半导体基础知识
- 格式:docx
- 大小:16.45 KB
- 文档页数:4
半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。
半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。
以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。
绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。
半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。
2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。
电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。
能隙:价带和导带之间的能量差称为能隙。
半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。
4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。
杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。
掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。
5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。
这是许多半导体器件的基础,如二极管和晶体管。
6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。
晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。
集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。
7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。
光电子学:光电二极管、激光二极管等。
太阳能电池:利用半导体材料的光伏效应。
这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。
半导体基础知识在现代科技的高速发展中,半导体无疑是其中一颗璀璨的明星。
从我们日常使用的智能手机、电脑,到各种先进的医疗设备、智能家电,半导体的身影无处不在。
那么,究竟什么是半导体?它又有着怎样的特性和重要作用呢?要理解半导体,首先得从物质的导电性说起。
我们知道,物质按照导电性可以大致分为导体、绝缘体和半导体三类。
导体,比如常见的金属铜、铝等,它们内部存在大量自由电子,能够很容易地传导电流。
绝缘体,像塑料、橡胶等,其内部几乎没有自由电子,电流很难通过。
而半导体则处于两者之间,它的导电性既不像导体那样良好,也不像绝缘体那样极差。
半导体的导电性能可以通过掺杂等方式进行调控。
比如,纯净的硅在常温下是一种半导体,但如果掺入少量的磷元素,就会变成 N 型半导体,其中的多数载流子是电子;如果掺入少量的硼元素,则会变成 P 型半导体,多数载流子为空穴。
这种特性使得半导体在电子学领域具有极其重要的应用价值。
半导体的核心元件之一是二极管。
二极管具有单向导电性,只允许电流从一个方向通过。
它由 P 型半导体和 N 型半导体结合而成,形成一个 PN 结。
当在 PN 结上加正向电压时,二极管导通;加反向电压时,二极管截止。
这种特性被广泛应用于整流电路中,将交流电转换为直流电。
三极管是另一个重要的半导体元件。
它可以实现电流的放大作用。
通过控制基极电流的大小,可以改变集电极和发射极之间的电流,从而实现对信号的放大。
这在通信、音频放大等领域有着广泛的应用。
在集成电路中,半导体更是发挥了关键作用。
集成电路将大量的半导体元件集成在一块小小的芯片上,实现了复杂的功能。
从简单的逻辑门到复杂的微处理器,集成电路的发展极大地推动了电子技术的进步。
半导体的制造工艺是一个极其复杂和精细的过程。
首先,需要从高纯度的硅材料开始,经过一系列的加工步骤,如光刻、蚀刻、掺杂等,来制造出各种半导体元件。
光刻技术就像是在硅片上进行精细的“雕刻”,通过使用特定波长的光线和光刻胶,将设计好的电路图案转移到硅片上。
半导体器件复习题一、半导体基础知识1、什么是半导体?半导体是一种导电性能介于导体和绝缘体之间的材料。
常见的半导体材料有硅(Si)、锗(Ge)等。
其导电能力会随着温度、光照、掺入杂质等因素的变化而发生显著改变。
2、半导体中的载流子半导体中有两种主要的载流子:自由电子和空穴。
在本征半导体中,自由电子和空穴的数量相等。
3、本征半导体与杂质半导体本征半导体是指纯净的、没有杂质的半导体。
而杂质半导体则是通过掺入一定量的杂质元素来改变其导电性能。
杂质半导体分为 N 型半导体和 P 型半导体。
N 型半导体中多数载流子为自由电子,P 型半导体中多数载流子为空穴。
二、PN 结1、 PN 结的形成当 P 型半导体和 N 型半导体接触时,在交界面处会形成一个特殊的区域,即 PN 结。
这是由于扩散运动和漂移运动达到动态平衡的结果。
2、 PN 结的单向导电性PN 结正偏时,电流容易通过;PN 结反偏时,电流难以通过。
这就是 PN 结的单向导电性,是半导体器件工作的重要基础。
3、 PN 结的电容效应PN 结存在势垒电容和扩散电容。
势垒电容是由于空间电荷区的宽度随外加电压变化而产生的;扩散电容则是由扩散区内电荷的积累和释放引起的。
三、二极管1、二极管的结构和类型二极管由一个 PN 结加上电极和封装构成。
常见的二极管类型有普通二极管、整流二极管、稳压二极管、发光二极管等。
2、二极管的伏安特性二极管的电流与电压之间的关系称为伏安特性。
其正向特性曲线存在一个开启电压,反向特性在一定的反向电压范围内电流很小,当反向电压超过一定值时会发生反向击穿。
3、二极管的主要参数包括最大整流电流、最高反向工作电压、反向电流等。
四、三极管1、三极管的结构和类型三极管有 NPN 型和 PNP 型两种。
它由三个掺杂区域组成,分别是发射区、基区和集电区。
2、三极管的电流放大作用三极管的基极电流微小的变化能引起集电极电流较大的变化,这就是三极管的电流放大作用。
半导体重要基础知识点
半导体是指具有介于导体和绝缘体之间电导率的材料。
它在现代电子
学中起着重要的作用,广泛应用于各种电子器件和技术中。
在学习半
导体的基础知识时,以下几个关键概念是不可或缺的。
1. 能带理论:
能带理论是解释半导体电导性质的基础。
它将固体材料中电子的能量
划分为能量带,包括导带和禁带。
导带中的电子可以自由移动,导致
材料具备良好的导电性;而禁带中没有电子,因此电子无法自由移动。
2. 纯净半导体:
纯净半导体由单种原子构成,并且没有杂质。
其中,硅是最常用的半
导体材料之一。
纯净的半导体通常表现为绝缘体,因为其禁带宽度较大,电子无法跃迁到导带。
3. 杂质掺杂:
为了改变半导体的导电性质,可以通过掺杂过程引入杂质。
其中,掺
入五价元素(如磷、砷)的半导体称为n型半导体,因为杂质的额外
电子可以增加导电性能;而掺入三价元素(如硼、铝)的半导体称为p 型半导体,因为杂质的缺电子位可以增加导电性能。
4. PN 结:
PN结是由n型半导体和p型半导体相接触而形成的结构。
在PN结中,形成了一个漏斗状的能带结构,其中P区域的缺电子位和N区域的额
外电子形成了势垒。
这个势垒可以控制电子的流动,使得PN结可以用
于逻辑门、二极管等电子器件中。
半导体作为现代电子技术的基础之一,无论是手机、计算机还是各种
智能设备,都离不开半导体器件的应用。
因此,熟悉半导体的基础知识对于理解和应用现代科技至关重要。
半导体基础知识1. 半导体的概念与分类1.1 半导体的定义半导体是一种电导率介于导体和绝缘体之间的材料,其电导率会随着外界条件(如温度、光照、掺杂等)的变化而变化。
常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
1.2 半导体的分类根据半导体材料的类型,可分为元素半导体和化合物半导体。
•元素半导体:如硅(Si)、锗(Ge)等。
•化合物半导体:如砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等。
根据导电类型,半导体可分为n型半导体和p型半导体。
•n型半导体:掺杂有五价元素(如磷、砷等)的半导体材料。
•p型半导体:掺杂有三价元素(如硼、铝等)的半导体材料。
2. 半导体物理基础2.1 能带结构半导体的导电性能与其能带结构密切相关。
一个完整的周期性晶体结构可以分为价带、导带和禁带。
•价带:充满电子的能量状态所在的带,电子的能量低于价带顶。
•导带:电子的能量高于导带底时,可以自由移动的状态所在的带。
•禁带:价带和导带之间的区域,电子不能存在于这个区域。
2.2 掺杂效应掺杂是向半导体材料中引入少量其他元素,以改变其导电性能的过程。
掺杂分为n型掺杂和p型掺杂。
•n型掺杂:向半导体中引入五价元素,如磷、砷等,使得半导体中的自由电子浓度增加。
•p型掺杂:向半导体中引入三价元素,如硼、铝等,使得半导体中的空穴浓度增加。
2.3 载流子在半导体中,自由电子和空穴是载流子,负责导电。
n型半导体中的载流子主要是自由电子,而p型半导体中的载流子主要是空穴。
2.4 霍尔效应霍尔效应是研究半导体中载流子运动的一种重要物理现象。
当半导体中的载流子在外加磁场作用下发生偏转时,会在半导体的一侧产生电势差,即霍尔电压。
3. 半导体器件3.1 半导体二极管半导体二极管(DIODE)是一种具有单向导电性的半导体器件。
它由p型半导体和n型半导体组成,形成PN结。
当外界电压正向偏置时,二极管导通;反向偏置时,二极管截止。
1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。
电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。
绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。
绝缘体导电性:极差。
如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。
电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。
空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。
本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。
载流子:运载电荷的粒子称为载流子。
导体电的特点:导体导电只有一种载流子,即自由电子导电。
本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。
本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。
载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
半导体基础知识详细半导体是一种电子特性介于导体和绝缘体之间的材料。
它的电阻率介于导体和绝缘体之间,而且在外界条件下可以通过控制电场、光照、温度等因素来改变其电子特性。
半导体材料广泛应用于电子器件、太阳能电池、光电器件、传感器等领域。
1. 半导体的基本概念半导体是指在温度为绝对零度时,其电阻率介于导体和绝缘体之间的材料。
在室温下,半导体的电阻率通常在10^-3到10^8Ω·cm之间。
半导体的导电性质可以通过控制材料中的杂质浓度来改变,这种过程称为掺杂。
2. 半导体的晶体结构半导体的晶体结构分为两种:共价键晶体和离子键晶体。
共价键晶体是由原子间共享电子形成的晶体,如硅、锗等。
共价键晶体的晶格结构稳定,电子在晶格中移动时需要克服较大的势垒,因此其导电性较差。
离子键晶体是由正负离子间的静电作用形成的晶体,如氯化钠、氧化镁等。
离子键晶体的晶格结构较稳定,电子在晶格中移动时需要克服较小的势垒,因此其导电性较好。
3. 半导体的能带结构半导体的能带结构是指半导体中电子能量的分布情况。
半导体的能带结构分为价带和导带两部分。
价带是指半导体中最高的能量带,其中填满了价电子。
导带是指半导体中次高的能量带,其中没有或只有很少的电子。
当半导体中的电子受到外界激发时,可以从价带跃迁到导带,形成电子空穴对。
4. 半导体的掺杂半导体的掺杂是指向半导体中加入少量的杂质原子,以改变其电子特性。
掺杂分为n型和p 型两种。
n型半导体是指向半导体中掺入少量的五价杂质原子,如磷、砷等。
这些杂质原子会向半导体中释放一个电子,形成自由电子,从而提高半导体的导电性能。
p型半导体是指向半导体中掺入少量的三价杂质原子,如硼、铝等。
这些杂质原子会从半导体中吸收一个电子,形成空穴,从而提高半导体的导电性能。
5. 半导体器件半导体器件是利用半导体材料制造的电子器件,包括二极管、晶体管、场效应管、集成电路等。
二极管是一种由n型半导体和p型半导体组成的器件,具有单向导电性。
外延基础知识一、基本概念能级:电子是不连续的,其值主要由主量子数N决定,每一确定能量值称为一个能级。
能带:大量孤立原子结合成晶体后,周期场中电子能量状态出现新特点:孤立原子原来一个能级将分裂成大量密集的能级,构成一相应的能带。
(晶体中电子能量状态可用能带描述)导带:对未填满电子的能带,能带中电子在外场作用下,将参与导电,形成宏观电流,这样的能带称为导带。
价带:由价电子能级分裂形成的能带,称为价带。
(价带可能是满带,也可能是电子未填满的能带)直接带隙:导带底和价带顶位于K空间同一位置。
间接带隙:导带底和价带顶位于K空间不同位置。
同质结:组成PN结的P型区和N型区是同种材料。
(如红黄光中的:GaAs上生长GaAs,蓝绿光中:U(undope)-GaN上生长N(dope)- GaN)异质结:两种晶体结构相同,晶格常数相近,但带隙宽度不同的半导体材料生长在一起形成的结,称为异质结。
(如蓝绿光中:GaN上生长Al GaN)超晶格(superlatic):由两种或两种以上组分不同或导电类型各异的超薄层(相邻势阱内电子波函数发生交迭)的材料,交替生长形成的人工周期性结构,称为超晶格材料。
量子阱(QW):通常把势垒较厚,以致于相邻电子波函数不发生交迭的周期性结构,称为量子阱(它是超晶格的一种)。
二、半导体1.分类:元素半导体:Si 、Ge化合物半导体:GaAs、InP、GaN(Ⅲ-Ⅴ)、ZnSe(Ⅱ-Ⅵ)、SiC2.化合物半导体优点:a.调节材料组分易形成直接带隙材料,有高的光电转换效率。
(光电器件一般选用直接带隙材料)b.高电子迁移率。
c.可制成异质结,进行能带裁减,易形成新器件。
3.半导体杂质和缺陷杂质:替位式杂质(有效掺杂)间隙式杂质缺陷:点缺陷:如空位、间隙原子线缺陷:如位错面缺陷:(即立方密积结构里夹杂着少量六角密积)如层错4.外延技术LPE:液相外延,生长速率快,产量大,但晶体生长难以精确控制。
(普亮LED常用此生长方法)MOCVD(也称MOVPE):Metal Organic Chemical Vapour Deposition金属有机汽相淀积,精确控制晶体生长,重复性好,产量大,适合工业化大生产。
半导体主要知识点总结一、半导体的基本概念1.1半导体的定义与特点:半导体是介于导体和绝缘体之间的一类材料,具有介于导体和绝缘体之间的电阻率。
与导体相比,半导体的电阻率较高;与绝缘体相比,半导体的电子传导性能较好。
由于半导体具有这种特殊的电学性质,因此具有重要的电子学应用价值。
1.2半导体的晶体结构:半导体晶体结构通常是由离子键或共价键构成的晶体结构。
半导体的晶体结构对其电学性质有重要的影响,这也是半导体电学性质的重要基础。
1.3半导体的能带结构:半导体的电学性质与其能带结构密切相关。
在半导体的能带结构中,通常存在导带和价带,以及禁带。
导带中的载流子为自由电子,价带中的载流子为空穴,而在禁带中则没有载流子存在。
二、半导体的掺杂和电子输运2.1半导体的掺杂:半导体的电学性质可以通过掺杂来调控。
通常会向半导体中引入杂质原子,以改变半导体的电学性质。
N型半导体是指将少量的五价杂质引入四价半导体中,以增加自由电子的浓度。
P型半导体是指将少量的三价杂质引入四价半导体中,以增加空穴的浓度。
2.2半导体中的载流子输运:在半导体中,载流子可以通过漂移和扩散两种方式进行输运。
漂移是指载流子在电场作用下移动的过程,而扩散是指载流子由高浓度区域向低浓度区域扩散的过程。
这两种过程决定了半导体材料的电学性质。
三、半导体器件与应用3.1二极管:二极管是一种基本的半导体器件,由N型半导体和P型半导体组成。
二极管具有整流和选择通道的功能,是现代电子设备中广泛应用的器件之一。
3.2晶体管:晶体管是一种由多个半导体材料组成的器件。
它通常由多个P型半导体、N型半导体和掺杂层组成。
晶体管是目前电子设备中最重要的器件之一,具有放大、开关和稳定电流等功能。
3.3集成电路:集成电路是将大量的电子器件集成在一块芯片上的器件。
它是现代电子设备中最重要的组成部分之一,可以实现各种复杂的功能,如计算、存储和通信等。
3.4发光二极管:发光二极管是一种将电能转化为光能的半导体器件,具有高效、省电和寿命长的特点。
一.名词解释:1..什么是半导体?半导体具有那些特性?导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。
可制作热敏元件。
光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。
可制作光敏元件。
掺杂性:导电能力受杂质影响极大,称为掺杂性。
2.典型的半导体是SI和Ge , 它们都是四价元素。
Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是?。
3.半导体材料中有两种载流子,电子和空穴。
电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。
P型半导体主要空穴导电,N型半导体主要靠电子导电。
4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。
5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。
惰性气体,橡胶等。
6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。
其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。
Si,Ge等四价元素。
7. 本征半导体:无杂质的具有稳定结构的半导体。
8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。
9.晶体结构:简单立方,体心立方,面心立方,六角密积,NACL结构,CSCL结构,金刚石结构。
10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。
11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。
常见的晶体有硅,锗,铜,铅等。
常见的非晶体有玻璃,塑料,松香等。
晶体和非晶体可以从三个方面来区分:1.晶体有规则的外形 2.晶体具有一定的熔点 3.晶体各向异性。
13.晶胞:晶体中有无限在空间按一定规律分布的格点,叫空间点阵。
组成空间点阵最基本的单元叫晶胞。
晶胞具有很多晶体的性质,很多晶胞在空间重复排列起来就得到整个晶体。
不同的晶体,晶胞的形状不同。
14.根据缺陷相对晶体尺寸或影响范围大小,可分为以下几类:A:点缺陷B:线缺陷C:面缺陷D:体缺陷15.位错:一种晶体缺陷。
晶体的位错是围绕着一条很长的线,在一定范围内原子都发生规律的错动,离开它原来的平衡位置,叫位错。
16. CZ 法生长单晶工艺过程:装炉-融化-引晶-缩细颈-转肩-放肩-等径生长-收尾-停炉A装炉:将腐蚀好的籽晶装入籽晶夹头,装正,装好,装牢。
将清理干净的石墨器件装入单晶炉,调整石墨器件位置,使加热器,保温罩,石墨托碗保持同心。
B 融化:开启加热功率按钮,使加热功率分2-3次升到熔硅的最高温度(约1500度),使硅料融化。
C引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持咯高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体。
其间发生SIO2+SI=2SIO化学反应。
D缩细径:为了防止籽晶中的位错延伸到晶体中,生长一定长度的缩小的细长径的晶体。
直径一般为2-5mm,生长速度一般为2-6mm/min.E放肩-转肩: 细颈达到规定长度后,如果晶棱不断,立刻降温,降低拉速,使细颈逐渐长大到规定的直径,叫放肩。
放肩有慢放肩和放平间。
F等直径生长和收尾:根据熔体和单晶炉情况,控制晶体等径生长到所需长度。
G停炉:17.光生伏效应:指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。
产生这种电位差的机理有好多种,主要是由于阻挡层的存在。
它首先是光子转换为电子,光能量转换为电能量的过程,其次是形成电压过程,就会形成电流的回路。
18.P-N结:如果把一块P型半导体和N型半导体结合在一起,在两者的交界面处就会产生P-N 结。
20.固体材料按电阻率可以分为超导体材料,导体材料,半导体材料,绝缘材料。
半导体材料的电阻率一般介于导体与绝缘体之间,约10-4-10-8Ω·cm21.半导体材料具有哪些特点?A杂质对半导体材料的电阻率是非常敏感的,杂质含量的改变,会引起半导体材料电阻率显着变化。
例如,硅中磷浓度在1021-1012cm-3范围内变化时,它的电阻率从10-5变到104。
B温度对半导体材料的影响:在高温区 A与低温区C ,电阻率有负的温度系数,而在中温区,电阻率有正的温度系数。
C热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。
可制作热敏元件。
D光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。
可制作光敏元件。
E.掺杂性:导电能力受杂质影响极大,称为掺杂性。
22.用来检测半导体材料的的方法主要有:热探针法,整流法,迭加法。
23.工业硅的制备方法是石英砂在碳电极的电弧炉内还原成工业硅,化学反应方程为:SIO2+3C=SIC+2CO2SIC+SIO2=3SI+2CO24.多晶硅的制备方法很多,常用的有西门子法。
其原理为:,SI+3 HCL=SIHCL3+H2(加热)SI+ 4HCL=SICL4+2H2(加热)-副反应用精馏法将SIHCL3和SICL4分离开,SIHCL3在800-1000℃下热分解反应为:4SIHCL3=SI+3 SICL4+2H2氢还原反应为:SIHCL3+H2=SI+3HCL25.在半导体材料中,最早作成器件并使用的是元素是硒,它是非晶态的或多晶态的。
最早作为一个完整的半导体材料的是元素半导体锗。
26.单晶硅的生长方法基本上可分为三种,分别是:1.从熔体中的生长法2.从溶剂的溶液中生长法3.气相生长法。
体单晶硅的制备方法主要有直拉法和区溶法。
27.籽晶是生长单晶的种子,用不同晶向的籽晶做晶种,会获得不同晶向的单晶。
籽晶的几何尺寸一般为5x5x50mm或8X8X80mm,也有圆籽晶的。
28.拉制一定型号的电阻率和硅单晶,要选用适当的掺杂剂。
五族元素长用做单晶硅的N型掺杂剂,主要有磷,砷,锑,三族元素常用做单晶硅的P型掺杂剂,主要有硼,铝,镓。
29.请画出三种晶面示意图:(111)晶面,(100)晶面,(110)晶面。
<111> 晶向的单晶有三条棱线(互成120度),<100>晶向的单晶有四条棱线(互成90度),〈110〉晶向的单晶有六条棱线。
图示为:(110)晶面(100)晶面(111)晶面30. 挂边:是指在融化多晶硅的过程中,当绝大部分的多晶硅融化完了,但有少量硅快粘在熔体上面的坩埚边上。
31.搭桥:熔化多晶硅的过程中,当多晶硅将熔化完时,部分硅快熔体上面形成一座桥。
产生挂边和搭桥,一是由于坩埚内多晶硅装的不合要求二是由于熔硅时坩埚位置太高或过早的提高了坩埚的位置三是由于过早的降低了坩埚的位置。
32.硅跳:是指在熔化多晶硅的过程中,熔硅在坩埚中沸腾并且飞趼出来的现象。
产生硅跳有三种原因:1.多晶硅中有氧化夹层或封闭气泡 2.石英坩埚内壁上有气泡 3.熔化多晶硅时温度过高。
33.晶体生长过程中主要通过三种方式进行热输送,辐射,传导和对流。
高温时,界面处的大部分热量从晶体表面辐射出去,传导和对流传热起次要作用。
低温时,热量传输主要靠热传导进行。
熔体中,对流传热往往起主要作用。
34.直拉硅单晶工艺中,经常采用以下措施降低单晶中的氧碳含量;一.选用含氧,碳较低的多晶硅原料,多晶硅融化时温度不要太高,尽量减少多晶硅和坩埚的反应,减少一氧化碳和一氧化硅的生成。
二.在真空下生长的硅单晶,一般氧碳含量较低,在氩气下拉晶时,氩气中含氧,碳和水分的量要低,最好采用流动氩气方式,使炉内的CO和SIO通过氩气带出炉外,降低单晶炉内CO和SIO的分压,减少了它们熔入熔硅的量。
三.坩埚和单晶直径比例要适当。
硅单晶生长过程中,石英坩埚中的熔硅表面是低氧区,熔硅和坩埚接触部分是高氧区,中部熔硅为过度区。
35.硅的元素符号是si,原子序号是14。
原子量是28,固态密度为2.33g/cm3,熔点为1420度,沸点四3145度。
36.硅单晶常见的掺杂元素有B,AL,GA,P,SB,HS等。
37.本征半导体: 完全不含杂质且无晶格缺陷的纯净半导体称为本征半导体。
导电主要由材料的本征激发决定, 硅和锗都是四价元素,其原子核最外层有四个价电子。
它们都是由同一种原子构成的“单晶体”,属于本征半导体。
38.N型半导体:也称为电子型半导体。
N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。
在纯净的硅晶体中掺入五价元素(如磷、砷、锑等),使之取代晶格中硅原子的位置,就形成了N型半导体。
这类杂质提供了带负电(Negative)的电子载流子,称他们为n型杂质。
在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。
自由电子主要由杂质原子提供,空穴由热激发形成。
掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
39.P型半导体:也称为空穴型半导体。
P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。
在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P 型半导体。
在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。
空穴主要由杂质原子提供,自由电子由热激发形成。
掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
40.N型半导体能带图:41.P 型半导体能带图:。