换热器的设计说明书
- 格式:doc
- 大小:1.78 MB
- 文档页数:34
管板式换热器设计说明书管板式换热器设计说明书一、概述管板式换热器是一种高效的换热设备,广泛应用于化工、石油、制药、食品等多个领域。
本设计说明书旨在介绍管板式换热器的设计原理、结构特点、选型方法、安装注意事项等相关内容。
二、设计原理管板式换热器采用管道和板式换热器结合的方式进行换热。
其主要原理是利用热流体在管道中流动时,通过管壁和板片与低温流体进行换热。
同时,管道和板片的结构也能使热流体均匀地流过,从而增强换热效果。
三、结构特点1.结构紧凑:管板式换热器体积小,结构紧凑,占用空间少,适用于场地狭小的场合。
2.换热效率高:管板式换热器采用多层板片进行换热,有效增加了换热面积,提高了换热效率。
3.应用广泛:管板式换热器适用于多种流体之间的换热,如液-液、气-液等。
4.可靠性高:管板式换热器采用优质材料制造,工艺先进,具有耐腐蚀、耐压等特点,具有较高的可靠性。
四、选型方法1.按照工艺要求确定换热参数:如换热量、流量、温度等。
2.确定流体性质:如流体介质、流速、粘度等。
3.进行换热器设计:选择合适的板片组合,计算换热器换热面积,确定尺寸和数量。
4.选择合适的材料:选择耐腐蚀、耐高温的合金材料,同时考虑生产成本。
五、安装注意事项1.在安装前,应仔细检查产品是否完好,检查连接处是否严密,以确保安装质量。
2.安装时应注意管路连接方式的选择,可选用法兰连接或焊接连接。
3.在碰到易燃易爆介质时,应注意防火防爆措施。
4.安装后应进行效验,检查管道连接是否泄漏,实验前应做好相应的准备工作。
六、总结管板式换热器具有结构紧凑、换热效率高、应用广泛、可靠性高等特点,是目前工业中使用的一种高效节能的换热设备。
在选型和安装过程中,应注意流体性质、工艺要求的确定,材料的选择和安装质量的保证。
换热器原理与设计课程设计计算说明书设计题目换热器原理与设计课程设计学院(系):机电工程学院专业:能源与动力工程班级:姓名:学号:指导老师:完成日期:新余学院目录第一部分确定设计方案 (3)1.1选择换热器的类型 (3)1.2流动空间及流速的确定 (3)第二部分确定物性数据 (4)第三部分工艺流程图 (5)第四部分计算总传热系数 (6)4.1热负荷的计算 (6)4.2平均传热温度 (6)4.3估K值 (6)4.4由K值估算传热面积 (6)4.5冷却水用量 (7)第五部分换热器工艺结构尺寸 (8)5.1 管径,管长,管数 (8)5.2管子的排列方法 (8)5.3 壳体内径的计算 (9)5.4折流板 (9)5.5 计算壳程流通面积及流速 (10)5.6计算实际传热面积 (11)5.7传热温度差报正系数的确定 (11)5.8管程与壳程传热系数的确定 (11)的确定 (13)5.9传热系数K5.10传热面积 (13)5.11附件 (13)5.12换热器流体流动阻力 (14)第六部分设计结果 (17)第七部分总结 (18)第八部分主要参考文献 (20)第九部分附录 (21)第一部分确定设计方案1.1选择换热器的类型两流体温度变化情况:热流体进口温度130℃,出口温度40℃。
冷流体进口温度30℃,出口温度40℃。
从两流体温度来看,估计换热器的管壁温度和壳体壁温之差很大,因此初步确定选用浮头式列管换热器,而且这种型式换热器管束可以拉出,便于清洗;管束的膨胀不受壳体约束。
1.2流动空间及流速的确定由于煤油的粘度比水的大,井水硬度较高,受热后易结垢,因此冷却水走管程,煤油走壳程。
另外,这样的选择可以使煤油通过壳体壁面向空气中散热,提高冷却效果。
同时,在此选择逆流。
选用ф25×2.5的碳钢管,管内流速取u i=0.75m/s。
第二部分确定物性数据定性温度:可取流体进、出口温度的平均值。
壳程煤油的定性温度为: T=(130+40)/2=85℃管程冷却水的定性温度为:t=(30+40)/2=35℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
换热器设计手册换热器设计手册第一部分:引言换热器在许多工业领域中起着至关重要的作用,能够有效地传递热量和冷却介质。
本手册旨在提供关于换热器设计的详细说明和指导,以确保设计和运行的安全性、可靠性和高效性。
第二部分:换热器的基本原理和分类2.1 换热器的基本原理换热器是通过将热量从一个介质传递到另一个介质来实现的。
基于传热原理,换热器可以分为传导、对流和辐射换热器。
2.2 换热器的分类根据换热介质的流动方式和传热机理,换热器可以分为管壳式换热器、板式换热器、螺旋板换热器等。
第三部分:换热器设计的影响因素3.1 流体参数流体参数包括流体的流量、温度、压力、热导率等。
这些参数将直接影响到换热器的传热效果和换热面积的确定。
3.2 材料选择换热器的材料选择对其使用寿命和换热效率有着重要的影响。
应根据介质的性质和工作环境进行材料选择,并考虑材料的耐腐蚀性、导热性等因素。
3.3 热负荷计算通过计算热负荷,可以确定换热器的尺寸和换热面积。
热负荷计算依赖于流体参数和换热器的设计要求。
第四部分:换热器的设计步骤4.1 确定换热方式根据介质的性质和工艺要求,选择合适的换热方式,如对流换热、辐射换热或传导换热。
4.2 计算传热面积根据热负荷计算结果,确定换热器的传热面积。
传热面积的计算需要考虑流体参数和介质的传热特性。
4.3 确定换热器尺寸和形状根据换热器的传热面积和流体参数,确定换热器的尺寸和形状。
应确保设计的换热器能够有效地传递热量和具有合理的流体阻力。
4.4 选择材料根据介质的性质和工作环境,选择合适的材料。
应考虑材料的耐腐蚀性、导热性和可加工性等因素。
第五部分:换热器的安装和维护5.1 安装要求换热器的安装应符合相关的安全标准和操作规程。
在安装过程中,应注意保护换热器的密封性和防止外部损坏。
5.2 运行和维护换热器的运行和维护需要定期检查和保养。
应注意定期清洗换热器以防止结垢和污垢的堆积,避免影响换热器的传热效果。
换热器设计手册1. 引言本文档旨在提供有关换热器的设计手册。
换热器是一种常见的设备,用于在热力系统中传递热量,实现能量的转移。
本手册将介绍换热器的基本原理、设计流程以及设计考虑事项。
2. 换热器的基本原理换热器是通过流体之间的热传导和对流传热来实现热量转移的设备。
换热器通常由两个流体通道组成,分别称为热源侧和热载体侧。
热源侧是热量的来源,热载体侧是热量的传递介质。
换热器的基本原理是通过接触面积的增加和流体之间的温度差来实现热量的传递。
3. 换热器设计流程3.1 确定热传导方式在进行换热器设计之前,需要确定热传导的方式。
根据不同的传热方式,可以选择不同类型的换热器,如管壳式换热器、板式换热器等。
3.2 确定流体参数在设计过程中,需要确定流体的参数,包括流量、温度等。
这些参数将对换热器的尺寸和性能产生影响。
3.3 确定换热器尺寸根据流体参数和传热需求,可以计算出换热器的尺寸。
这包括换热器的长度、直径或面积等。
3.4 确定传热系数换热器的传热系数是一个重要的设计参数,它决定了换热器的换热效率。
在设计过程中,需要考虑流体的性质、换热器的材料和结构等因素,来确定传热系数。
3.5 进行换热器设计计算在确定了上述参数之后,可以进行具体的换热器设计计算。
这包括确定换热面积、管道布置、管束数量等。
4. 换热器设计考虑事项4.1 热量传递效率在进行换热器设计时,需要考虑热量传递的效率。
热量传递效率是换热器性能的重要指标,直接影响换热器的能耗和传热效果。
4.2 材料选择在选择换热器的材料时,需要考虑流体的性质、工作条件和成本等因素。
常用的材料包括钢、铜、不锈钢等。
4.3 清洁和维护换热器在使用过程中,会积累一些污垢和沉积物,这会影响换热器的性能。
因此,在设计过程中需要考虑清洁和维护的便利性。
5. 结论通过本文档的介绍,我们了解了换热器的基本原理、设计流程以及设计考虑事项。
换热器的设计是一个复杂的过程,需要综合考虑多个因素。
西安科技大学—乘风破浪团队1换热器的设计1.1 换热器概述换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
在三类换热器中,间壁式换热器应用最多。
换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。
由于使用条件的不同,换热设备又有各种各样的形式和结构。
换热器选型时需要考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质;③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求;⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命;按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。
其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。
管型换热器主要有以下几种形式:(1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。
但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。
对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。
(2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。
另一端管板不与壳体连接而可相对滑动,称为浮头端。
因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。
适用于冷热流体温西安科技大学—乘风破浪团队2差较大,壳程介质腐蚀性强、易结垢的情况。
(3)U 形管式换热器换:热效率高,传热面积大。
结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。
表1-1 换热器特点一览表西安科技大学—乘风破浪团队3在过程工业中,由于管壳式换热器具有制造容易,生产成本低,选材范围广,清洗方便,适应性强,处理量大,工作可靠,且能适应高温高压等众多优点,管西安科技大学—乘风破浪团队4壳式换热器被使用最多。
工程热力学与传热学课程设计管壳式换热器设计说明书目录一、设计任务书———————————11、换热器的概念及意义2、固定管板式换热器构造3、工作原理4、设计参数二、设计计算书———————————31、换热管的材料、内径、长度、管间距等确实定2、壳体内径3、管程接收直径4、折流板缺口高度、间距、数目以及折流板直径5、壳程接收直径确实定6、传热面积和传热面积之比三、计算表格四、设计结果汇总表—————————7五、设计自评————————————8六、参考文献————————————9一、设计任务书1、换热器的概念及意义在化工生产中为了实现物料之间能量传递过程需要一种传热设备。
这种设备统称为换热器。
在化工生产中,为了工艺流程的需要,往往进展着各种不同的换热过程:如加热、冷却、蒸发和冷凝。
换热器就是用来进展这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需要。
它是化工炼油,动力,原子能和其他许多工业部门广泛应用的一种通用工艺设备,对于迅速开展的化工炼油等工业生产来说,换热器尤为重要。
换热器在化工生产中,有时作为一个单独的化工设备,有时作为某一工艺设备的组成局部,因此换热器在化工生产中应用是十分广泛的。
任何化工生产中,无论是国内还是国外,它在生产中都占有主导地位。
2、固定管板式换热器构造3、工作原理:管壳式换热器和螺旋板式换热器、板式换热器一样属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。
管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。
4、设计参数:二、设计计算书根据设计任务书进展设计计算:204565''2'1max =-=-=∆t t t ℃ 252550'2''1min =-=-=∆t t t ℃热损失系数取0.98传热量:()()kJ t t c M Q L p 48098.0506561.244.14''1'121=⨯-⨯⨯=-=η 冷却水量:()()s kg t t c M p 73.52545187.4480'2''222=-⨯=-逆流时的对数平均数温差:41.222025ln 2025ln minmax min max 1=-=∆∆∆-∆=∆⋅t t t t t c m 参数;P 、R5.025652545'2'1'2''2=--=--=t t t t P 75.025455065'2''2''1'1=--=--=t t t t R设计本管壳式换热器为2壳程-4管程<2-4>型,那么975.0=ψ 有效平均温差:85.214.22975.01=⨯=∆=∆⋅c m m t t ψ 初选传热系数:()C kg w K ︒⋅=300'0 估算传热面积:2'0'022.7385.21300480000m t K Q F m =⨯=∆= 管子材料:铝制管5.320⨯φ管程所需流通截面:222100573.0110003.57m M A t =⨯==ωρ每程管数:根43013.000573.044221=⨯⨯==ππd A n t每根管长:m l d nZ F l t 60'0==取π管子排列方式为:等边三角形 管间距s=26mm 分程隔板槽处管间距mm l E 40=平行于流向的管距mm s s p 5.2230cos =⨯=ο垂直于流向的管距mm s s n 1330sin =⨯=ο 拉杆直径取12mm 估计管壳直径mm 400≤ 管排列可做如下草图那么六边形层数为6层,一台管子数为86=t n ,一台拉杆数为4根一台传热面积为24.32602.086m dl n c =⨯⨯⨯=ππ 两台传热面积:2''08.64m F =管束中心至最外层管束中心距离为0.135m ,管束外缘直径m D L 29.0=壳体m 325.0取S D 那么长径比5.18325.06==s D l管程接收直径:6895.511100073.513.113.122⨯=⨯==φρω取M D 管程雷诺数:1793110725013.010001Re 621222=⨯⨯⨯==-μρωd 管程换热系数:52469.417931023.0013.0621.0Re 023.04.08.04.08.0122=⨯⨯⨯=⨯=τλαP d 折流板形式选弓形,折流板缺口高度m D h S 08.035.025.025.0=⨯== 折流板的圆心角为120度,折流板间距取m l s 4.0=,折流板数目为14块,折流板上管孔数为60个,折流板上管孔直径m d H 0204.0=,通过折流板管子数为56个,折流板缺口处管子数为30根,折流板直径m D b 3.0=。
换热器设计手册第一部分:换热器概述换热器是工业生产中常用的设备,用于将热能从一个流体传递到另一个流体,以实现热能的平衡和利用。
在化工、能源、制药、食品等行业都有广泛的应用。
本手册将以换热器的设计、选择、运行与维护为主要内容,为工程师和操作人员提供全面的指导和参考。
第二部分:换热器设计原理1. 热传导原理:介绍热量在换热器中的传导过程,包括对流、传导、辐射等热传导方式。
2. 换热器工作原理:介绍不同类型换热器的工作原理,如壳管式、板式、螺旋式等。
3. 换热器设计参数:详细介绍换热器设计中的参数,如传热系数、流体速度、材料选取等。
第三部分:换热器设计流程1. 换热器类型选择:根据不同工艺要求和流体特性选择合适的换热器类型。
2. 换热器计算及模拟:对换热器进行热平衡计算和流体模拟,确定换热器的尺寸和传热面积。
3. 换热器结构设计:设计换热器壳体、管束、管板、密封装置等结构。
4. 材料选取:根据工作条件和流体性质选择合适的材料,包括金属、非金属等。
5. 换热器性能分析:对设计的换热器进行性能评估,确保满足工艺要求。
第四部分:换热器运行与维护1. 换热器安装与调试:介绍换热器的安装、泄漏检测、气密性测试等。
2. 换热器运行优化:讲述换热器的操作技巧和运行优化方法,包括流体控制、温度调节等。
3. 换热器维护与保养:指导换热器的定期检查、清洗、维护和更换零部件。
第五部分:换热器设计案例分析通过实际的换热器设计案例,分析不同场景下的换热器选型、设计、运行和维护过程,并总结经验和教训。
结语本手册以换热器设计为主线,系统介绍了换热器的原理和应用,涵盖了设计、选择、运行和维护的全过程。
希望通过本手册的阅读,读者能够对换热器设计有全面的了解,并能在实际工程中有效应用。
机械设计机械设计包括结构设计和强度计算两部分。
参考压力容器安全技术监察规程,本次设计的换热器为二类容器。
1.1结构设计1.1.1设计条件1.1.1.1设计压力设计压力根据最高工作压力确定。
设有安全阀时,设计压力取最高工作压力的 1.05〜1.10倍。
本设计取1.1倍。
壳程设计压力F d =1.1巳=1.1 (0.4 _0.1)MPa =0.33MPa ,液柱压力ph 0.95 =993.25 9.8 0.6 0.95Pa=5548.2945Pa :: 5%F d则可忽略液柱压力,计算压力P c = R,取高于其一个等级的公称等级1.0MPa。
管程设计压力R =1.1P W =1.1 (1.4-0.1)MPa =1.43MPa,忽略液柱压力,则取高出其一个压力等级为2.5MPa。
1.1.1.2设计温度设计温度指容器在正常情况下,设定的元件金属温度,设计温度不得低于元件金属在工作温度状态可能达到的最高温度。
[8,124]管程设计温度的确定,由于气氨最高操作温度为124C,故取设计温度为130C。
壳程设计温度的确定,由于壳程水最高操作温度为42C,故取设计温度为50C。
1.1.2筒体壁厚1.1.2.1筒体选材由于筒体设计温度为50C,设计压力为0.4MPa,参考GB150-1998,故选20R。
1.1.2.2筒体壁厚的计算、二RD2[珂-P c式中、:一计算厚度,mm ;P c —计算压力,MPa ;'—焊接接头系数。
由表可知、:min = 6mm ,故令=6mm 。
6=6 +C 2 =(6 +2)mm =8mm 5n =① +C i + 也=(8 + 0 + 也)mm = 8mm(取C 2=2mm 在无特殊腐蚀情况下,对于碳素钢和低合金钢,不小于1mm )[GB6654《压力容器用钢板》和 GB3531《低温压力容器用低合金钢板》规定压力容器 专用钢板的厚度负偏差不大于 0-25 mm ,因此使用该标准中钢板厚度超过 5 mm 时(如20R,16MnR 和 16MnDR)等,可取 C 1 =0][8,125]由钢材标准规格,取J* =8mm-e= ' n -( C 1 + C 2 ) ( C= C 1 +C 2 )=8-(0+2)=6 mm1.1.2.3筒体的强度校核式中飞—有效厚度,:e =:n -C , mm ;;n—名义厚度,mm ;t匚—设计温度下圆筒的计算应力, MPa ;C —厚度附加量,mm 。
列管换热器的设计说明书设计说明书一、项目背景列管换热器是指通过管道将两种不同介质进行热交换的设备,广泛应用于化工、石油、能源等行业。
本设计说明书旨在为进行列管换热器的设计提供详细指导。
二、设计要求1、换热器需要能够保证高效的热交换效果;2、设计过程中要考虑介质流体的物性参数、压力等因素;3、设计要满足相关法律法规标准;4、设计材料应具有良好的耐腐蚀性能。
三、设计流程1、确定换热器的工况参数:包括介质流量、温度差、压力等;2、确定换热器的结构形式:选择适合的管束结构;3、计算传热面积:根据工况参数计算所需传热面积;4、确定管束布置:根据工况参数和传热面积计算结果确定管束布置;5、确定换热器外形尺寸:根据管束布置确定换热器外形尺寸;6、确定材料选择:根据介质性质和工艺要求选择合适的材料;7、绘制设计图纸:绘制换热器的总图、管束图和管板图等。
四、设计内容详细说明1、工况参数:a: A介质流量:__________b: B介质流量:__________c: A介质温度:__________d: B介质温度:__________e:压力:__________2、结构形式选择:经过综合考虑,本设计采用__________结构形式。
3、传热面积计算:根据工况参数,计算得出所需传热面积为__________。
4、管束布置:根据传热面积计算结果,确定管束布置方式为__________。
5、外形尺寸:经过计算,确定换热器的外形尺寸为__________。
6、材料选择:根据介质性质和工艺要求,选择适合的材料为__________。
7、设计图纸:设计完成后绘制换热器的总图、管束图和管板图等详细图纸。
附件:本设计说明书涉及的附件包括设计图纸、工况参数表、材料选择表等。
法律名词及注释:1、法律名词1:解释1;2、法律名词2:解释2;3、法律名词3:解释3:。
换热器的设计1.1 换热器概述换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
在三类换热器中,间壁式换热器应用最多。
换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。
由于使用条件的不同,换热设备又有各种各样的形式和结构。
换热器选型时需要考虑的因素是多方面的,主要有:①热负荷及流量大小;②流体的性质;③温度、压力及允许压降的范围;④对清洗、维修的要求;⑤设备结构、材料、尺寸、重量;⑥价格、使用安全性和寿命;按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。
其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。
管型换热器主要有以下几种形式:(1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。
但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。
对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。
(2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。
另一端管板不与壳体连接而可相对滑动,称为浮头端。
因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。
适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。
(3)U形管式换热器换:热效率高,传热面积大。
结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。
表1-1 换热器特点一览表在过程工业中,由于管壳式换热器具有制造容易,生产成本低,选材范围广,清洗方便,适应性强,处理量大,工作可靠,且能适应高温高压等众多优点,管壳式换热器被使用最多。
工业中使用的换热器超过90%都是管壳式换热器,在工业过程热量传递中是应用最为广泛的一种换热器。
结合上述优点和本工艺的特点,本工艺的换热器主要选用管壳式换热器。
1.2 管壳式换热器的选用1.2.1 结构参数的确定⑴管径管径越小换热器越紧凑、便宜,但压力降会增加。
为了满足允许的压降,一般选用19mm的管子;对于物流流量较大的,采用25mm 以上的管子。
⑵管长无相变传热时,管子长则换热系数增加,对于相同的换热面积,管子长则管程数减小,使得压力降减小,每平方米传热面积比降低。
我国生产的标准钢管长度为6m,故系列标准中管长有1.5 m,2 m,3 m,6 m和9 m五种。
因此,一般管长取4-6m,对大面积,无相变换热器管长可取至8~9m。
⑶管子配布换热管在管板上的排列方式主要有正三角形、正方形和转角正三角形、转角正方形。
正三角形排列形式最为普遍,由于管距都相等,可以在同样的管板面积上排列最多的管数。
但因管外不易清洗,其适用场合受到限制,主要适用于壳程介质污垢少,且不需要进行机械清洗的场合。
而采用正方形和转角正方形排列的管束,能够使管间小桥形成一条直线通道,便于管外机械清洗。
⑷管心距管心距小设备紧凑,但将引起管板增厚、清洁不便、壳程压降增大。
故一般选用范围为 1.25~1.5d(d为管外径)。
表1-2 换热管管心距⑸管程数管程数增加,管内流速增加,传热系数增加。
管程数一般有1、2、4、6、8、10、12等七种。
但管程数不能分得太多,以免压力降过大,且隔板要占用相当大的布管面积。
⑹折流板折流板可以改变壳程流体的方向,使其垂直于管束流动,提高流速,从而增加流体流动的湍流程度,获得较好的传热效果。
折流板型式可分为圆缺形(弓形)折流板、盘环形折流板、孔式折流板和折流圈。
表1-3 折流板间距常用数值1.3 换热器详细设计本工艺共有41台换热设备(换热器、再沸器、冷凝器、预热器),这里我们以浮头式换热器(E0602)详细设计为例。
热物流经该换热器换热温度降至目标温度,冷却物流为循环冷却水。
由Aspen软件得到冷热工艺物流数据:表1-4 工艺操作参数参数操作参数壳程管程介质循环冷却水甲苯回收塔塔底去一级结晶质量流量(Kg/h)343740.0 84194.9入口温度(℃)20.00 138.00出口温度(℃)30.00 34.00入口压力(bar) 3.00 2.87出口压力(bar) 2.87 2.7413初步选择换热器的形式后,根据任务要求利用Aspen Exchanger Design&Rating V7.2进行模拟计算,模拟出来的换热器工艺参数如图1-1所示:图1-1 换热器工艺参数⑴结构设计利用Aspen Exchanger Design&Rating V7.2软件也可以对换热器进行结构设计,模拟出来的结果如下:①换热管设计图 1-2 换热管基本参数图 1-3 换热管排列方式换热管为平滑管,外径19mm,壁厚为2mm,管间距为25mm,管长5850mm。
换热管根数514根。
管子排列方式为正三角形排列。
②折流板和管口设计折流板的设置主要是为了提高壳程的流速,增加扰动,改善传热。
这里选择单弓形折流板,并且圆缺方向的高度为壳体公称直径的0.15~0.45,折流板间距一般不小于圆筒内径的1/5。
折流板的数目及厚度等基本参数见图1-4 所示图1-4 折流板基本参数折流板数目为6,折流板型式为单弓形,切割率为39.15%。
折流板朝向为水平,与进出口间隔(第一块与进口或最后一块与出口端面的距离)为466.48mm,两块板间隔为525.00mm。
图1-5 管口基本参数管程进、出口管口各有一个。
其中,管程进口管口外径为168.28mm,内径154.05mm;管程出口管口外径168.28mm,内径154.05mm。
壳程进、出口管口亦各有一个,壳程进口管口外径为323.85mm,内径304.8mm;壳程出口管口外径273.05mm,内径254.51mm。
③管束图1-6 管束基本参数如图为管束信息,主要对管束布置、布置限定、定位杆拉杆和管束布置图进行详细设置。
图 1-7 换热器结构尺寸根据《JB/T4715-1992固定管板式换热器形式与基本参数》和《GB151-1999 管壳式换热器》对模拟的数据进行圆整,并考虑到热损失等,换热面积有余量,选定换热器的基本参数如下:表1-5 换热器基本参数项目参数公称直径/mm 800管子规格/mm φ19×2排列方式正三角形管中心距/mm 25管长/mm 4500公称压力/MPa 0.6换热面积/㎡189.8管程数 4壳程数 1⑵换热器的机械设计及校核①选材由于热流体和冷却水温度都不是太高,冷、热流体腐蚀性不大,故壳体材料选用Q235-B,管子材料选用Q235-B无缝钢管。
②管板的选择管板用来固定换热管并起着分隔管程和壳程的作用,根据选定的换热器公称直径及操作压力查表可得管板数据,这里选用其默认的管板类型为标准单管板。
表1-6 管板结构数据③管子与管板的连接因为操作压力小于4Mpa,且温度低于300℃,所以管子与管板的连接采用胀接。
④管板与壳体的连接管板与壳体的连接采用焊接,,该结构在管板上开槽,壳体嵌入后焊接。
壳体对中容易,适用于壳体压力不太高的场合。
⑤换热器的校核表 1-7 固定管板式换热器设计计算表 1-8 前端管箱筒体计算前端管箱筒体计算结果计算单位 全国化工设备设计技术中心站计算条件筒体简图计算压力 P c 0.40 MPa设计温度 t 170.00 ︒ C 内径 D i 800.00mm材料Q235-B ( 板材 ) 试验温度许用应力 [σ] 113.00 MPa 设计温度许用应力 109.80 MPa 试验温度下屈服点 σs235.00 MPa 钢板负偏差 C 1 0.80 mm 腐蚀裕量 C 23.00mm浮头式换热器筒体设计计算 计算单位 全国化工设备设计技术中心站设计计算条件壳程管程设计压力 0.4 MPa 设计压力 0.4 MPa 设计温度 65℃ 设计温度 170 ℃ 壳程圆筒内径 800.00 mm 管箱圆筒内径 800.00 mm 材料名称 Q235-B材料名称Q235-B计算内容 壳程圆筒校核计算 前端管箱圆筒校核计算 前端管箱封头(平盖)校核计算 后端管箱圆筒校核计算 后端管箱封头(平盖)校核计算 管板校核计算表 1-9 前端管箱封头计算计算条件椭圆封头简图计算压力P c0.40 MPa设计温度 t170.00 ︒ C内径D i800.00 mm曲面高度h i200.00 mm材料Q235-B (板材)试验温度许用应力[σ]113.00 MPa设计温度许用应力[σ]t109.80 MPa钢板负偏差C10.80 mm腐蚀裕量C2 3.00 mm焊接接头系数φ0.85厚度及重量计算形状系数K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.0000计算厚度δ =KP DPc itc205[].σφ-= 1.72 mm有效厚度δe =δn- C1- C2= 8.20 mm最小厚度δmin= 1.20 mm名义厚度δn= 12.00 mm 结论满足最小厚度要求重量77.54 Kg压力计算最大允许工作压力[Pw ]=205[].σφδδtei eKD+= 1.90351 MPa结论合格表 1-10 后端管箱筒体计算后端管箱筒体计算结果计算单位全国化工设备设计技术中心站计算条件筒体简图计算压力P c0.40 MPa设计温度 t65.00 ︒ C内径D i900.00 mm材料Q235-B ( 板材 )试验温度许用应力[σ]113.00 MPa设计温度许用应力113.00 MPa试验温度下屈服点σs235.00 MPa钢板负偏差C10.80 mm腐蚀裕量C2 3.00 mm焊接接头系数φ0.85厚度及重量计算计算厚度δ =P DPc itc2[]σφ- = 1.88 mm有效厚度δe =δn- C1- C2= 8.20 mm名义厚度δn= 12.00 mm 重量87.44 Kg压力试验时应力校核压力试验类型液压试验试验压力值PT= 1.25P [][]σσt= 0.5000 (或由用户输入) MPa压力试验允许通过的应力水平[σ]T[σ]T≤ 0.90 σs = 211.50 MPa试验压力下圆筒的应力σT= p DT i ee.().+δδφ2= 32.58MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= 2δσφδeti e[]()D+= 1.73444 MPa设计温度下计算应力σt = P Dc i ee()+δδ2= 22.15 MPa[σ]tφ96.05 MPa 校核条件[σ]tφ≥σt结论合格表 1-11 后端管箱封头计算后端管箱封头计算结果计算单位全国化工设备设计技术中心站计算条件椭圆封头简图计算压力P c0.40 MPa设计温度 t65.00 ︒ C内径D i900.00 mm曲面高度h i200.00 mm材料Q235-B (板材)试验温度许用应力[σ]113.00 MPa设计温度许用应力[σ]t113.00 MPa钢板负偏差C10.80 mm腐蚀裕量C2 3.00 mm焊接接头系数φ0.85厚度及重量计算形状系数K = 16222+⎛⎝⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥Dhii= 1.1771计算厚度δ =KP DPc itc205[].σφ-= 2.21 mm有效厚度δe =δn- C1- C2= 8.20 mm最小厚度δmin= 2.70 mm名义厚度δn= 12.00 mm 结论满足最小厚度要求重量91.59 Kg压力计算最大允许工作压力[Pw ]=205[].σφδδtei eKD+= 1.48120MPa结论合格表 1-12 筒体计算浮头式换热器筒体计算结果计算单位全国化工设备设计技术中心站计算条件筒体简图计算压力P c0.40 MPa设计温度 t65.00 ︒ C内径D i800.00 mm材料Q235-B ( 板材 )试验温度许用应力[σ]113.00 MPa设计温度许用应力113.00 MPa试验温度下屈服点σs235.00 MPa钢板负偏差C10.80 mm腐蚀裕量C2 3.00 mm表1-13筒体法兰计算筒体法兰计算结果计算单位全国化工设备设计技术中心站设计条件简图设计压力 p 0.400 MPa计算压力p c0.400 MPa设计温度t65.0 ︒ C轴向外载荷F0.0 N外力矩M0.0 N.mm壳材料名称Q235-B体许用应力113.0 MPa法材料名称16Mn许[σ]f 150.0 MPa兰应[σ]t f150.0 MPa材料名称40MnB螺许[σ]b196.0 MPa应[σ]t b184.8 MPa栓公称直径d B20.0 mm螺栓根径d 1 17.3 mm数量n28 个Di800.0 D o950.0垫结构尺寸Db907.0D外878.0 D内855.0 δ014.0 mm L e21.5 L A26.5 h 13.0 δ127.0 材料类型金属垫片N11.5 m 3.00 y(MPa) 25.5 压紧面形状1a,1b b 5.75 D G866.5片b0≤6.4mm b= b0b≤6.4mm D G= ( D外+D内)/2b 0 > 6.4mm b=2.53b b0 > 6.4mm D G= D外- 2b螺栓受力计算应力切向应力σδσTf iR=-=M YDZ216.45 MPaft[]σ= 150.0 校核合格综合应力))(5.0),(5.0m ax(THRHσσσσ++=53.42MPaft[]σ=150.0 校核合格法兰校核结果校核合格表1-14后端筒体法兰计算后端筒体法兰计算结果计算单位全国化工设备设计技术中心站设计条件简图设计压力 p 0.400 MPa计算压力p c0.400 MPa设计温度t65.0 ︒ C轴向外载荷F0.0 N外力矩M0.0 N.mm壳材料名称Q235-B体许用应力n t[]σ113.0 MPa法材料名称16Mn许[σ]f 150.0 MPa兰应[σ]t f150.0 MPa=1.51 =0.83 = 1.07剪应力校核 计 算 值许 用 值结 论预紧状态 ==l D Wi πτ10.00 MPa [][]n στ8.01=操作状态==lD W i pπτ20.00MPa[][]tn στ8.02=输入法兰厚度δf = 48.0 mm 时, 法兰应力校核应力 性质计 算 值许 用 值结 论轴向 应力==i21oH D fM λδσ 213.13MPa15.[]σf t =225.0 或25.[]σn t =282.5( 按整体法兰设计的任 意 式法兰,取15.[]σn t )校核合格径向 应力 =+⋅=i2f 0R )133.1(D M e f λδδσ20.90MPaf t []σ = 150.0校核合格切向 应力σδσT 0f i R =-=M YD Z 219.83 MPaf t []σ = 150.0校核合格综合 应力))(5.0),(5.0m ax (T H R H σσσσ++ =117.01 MPaf t []σ = 150.0校核合格法兰校核结果校核合格表1-15前端管箱法兰计算前端管箱法兰计算结果计算单位全国化工设备设计技术中心站设 计 条 件简 图设计压力 p 0.400 MPa 计算压力 p c 0.400 MPa 设计温度 t170.0︒ C表1-16后端管箱法兰计算后端管箱法兰计算结果计算单位全国化工设备设计技术中心站设计条件简图设计压力 p 0.400 MPa计算压力p c0.400 MPa设计温度t65.0 ︒ C轴向外载荷F0.0 N外力矩M0.0 N.mm壳材料名称Q235-B体许用应力n tσ113.0 MPa[]法材料名称16Mn许[σ]f 150.0 MPa兰应[σ]t f150.0 MPa材料名称40MnB螺许[σ]b196.0 MPa应[σ]t b184.8 MPa栓公称直径d B20.0 mm螺栓根径d 1 17.3 mm数量n28 个D900.0 D o1050.0i垫结构尺寸D b1007.0 D外978.0 D内950.0 δ08.0表1-17开孔补强计算⑶选型结果经过修正校核,最终选定换热器型号:BES-800-0.4-189.8-4.5/19-4Ⅱ,其各自代表意义为:封头管箱,800—换热器公称直径(mm),0.4—管程、壳程设计压力(MPa),189.8—换热面积(m2),4.5—换热管长(m),19—换热管外径(mm),4—四管程,1-单壳程,Ⅱ—碳钢较高级冷拔钢管。