过引入先进的燃烧优化系统,可以实现对燃烧过程的精确控制和调节,以降低NOx排放。
燃烧优化系统可以根据燃烧条件和要求,自动调整燃料和空气的配比,使其达到最佳的燃烧状态。
此外,还可以引入NOx排放在线监测系统,实时监测和控制NOx排放水平,确保低氮燃烧效果的稳定和可靠。
再次,对该机组锅炉的脱硝系统进行改造。
脱硝系统是锅炉低氮燃烧改造中不可或缺的环节。
可以选择SCR(Selective Catalytic Reduction)技术,通过向烟气中注入氨水(NH3)或尿素溶液,利用催化剂将NOx还原成无害的氮气和水。
SCR技术具有高效、稳定、可靠的特点,可以将NOx排放降低到极低的水平。
同时,还要考虑脱硝系统的脱硝效率、催化剂的选择和性能等因素,以保证改造后的锅炉低氮排放达到国家和地方的标准要求。
最后,改造方案的实施还需要充分考虑投资成本、运维成本和使用寿命等因素。
可以进行经济性分析和评估,选取具有较高性价比和可持续发展的改造方案。
总之,针对一台330MW亚临界机组锅炉的低氮燃烧改造,可以通过燃烧系统优化、燃烧控制系统升级和脱硝系统改造等措施来降低NOx排放。
这些措施既可以提高燃烧效率,减少燃料消耗,又可以有效降低大气污染,促进火力发电行业的可持续发展。
低氮燃烧器改造技术方案中国作为全球最大的燃煤国家之一,在能源利用和环境保护方面面临着巨大的挑战。
煤炭燃烧产生的氮氧化物是空气污染的主要原因之一,因此低氮燃烧技术应运而生。
本文将介绍低氮燃烧器改造技术方案,以应对当前煤炭燃烧所带来的环境压力。
一、低氮燃烧技术简介低氮燃烧技术是通过优化燃烧过程,降低燃料中的氮氧化物排放。
目前主流的低氮燃烧技术包括分级燃烧、空燃比调节和燃烧温度控制等。
1. 分级燃烧技术分级燃烧技术采用多级供气方式,通过分区燃烧降低燃料的燃烧温度,减少氮氧化物的生成。
通过合理控制气流的分配,不仅可以提高燃烧效率,还能有效降低氮氧化物的排放量。
2. 空燃比调节技术空燃比调节技术是通过控制燃烧过程中的空气和燃料的比例,降低氮氧化物的生成。
通过优化燃烧器结构和控制系统,使燃烧器在不同负荷下都能保持适宜的空燃比,从而实现低氮燃烧。
3. 燃烧温度控制技术燃烧温度是影响氮氧化物生成的重要因素之一。
采用燃烧温度控制技术,可以通过调节燃烧器的出口温度,使其保持在适宜的范围内,从而降低氮氧化物的生成。
二、低氮燃烧器改造方案为了实现低氮燃烧,需要对现有的燃烧器进行改造。
下面介绍一个典型的低氮燃烧器改造方案。
1. 燃烧器结构优化通过对燃烧器的结构进行优化,可以提高燃烧效率和低氮燃烧能力。
例如,采用多孔板状燃料供给器,可以实现燃料的均匀分布,增强燃烧稳定性;增加燃烧器内部的混合器,可以提高燃烧效率。
2. 回转流化床技术回转流化床技术是一种燃烧方式,能够有效降低氮氧化物的生成。
通过引入适量的再循环废气和控制空气的分布,可以使燃料在燃烧过程中充分混合,减少氮氧化物的生成。
3. 进一步减少氮氧化物排放除了燃烧器的改造,还可以采取其他降低氮氧化物排放的措施。
例如,增加烟气再循环率,使部分烟气重新进入炉膛进行二次燃烧;采用SNCR(选择性非催化还原)技术,在燃烧过程中喷射还原剂,降低氮氧化物的浓度。
三、低氮燃烧器改造的经济效益与环境效益低氮燃烧器改造不仅能够降低氮氧化物的排放,减少空气污染,还能带来一系列的经济效益。
CFB锅炉的低氮燃烧技术改造研究随着环保意识的日益增强和国家对大气污染治理的严格要求,工业领域的排放标准也在不断提高。
作为工业生产中常用的一种锅炉,CFB锅炉在低氮燃烧技术改造方面备受关注。
本文将从CFB锅炉的基本原理和低氮燃烧技术的基本概念入手,探讨CFB锅炉低氮燃烧技术改造的研究现状和发展趋势,以期为相关行业提供一些参考和借鉴。
一、CFB锅炉的基本原理CFB锅炉是一种循环流化床锅炉,其基本原理是在锅炉燃烧室内通过喷嘴喷射燃料和空气,使其在适当的比例下混合燃烧,产生高温烟气。
在床料的作用下,燃料在流态化条件下进行燃烧,产生的烟气与固体颗粒物一起送入锅炉后部的循环流化床,经过循环后再次进入燃烧室参与燃烧,形成了一种循环燃烧模式。
CFB锅炉在燃烧过程中有以下几个特点:1. 温度均匀:由于燃烧床内颗粒物的循环,使得温度分布比较均匀,有利于降低热能损失和烟气中NOx的生成。
2. 燃烧效率高:由于床内颗粒物在循环中可以多次参与燃烧,使得原料充分利用,燃烧效率高。
3. 排放颗粒物少:由于床内颗粒物在循环中可以多次参与燃烧,减少了颗粒物的产生。
二、低氮燃烧技术的基本概念低氮燃烧技术是指通过调整燃料和空气的混合比例,控制燃烧温度和燃烧时间,减少燃烧过程中生成的一氧化氮(NO)和二氧化氮(NO2)的产生,在一定范围内将燃烧产物中的氮氧化物浓度降至较低水平,以达到减少大气污染物排放的目的。
低氮燃烧技术的常见手段包括:1. 调整燃料和空气的混合比例:通过合理的设计燃烧系统和调整燃料喷射和空气量,使得燃烧过程中的氧气和燃料的混合更加充分,降低高温燃烧区域内的氮氧化物产生。
2. 优化燃烧系统结构:通过改变燃烧室结构和布置,改变燃烧动力学参数,提高燃烧效率,减少烟气排放中的氮氧化物。
3. 使用低氮燃烧技术改造设备:通过使用一些低氮燃烧技术改造设备,如低氮燃烧器、SCR(选择性催化剂还原)装置等,来减少NOx的排放。
目前,CFB锅炉的低氮燃烧技术改造研究已经取得了一定的成果,主要表现在以下几个方面:1. 低氮燃烧器的研发:针对CFB锅炉的特点,一些研发机构和企业专门开发了适用于CFB锅炉的低氮燃烧器,通过改变燃烧器的结构和工作原理,有效降低了燃烧过程中的NOx 排放。
低氮改造原理
低氮改造的原理主要包括两个方面:
1. 锅炉低氮改造:通过将部分锅炉排烟重新引入炉膛,铜大燃气、空气混合进行燃烧,达到降低氮氧化物排放的目的。
这种方式能降低锅炉内部核心区的燃烧温度,并在不降低锅炉效率的情况下,抑制氨氧化物的生成。
为了保持燃烧所需的理论空气量,燃料需要充分燃烧,同时供给一定的过量空气。
在保证燃烧热效率的前提下,取较小的过量空气系数,尽量降低烟气中氧气浓度,从而有效抑制NOx的生成。
2. 低氮燃烧器:低氮燃烧器采用低氮燃烧技术,使空气和燃料以一定方式分级、混合燃烧,使燃料燃烧过程中NOx排放量低。
这种技术能够降低燃烧
过程中氮氧化物的排放,主要通过降低最高燃烧温度,以及控制在燃烧区的燃料浓度或氧浓度来实现。
破坏NOx生成的最佳条件,以降低NO的生成。
对于燃气锅炉,减少氮氧化物产生,重要的是控制燃烧过程的温度和时间。
低氮改造可以通过上述方式实现,如有更多疑问可以咨询专业人士意见。
安徽燃气锅炉低氮改造标准一、燃烧器改造1.燃烧器应采用低氮燃烧技术,确保减少氮氧化物(NOx)的排放。
2.燃烧器改造后,其热效率应不低于原设备的热效率,且应降低烟气温度,减少排烟热损失。
3.燃烧器应易于维护和更换,方便使用过程中的检修和保养。
二、燃烧控制系统改造1.燃烧控制系统应采用智能控制技术,根据负荷变化自动调整燃烧器的燃料供应量和空气供应量,以实现高效燃烧和减少NOx的排放。
2.控制系统应具有故障诊断功能和报警提示功能,方便及时发现并处理故障。
3.控制系统应能实现远程监控和控制,提高使用效率和管理水平。
三、空气预热器改造1.空气预热器应采用高效传热材料,提高传热效率,降低排烟温度。
2.空气预热器应具有防堵灰功能,避免因积灰导致传热效率下降和设备损坏。
3.空气预热器应定期维护和清洗,保持设备良好的运行状态。
四、尾部烟气处理装置改造1.尾部烟气处理装置应采用高效脱硝技术,如SCR或SNCR等,以进一步降低NOX的排放。
2.尾部烟气处理装置应具有除尘、除硫等功能,减少烟气中的有害物质排放。
3.尾部烟气处理装置应定期维护和检修,确保设备良好的运行状态。
五、锅炉本体改造1.锅炉本体应根据低氮改造需要进行相应的结构调整和改进,以提高设备的整体性能和稳定性。
2.本体改造应考虑保温性能、耐腐蚀性能、强度等方面的要求,确保设备安全可靠运行。
3.对于需要更换部件的改造,应选用高效节能产品,提高设备的能源利用效率。
六、智能监控系统改造1.智能监控系统应对锅炉运行进行实时监测和控制,以确保设备安全、经济、稳定运行。
2.监控系统应能对锅炉的各项性能参数进行在线检测和记录,为运行管理和故障诊断提供依据。
3.监控系统应具备远程监控功能,方便用户对设备进行远程管理和调度。
七、安全保护装置改造1.安全保护装置应符合相关安全标准和使用要求,保障锅炉设备和人身安全。
2.对于改造中涉及到的安全保护装置,应进行相应的调整和改进,确保其有效性、可靠性和准确性。
燃气锅炉低氮燃烧改造介绍锅炉的污染物中,氮氧化物排放量对大气的影响最大。
也因此,在国家及地方性锅炉污染物排放标准对,对该指标的控制最为严格。
目前燃气锅炉NOx排放限值最为严格,地区不同,要求大概在30-200之间。
若某些锅炉安装较早,所在地区锅炉当前氮氧化物排放量要求更严格,而燃烧器燃烧后的废气排放无法满足国家制定的污染物排放最新标准,那么就需要进行低氮燃烧改造了,目前主要是燃气锅炉燃烧器改造。
锅炉的热效率是衡量锅炉最重要的一个指标,影响锅炉的效率的主要因素有:排烟温度热损失、散热损失、燃料不完全燃烧及锅炉结垢等。
由于燃烧器进行改造后散热损失及锅炉结垢与改造前的相比较未发生改变,因此对锅炉的热效率并无影响,燃烧器改造前与燃烧器改造后改变的因素主要有两个,即排烟温度热损失与燃料的不完全燃烧程度。
在运行中,要尽可能地在保证完全燃烧的条件下降低排烟热损失来提高锅炉的燃烧效率,锅炉排烟温度偏高就会导致锅炉的热效率降低。
排烟热损失随排烟温度的升高和空气系数的增大而增大。
燃气锅炉排烟中含有蒸汽,过热蒸汽是烟气中热量的主要携带者。
因此,燃气锅炉排出的烟气中除显热外,还有大量潜热,这一部分热损失的大部分(约70%)可以通过接触式换热设备进行回收。
低氮锅炉改造根据炉膛尺寸是否达标可分为以下两种方式:1、更换低氮燃烧器(全预混、烟气外循环、烟气内循环)2、更换锅炉(冷凝锅炉、三回程燃气锅炉+低氮燃烧头) 由于冷凝炉更环保、更低氮,在低氮改造中,选择更换冷凝燃气锅炉已然成为一种必然趋势:1)超高效率:冷凝锅炉比普通锅炉效率高20%至30%,冷凝锅炉热效率可达108.9%。
2)冷凝锅炉排烟温度低:排烟温度低至35℃。
3)供水温度可调范围大:冷凝锅炉是目前业界最先进的、质量最好的水温控制系统及独特的结构和燃烧方式。
4).更加环保:冷凝锅炉氮氧化物(NOx)排放量只有30ppm,低于欧洲标准5级的56ppm。
一氧化碳排放量大大低于一般锅炉排放标准。
锅炉低氮燃烧器改造方案随着环境保护意识的不断提高,低氮燃烧技术在锅炉行业中得到了广泛应用。
锅炉低氮燃烧器的改造是一项重要的环保措施,旨在减少氮氧化物的排放,保护大气环境。
本文将介绍锅炉低氮燃烧器的改造方案,希望能为相关行业工作者提供一些有益的参考。
锅炉低氮燃烧器的改造需要对锅炉的燃烧系统进行全面的分析和评估。
通过对锅炉的运行情况、燃烧特性和燃烧器结构等方面进行综合分析,确定需要改造的具体内容和目标。
锅炉低氮燃烧器的改造可以从燃烧器结构和燃烧控制系统两个方面进行考虑。
在燃烧器结构方面,可以采用一些先进的技术手段,如分级燃烧技术、内外混合燃烧技术等,以提高燃烧效率和降低氮氧化物的生成。
在燃烧控制系统方面,可以采用先进的燃烧控制算法和传感器,实现对燃烧过程的精确控制,以提高燃烧效率和降低氮氧化物的排放。
锅炉低氮燃烧器的改造还需要考虑燃料适应性和运行稳定性。
在选择燃料时,需要考虑其低氮燃烧特性和可用性,以确保改造后的燃烧器能够适应不同种类的燃料。
在改造后的运行过程中,需要进行充分的测试和调试,以确保燃烧器能够稳定运行,并满足排放标准。
锅炉低氮燃烧器的改造还需要考虑经济性和可行性。
改造方案应综合考虑投资成本、改造周期和运行效益等因素,从而确定最优的改造方案。
同时,应结合实际情况,制定合理的改造计划和实施方案,确保改造工作的顺利进行。
锅炉低氮燃烧器的改造还需要进行后期的监测和维护工作。
通过对改造后的燃烧器进行定期的监测和维护,可以及时发现和解决问题,确保燃烧器的正常运行和低氮排放的持续效果。
锅炉低氮燃烧器的改造是一项重要的环保工作,对于减少氮氧化物的排放,保护大气环境具有重要意义。
通过对锅炉的燃烧系统进行全面的分析和评估,采用先进的技术手段和控制系统,确保燃烧器能够适应不同种类的燃料,并进行后期的监测和维护工作,可以实现锅炉低氮燃烧器的有效改造,达到降低氮氧化物排放的目标。
通过加强对锅炉低氮燃烧器改造技术的研发和应用,可以进一步推动环境保护工作的发展,为建设美丽中国做出贡献。
锅炉低氮燃烧器改造作者:李伟刘帅点击:1399浅论HG-1020/18.58-YM型自然循环锅炉低氮燃烧器改造1 概述大唐鲁北发电有限责任公司 2×330MW机组分别与2009年9月、2009年12月投产运行,锅炉采用哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的HG-1020/18.58-YM23型自然循环锅炉。
锅炉燃烧系统采用水平浓淡煤粉燃烧技术,烟气中氮氧化物含量在600mg/Nm³左右。
随着国家对火电厂节能减排高度重视,环保标准将越来越高。
根据《火电大气污染排放标准》要求,2014年1月1日起现有发电厂锅炉NOx排放浓度限值不大于100mg/Nm3。
本着对社会负责,对企业负责的态度,大唐鲁北发电有限责任公司决定对本工程配套建设脱硝装置,脱硝装置投产后机组NOx排放浓度将降至排放标准以下。
按照脱硝工程设计要求,需对我公司燃烧器系统进行改造,将锅炉出口NOx排放浓度降低至200 mg/Nm3以下。
本文列举了大唐鲁北发电有限责任公司针对以上问题做出的相对应改造以及取得的效果。
2 设备简介2.1工作原理大唐鲁北发电有限责任公司2×330MW机组锅炉是哈尔滨锅炉厂有限责任公司根据美国ABB-CE燃烧工程公司技术设计制造的,配330MW汽轮发电机组的亚临界、一次中间再热、燃煤自然循环汽包锅炉,型号为HG-1020/18.58-YM23。
1号机组2009年9月投产,2号机组2009年12月投产。
锅炉燃烧系统采用摆动式燃烧器,燃烧器为四角布置,共5层分别对应5台磨煤机(由下往上依次是A、B、C、D、E)燃烧器四周通有周界风,在AB、BC、DE层布置由三层机械雾化油枪,燃用#0轻柴油,按锅炉30%BMCR负荷设计,单支最大用油量1.68t/h。
本燃烧器采用水平浓淡煤粉燃烧技术,以提高锅炉低负荷运行的能力,燃烧器可以上下摆动,其中一次风喷嘴可上下摆动20度,二次风喷嘴可上下摆动30度,顶部燃尽风喷嘴可向上摆动30度,向下摆动5度。
正常运行时摆动燃烧器作为调整再热汽温的主要手段。
3 出现问题及原因分析原燃烧器主要存在以下问题:1) 原 SOFA 风量占总二次风量的 25%左右,占总风量的 20%左右,这样造成在主燃烧器区域的过量空气系数就已经达到了 1.0~1.05,这对于抑制 NOx的生成没有起到应有的效果。
2) 原 SOFA 与主燃烧器之间的还原区高度仅不到 4 米(喷嘴中心间隔 5 米),对于 NOx 还原所需的空间不够,没有实现较好的 NOx 还原作用。
3) 采用原水平浓淡分离装置以及浓淡喷嘴钝体设计存在结构问题,首先由于分离器问题,导致浓淡两侧风速偏差较大,淡侧出口风速远低于浓侧,浓侧虽然煤粉较多但风量同样较多,导致煤粉浓缩效果不明显,浓侧煤粉浓度较低;同时由于淡侧煤粉风速过低,易导致淡侧煤粉喷嘴附近结渣,不利于安全经济运行。
其次由于在喷嘴出口采用钝体分离及导流煤粉,造成钝体运行环境恶劣,既要承受煤粉冲击磨损,同时又处于高温环境,容易造成钝体在一年左右时间损坏。
4) 在四角切圆燃烧燃烧中,由于主燃烧器区域的燃烧器设计中没有保护水冷壁壁面氧量控制的设计,容易造成炉膛水冷壁的结渣和高温腐蚀的发生。
5) 在采用原 CE 摆动燃烧器技术设计中,喷嘴与壁面间歇过大(12mm),同时采用的直边喷嘴结构,大流通面积的油风室喷嘴,造成燃烧的无组织漏风(不经过喷嘴出口)过大,同时在进行摆动过程中,无组织漏风会急剧增加,这对于控制 NOx 的生成积极不利,特别在锅炉低负荷运行中会导致 NOx 大幅上升。
大量的油风室喷嘴旋流风又容易快速地混入一次风煤粉中,这都对于防止 NOx 的生成都不利。
4 设备改造方案对燃烧器进行低NOx燃烧器综合改造,其方案布置如图1-1所示。
更换现有燃烧器组件,对燃烧器进行重新布置,改变切圆直径,拆除原有SOFA燃尽风,更换新的燃尽风组件,以增加高位燃尽风量;一次风喷口全部采用上下浓淡中间带稳燃钝体的燃烧器;采用新的二次风室,适当减小端部风室、油风室及中间空气风室的面积;在凑燃尽风室两侧加装贴壁风;采用节点功能区技术,在两层一次风喷口之间增加贴壁风。
一次风仍旧为逆时针方向,其假想切圆适当减小;调整二次风射流方向,二次风改为与一次风小角度偏置,顺时针反向切入,形成横向空气分级。
主燃烧器区整体下移,风量重新合理分配,通过调整主燃烧器区一二次风喷口面积,使一次风速满足入炉煤种的燃烧特性要求,主燃烧器区的二次风量适当减小,形成纵向空气分级。
主燃烧器装有摆动机构,可以上下摆动以调节再热汽温。
拆除原来的一层分离燃尽风SOFA,在原主燃烧器上方约6米处重新布置4层分离SOFA喷口,分配足量的SOFA燃尽风量,SOFA喷口可同时做上下左右摆动。
4.1燃烧系统改造范围(1) 主燃烧器(更换现有四角燃烧器本体,包括一次风喷口及弯头、二次风喷口、摆动机构、风箱风道、风门挡板、保温、护板、吊挂装置及附件等)。
(2) 分离SOFA燃尽风(喷口、摆动机构、燃尽风箱、连接风道、保温、护板、吊挂装置及附件等)。
(3) 水冷壁管屏(主燃烧器区域和燃尽风区域水冷壁弯管及修整管)。
(4) 油枪、点火器与火检(保留现有的油枪、点火器与火检系统)。
(5) 电气、仪表及控制(电源盘、控制柜、电缆等)。
(6) 附属系统(支吊架、楼梯平台、检修起吊设施、防腐、浇注料、保温和油漆设计等)。
(7) 其它(整套工程的设计、设备制造(含现场制作)、设备及材料供货、运输、安装工程、指导监督、技术服务、人员培训、调试、试验(含脱硝改造过程中所需各种数据测试并提供相关数据分析报告)及整套系统的性能保证和售后服务等,并保证该全套工程的安全实施和不会对环境造成不良影响)。
4.2燃烧器改造方案说明结合锅炉目前状况及改造目标进行充分分析,我们采用低NOx双尺度燃烧技术对锅炉进行低NOx燃烧改造,就是在射流空气分布(空间尺度)及燃烧过程控制实现(过程尺度)上采取措施。
具体措施如下:4.2.1燃烧器低NOx改造措施(1) 纵向三区分布如图1-2所示,改造后燃烧器从下至上大致分为三个区,依次为集中氧化燃烧区、集中还原区及燃尽区。
通过在主燃烧器上方合适位置引入适量的燃尽风(总风量20-30%),燃尽风采用多喷口多角度射入,燃烧器改造后沿高度方向从下至上形成三大区域,分别为氧化还原区(总风量的70-80%)、主还原区、燃尽区。
氧化区有助于煤粉初期燃烧,炉温升高,促进煤粉着火、燃烧及燃尽。
由于有较大燃尽风量的存在,主燃烧器区内也会存在氧化还原交替存区,通过控制高度方向的配风,可形成局部还原区,可以初步还原产生的NOx,使NOx在初始燃烧时就得到抑制,在主还原区内已生成的NOx还可得到更充分还原,燃尽区内将作为燃尽风的二次风及时补充进来,促进焦碳最后燃尽。
通过纵向三区布置,形成纵向空气分级,NOx将得到极大抑制,飞灰可燃物也会得到控制。
由于实现纵向空气分级,相对地燃烧器区域有所扩大,燃烧器区域热负荷降低,炉内温度峰值降低,可以减少或消除热力型NOx产生。
(2) 横向双区分布如图1-3所示,一次风仍旧为逆时针方向,其假想切圆适当减小;调整二次风射流方向,二次风改为与一次风小角度偏置,顺时针反向切入,形成横向空气分级。
两层一次风之间还会布置我公司特有的贴壁风喷口,形成横向空气分级。
这种横向布置,可使一次风初始燃烧时,二次风不能过早混合进来,形成缺氧燃烧,在火焰内就进行NOx还原,抑制NOx产生;在火焰末端,二次风再及时掺混合进来,使缺氧燃烧时产生的焦炭再燃烧;二次风反向切入,可以延长火焰行程,强化煤粉后期着火燃烧,并防止煤粉颗粒冲刷炉墙造成结焦。
横向空气分级与纵向空气分级一起形成空间空气分级。
(3) 低NOx燃烧器一次风设计喷口为上下浓淡分离形式,中间加装稳燃钝体形式,浓淡燃烧除可降低NOx外,还可对煤粉稳燃、提前着火有积极作用。
同时钝体能优先增加卷吸的高温烟气量,进一步强化稳燃。
(4) 节点功能区的建立将下层一次风设计为上浓下淡燃烧器喷口,上层一次风布置为下浓上淡一次风喷口,两层一次风喷口中间的二次风小角度与一次风射流偏置,同时布置贴壁风喷口。
这样的喷口组合,同时具有稳燃、降低NOx的作用,将中间二次风和贴壁风风门开大,可实现NOx和飞灰可燃物同时降低。
4.2.2 防结渣、防腐蚀措施(1) 横向双区布置通过一二次风射流调整及布置独特的贴壁风,在炉膛截面上形成了三场特性截然不同的中心区与近壁区分布,中心区具有较高的煤粉浓度、较高的温度和相对较高的氧浓度分布,而近壁区具有较低的温度、较低的颗粒浓度和适宜的氧浓度,可同时实现防止结渣及高温腐蚀。
一次风在内部形成更小且与炉内主气流相反的切圆时,更加易于控制煤粉气流冲壁,熔融灰渣更难甩向水冷壁从而达到强防渣的效果。
(2) 加装贴壁风增加双尺度燃烧技术特有的附壁射流的贴壁风喷口能有效提高近壁区域的氧化性气氛,提高灰熔点,大大缓解炉膛的结渣。
同时,作为水平断面分级燃烧中后期掺混的一部分,贴壁风可作为控制炉内NOx的生成的有效手段。
(3) 纵向空气分级由于实现纵向空气分级,相对地燃烧器区域有所扩大,燃烧器区域热负荷降低,炉内温度峰值降低,可以有效防止燃烧器区域附所壁面结渣。
(4) 适当降低一次风率。
4.2.3稳燃高效措施(1) 稳燃型浓淡燃烧器如5.2.2所述,所有一次风喷口改为上下浓淡喷口,浓相由于煤粉浓度较高,析出挥发份较多,更易实现早着火。
并且浓淡相之间布置有较宽的波形钝体结构,强化热烟气回流,实现早期着火。
(2) 节点功能区建立再如图1-5所示,上下两层一次风及其之间的二次风实现功能组合,通过一二次风射流偏置,实现功能区内的浓相与回流热烟气混合,促进及早着火。
(3) 多喷口多角度燃尽风喷口考虑到燃烧器改造后将彻底解决结焦问题,炉膛出口烟温会出现下降,加装适量燃尽风后,将SOFA 喷口设计为可上下左右摆动的喷口,通过燃尽风喷口上下摆动可控制炉膛出口烟温水平。
同时燃尽风喷口还可实现水平摆动,可向炉膛内不同区域内按需供风,实现对炉膛有效覆盖,保证飞灰可燃物控制,降低飞灰可燃物含量,保证降低NOx同时取得较高的锅炉经济性。
4.3改造方案特点上述改造措施是在实现降低NOx功能的同时实现防渣、防腐、高效稳燃,多种措施相互作用,相互耦合,促使多功能一体化得以实现。
(1) 同时采用横向、纵向空气分级,实现低NOx排放空气分级是降低NOx的炉内重要技术手段,通过高温低氧还原区的建立,实现已生成的NOx还原,可大幅度降低NOx生成。
(2) 采用低NOx燃烧器及低NOx功能小区,同时实现稳燃及降低NOx功能一次风射流方向配合一次风集中布置及一次风喷口的浓淡形式有利于在炉膛主燃烧器区域组织一个高温低氧的燃烧核心区,煤粉气流准确及时的进入高温低氧的核心区域后,较低的过量空气系数,相对较高的燃烧温度,对煤粉及时有效的燃烧都会形成有利的条件。