(完整word版)半导体基础知识学习
- 格式:doc
- 大小:50.01 KB
- 文档页数:5
半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。
它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。
本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。
一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。
原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。
2. 能带:在固体中,原子之间的电子形成了能带。
能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。
3. 半导体中的能带:半导体材料中,能带又分为价带和导带。
价带中的电子是成对出现的,导带中的电子可以自由运动。
(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。
典型的本征半导体有硅(Si)和锗(Ge)。
2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。
常见的杂质有磷(P)、硼(B)等。
(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。
P型半导体中导电的主要载流子是空穴。
2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。
N型半导体中导电的主要载流子是自由电子。
3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。
4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。
二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。
2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。
3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。
基础知识半导体的研究和应用,虽然历史不长,但在科学、技术以及国民经济中已起着十分重要的作用。
在机械、冶金、化工、电子、空间技术以及国防工业等领域有着广泛的应用,差不多国民经济的每一个部门都要用到半导体。
半导体工业的兴起,被认为是上世纪六十年与原子能同等重要的世界科学新成就。
集成度探测器灵敏度整流元件高耐压大功率光电转换率1.绝缘体、半导体和导体物质就其导电性质而言,可分为绝缘体、半导体和导体。
金、银、铜、铁、铝等金属,具有良好的导电性能,称为导体。
橡胶、木材、玻璃、玛瑙、电木等不能导电的物质,称为绝缘体。
导电能力介于导体和绝缘体之间的材料,称为半导体。
如:硅、锗、氧化铜、硫化铝等。
物体的导电能力一般用材料的电阻率的大小来衡量,它的单位是欧姆.厘米(Ω·cm)。
电阻率越小,导电能力越强,电阻率越大,导电能力越弱。
2.半导体材料的种类半导体材料按化学成分和内部结构,大致可分为以下几类:●元素半导体又称为单质半导体。
在元素周期表中介于金属和非金属之间的元素。
其中具有实用价值的有硅、锗、硒。
50年代,锗在半导体中占主导地位,到60年代后期逐渐被硅材料取代。
用硅制造的半导体器件,耐高温和抗辐射性能较好,因此,硅成为应用最多的一种半导体材料,目前的集成电路大多数(70%以上)是用硅材料制造的.硅的物理化学性质:硅是元素周期表中四族元素,自然界中含量仅次于氧,居第二。
在自然界中硅主要以二氧化硅及硅酸盐的形式存在。
结晶形硅是一种有灰色金属光泽的晶体,与金刚石具有类似的晶格,性质硬而脆。
元子量、原子密度、比重、本征载流子浓度、本征电阻率---;硅的许多化合物及在许多化学反应中的行为与磷很相似。
硅极易与卤素化合。
在1000℃以上与氮反应,生成氮化硅。
化学性质不活泼,在常温下很稳定,不溶于所有的酸(包括氢氟酸)。
在高温下,化学活泼性大大增加。
●化合物半导体化合物半导体是由两种或两种以上的元素化合而成的半导体材料。
半导体基础知识1. 半导体的概念与分类1.1 半导体的定义半导体是一种电导率介于导体和绝缘体之间的材料,其电导率会随着外界条件(如温度、光照、掺杂等)的变化而变化。
常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
1.2 半导体的分类根据半导体材料的类型,可分为元素半导体和化合物半导体。
•元素半导体:如硅(Si)、锗(Ge)等。
•化合物半导体:如砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等。
根据导电类型,半导体可分为n型半导体和p型半导体。
•n型半导体:掺杂有五价元素(如磷、砷等)的半导体材料。
•p型半导体:掺杂有三价元素(如硼、铝等)的半导体材料。
2. 半导体物理基础2.1 能带结构半导体的导电性能与其能带结构密切相关。
一个完整的周期性晶体结构可以分为价带、导带和禁带。
•价带:充满电子的能量状态所在的带,电子的能量低于价带顶。
•导带:电子的能量高于导带底时,可以自由移动的状态所在的带。
•禁带:价带和导带之间的区域,电子不能存在于这个区域。
2.2 掺杂效应掺杂是向半导体材料中引入少量其他元素,以改变其导电性能的过程。
掺杂分为n型掺杂和p型掺杂。
•n型掺杂:向半导体中引入五价元素,如磷、砷等,使得半导体中的自由电子浓度增加。
•p型掺杂:向半导体中引入三价元素,如硼、铝等,使得半导体中的空穴浓度增加。
2.3 载流子在半导体中,自由电子和空穴是载流子,负责导电。
n型半导体中的载流子主要是自由电子,而p型半导体中的载流子主要是空穴。
2.4 霍尔效应霍尔效应是研究半导体中载流子运动的一种重要物理现象。
当半导体中的载流子在外加磁场作用下发生偏转时,会在半导体的一侧产生电势差,即霍尔电压。
3. 半导体器件3.1 半导体二极管半导体二极管(DIODE)是一种具有单向导电性的半导体器件。
它由p型半导体和n型半导体组成,形成PN结。
当外界电压正向偏置时,二极管导通;反向偏置时,二极管截止。
1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。
电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。
绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。
绝缘体导电性:极差。
如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。
电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。
空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。
本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。
载流子:运载电荷的粒子称为载流子。
导体电的特点:导体导电只有一种载流子,即自由电子导电。
本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。
本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。
载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
2.01半导体基础知识物质按导电性能可分为导体、绝缘体和半导体物质的导电特性取决于原子结构。
导体一般为低价元索,如铜、铁、铝等金属,其最外层电子受原子核的束缚力很小,因而极易挣脱原子核的束缚成为自由电子。
因此在外电场作用下,这些电子产生定向运动(称为漂移运动)形成电流,呈现出较好的导电特性。
高价元素(如惰性气体)和高分子物质(如橡胶,塑料)最外层电子受原子核的束缚力很强,极不易摆脱原子核的束缚成为自由电子,所以其导电性极差,可作为绝缘材料。
而半导体材料最外层电子既不像导体那样极易摆脱原子核的束缚,成为自由电子,也不像绝缘体那样被原子核束缚得那么紧,因此,半导体的导电特性介于二者之间。
•目前用来制造电子器件的材料主要分为两大类元素半导体:硅(Si)、错(Ge)、磷(P)、硼(B)等化合物半导体:碑化谏(GaAs)等它们的导电能力并且会随温度、光照或掺入某些杂质而发生显著变化。
•常用元素的原子结构图1一1硅和错原子的结磷原子的结构硼原子的结构构简化模型简化模型简化模型单晶按内部原子排列方式的不同物质可分为晶体 [多晶非晶体一、本征半导体纯净晶体结构的半导体称为本征半导体。
常用的半导体材料是硅和错,它们都是四价元素,在原子结构中最外层轨道上有四个价电子。
把硅或错材料拉制成单晶体时,相邻两个原子的一对最外层电子(价电子)成为共有电子,它们一方面围绕自身的原子核运动,另一方面又出现在相邻原子所属的轨道上。
即价电子不仅受到自身原子核的作用,同吋还受到相邻原子核的吸引。
于是,两个相邻的原子共有一对价电子,组成共价键结构。
故晶体中,每个原子都和周围的4个原子用共价键的形式互相紧密地联系起来,如图1一2所示。
共价键中的价电子由于热运动而获得一定的能量,其中少数能够摆脱共价键的束缚而成为自由电子,同吋必然在共价键中留下空位,称为空穴。
空穴带正电,如图1・3所示。
图1-3本征半导体中的自由电子和空穴二、半导体的导电机构热激发:在绝对零度(-273K)吋,所有价电子都被束缚在共价键内,晶体中没有口由电子,所以半导体不能导电。
我们知道,电子电路是由晶体管组成,而晶体管是由半导体制成的。
所以我们在学习电子电路之前,
一定要了解半导体的一些基本知识。
这一章我们主要学习二极管和三极管的一些基本知识,它是本课程的基础,我们要掌握好在学习时我们把它的内容分为三节,它们分别是:
1、1 半导体的基础知识
1、2 PN结
1、3 半导体三极管
1、1 半导体的基础知识
我们这一章要了解的概念有:本征半导体、P型半导体、N型半导体及它们各自的特征。
一:本征半导体
纯净晶体结构的半导体我们称之为本征半导体。
常用的半导体材料有:硅和锗。
它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。
共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。
我们用晶体结构示意图来描述一下;如图(1)所示:图中的虚线代表共价键。
在外电场作用下,自由电子产生定向移动,形成电子电流;
同时价电子也按一定的方向一次填补空穴,从而使空穴产生定向移动,形成空穴电流。
因此,在晶体中存在两种载流子,即带负电自由电子和带正电空穴,它们是成对出现的。
二:杂质半导体
在本征半导体中两种载流子的浓度很低,因此导电性很差。
我们向晶体中有控制的掺入特定的杂质来改变它的导电性,这种半导体被称为杂质半导体。
1.N型半导体
在本征半导体中,掺入5价元素,使晶体中某些原子被杂质原子所代替,因为杂质原子最外层有5各价电子,它与周围原子形成共价键后,还多余一个自由电子,因此使其中的空穴的浓度远小于自由电子的浓度。
但是,电子的浓度与空穴的浓度的乘积是一个常数,与掺杂无关。
在N型半导体中自由电子是多数载流子,空穴是少数载流子。
2.P型半导体
在本征半导体中,掺入3价元素,晶体中的某些原子被杂质原子代替,但是杂质原子的最外层只有3个价电子,它与周围的原子形成共价键后,还多余一个空穴,因此使其中的空穴浓度远大于自由电子的浓度。
在P型半导体中,自由电子是少数载流子,空穴使多数载流子。
1、2 P—N结
我们通过现代工艺,把一块本征半导体的一边形成P型半导体,另一边形成N型半导体,于是这两种半导体的交界处就形成了P—N结,它是构成其它半导体的基础,我们要掌握好它的特性!一:异形半导体接触现象
在形成的P—N结中,由于两侧的电子和空穴的浓度相差很大,因此它们会产生扩散运动:电子从N区向P区扩散;空穴从P去向N区扩散。
因为它们都是带电粒子,它们向另一侧扩散的同时在N区留下了带正电的空穴,在P区留下了带负电的杂质离子,这样就形成了空间电荷区,也就是形成了电场(自建场).
它们的形成过程如图(1),(2)所示
在电场的作用下,载流子将作漂移运动,它的运动方向与扩散运动的方向相反,阻止扩散运动。
电场的强弱与扩散的程度有关,扩散的越多,电场越强,同时对扩散运动的阻力也越大,当扩散运动与漂移运动相等时,通过界面的载流子为0。
此时,PN结的交界区就形成一个缺少载流子的高阻区,我们又把它称为阻挡层或耗尽层。
二:PN结的单向导电性
我们在PN结两端加不同方向的电压,可以破坏它原来的平衡,从而使它呈现出单向导电性。
1.PN结外加正向电压
PN结外加正向电压的接法是P区接电源的正极,N区接电源的负极。
这时外加电压形成电场的方向与自建场的方向相反,从而使阻挡层变窄,扩散作用大于漂移作用,多数载流子向对方区域扩散形成正向电流,方向是从P区指向N区。
如图(1)所示
这时的PN结处于导通状态,它所呈现的电阻为正向电阻,正向电压越大,电流也越大。
它的关系是指数关系:
其中:ID为流过PN结的电流,U为PN结两端的电压,
UT=kT/q称为温度电压当量,其中,k为波尔兹曼常数,T为绝对温度,q为电子电量,在室温下(300K)时UT=26mv,IS为反向饱和电流。
这个公式我们要掌握好!
2.PN结外加反向电压
它的接法与正向相反,即P区接电源的负极,N区接电源的正极。
此时的外加电压形成电场的方向与自建场的方向相同,从而使阻挡层变宽,漂移作用大于扩散作用,少数载流子在电场的作用下,形成漂
移电流,它的方向与正向电压的方向相反,所以又称为反向电流。
因反向电流是少数载流子形成,故反向电流很小,即使反向电压再增加,少数载流子也不会增加,反向电压也不会增加,因此它又被称为反向饱和电流。
即:ID=-IS
此时,PN结处于截止状态,呈现的电阻为反向电阻,而且阻值很高。
由以上我们可以看出:PN结在正向电压作用下,处于导通状态,在反向电压的作用下,处于截止状态,因此PN结具有单向导电性。
它的电流和电压的关系通式为:
它被称为伏安特性方程,如图(3)所示为伏安特性曲线。
三:PN结的击穿
PN结处于反向偏置时,在一定的电压范围内,流过PN结的电流很小,但电压超过某一数值时,反向电流急剧增加,这种现象我们就称为反向击穿。
击穿形式分为两种:雪崩击穿和齐纳击穿。
对于硅材料的PN结来说,击穿电压〉7v时为雪崩击穿,<4v时为齐纳击穿。
在4v与7v之间,两种击穿都有。
这种现象破坏了PN结的单向导电性,我们在使用时要避免。
击穿并不意味着PN结烧坏。
四:PN结的电容效应
由于电压的变化将引起电荷的变化,从而出现电容效应,PN结内部有电荷的变化,因此它具有电容效应,它的电容效应有两种:势垒电容和扩散电容。
势垒电容是由阻挡层内的空间电荷引起的。
扩散电容是PN结在正向电压的作用下,多数载流子在扩散过程中引起电荷的积累而产生的。
PN结正偏时,扩散电容起主要作用,PN结反偏时,势垒电容起主要作用。
五:半导体二极管
半导体二极管是由PN结加上引线和管壳构成的。
它的类型很多。
按制造材料分:硅二极管和锗二极管。
按管子的结构来分有:点接触型二极管和面接触型二极管。
二极管的逻辑逻辑符号为:
1.二极管的特性
正向特性
当正向电压低于某一数值时,正向电流很小,只有当正向电压高于某一值时,二极管才有明显的正向电流,这个电压被称为导通电压,我们又称它为门限电压或死区电压,一般用UON表示,在室温下,硅管的UON约为0.6----0.8V,锗管的UON约为0.1--0.3v,我们一般认为当正向电压大于UON时,二极管才导通。
否则截止。
反向特性
二极管的反向电压一定时,反向电流很小,而且变化不大(反向饱和电流),但反向电压大于某一数值时,反向电流急剧变大,产生击穿。
温度特性
二极管对温度很敏感,在室温附近,温度每升高1度,正向压将减小2--2.5mV,温度每升高10度,反向电流约增加一倍。
2.二极管的主要参数
我们描述器件特性的物理量,称为器件的特性。
二极管的特性有:
最大整流电流IF 它是二极管允许通过的最大正向平均电流。
最大反向工作电压UR 它是二极管允许的最大工作电压,我们一般取击穿电压的一般作UR 反向电流IR 二极管未击穿时的电流,它越小,二极管的单向导电性越好。
最高工作频率fM 它的值取决于PN结结电容的大小,电容越大,频率约高。
二极管的直流电阻RD 加在管子两端的直流电压与直流电流之比,我们就称为直流电阻,它可表示为:RD=UF/IF 它是非线性的,正反向阻值相差越大,二极管的性能越好。
二极管的交流电阻rd 在二极管工作点附近电压的微变化与相应的微变化电流值之比,就称为该点的交流电阻。
六:稳压二极管
稳压二极管是利用二极管的击穿特性。
它是因为二极管工作在反向击穿区,反向电流变化很大的情况下,反向电压变化则很小,从而表现出很好的稳压特性。
七:二极管的应用
我们运用二极管主要是利用它的单向导电性。
它导通时,我们可用短线来代替它,它截止时,
我们可认为它断路。
1.限幅电路
当输入信号电压在一定范围内变化时,输出电压也随着输入电压相应的变化;当输入电压高于某一个数值时,输出电压保持不变,这就是限幅电路。
我们把开始不变的电压称为限幅电平。
它分为上限幅和下限幅。
例1.试分析图(1)所示的限幅电路,输入电压的波形为图(2),画出它的限幅电路的波形
(1) E=0时限幅电平为0v。
ui>0时二极管导通,uo=0,ui<0时,二极管截止,uo=ui,它的波形图为:如图(3)所示
(2) 当0<E<UM时,限幅电平为+E。
ui<+E时,二极管截止,uo=ui;ui>+E时,二极管导通,uo=E,它的波
形图为:如图(4)所示
(3)当-UM<E<0时,限幅电平为负数,它的波形图为:如图(5)所示
二:二极管门电路
二极管组成的门电路,可实现逻辑运算。
如图(6)所示的电路,只要有一条电路输入为低电平时,输出即为低电平,仅当全部输入为高电平时,输出才为高电平。
实现逻辑"与"运算.。