自控原理复习总结
- 格式:docx
- 大小:461.14 KB
- 文档页数:28
自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。
控制系统由传感器、控制器和执行器组成。
2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。
反馈控制系统具有稳定性好、抗干扰能力强的特点。
3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。
传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。
4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。
比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。
5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。
常用的稳定性分析方法有判据法、频域法和根轨迹法等。
6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。
常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。
7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。
根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。
8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。
灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。
9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。
鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。
10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。
自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。
自动控制原理知识点汇总自动控制原理是现代工程中的重要学科,它研究如何利用自动化技术实现对各种工业过程和系统进行控制和调节。
本文将对自动控制原理的相关知识点进行汇总,并进行详细说明。
1. 自动控制系统的基本组成自动控制系统主要由控制对象、感知器、执行器和控制器四个部分组成。
控制对象是需要被控制和调节的物理系统或工艺过程,感知器用于感知控制对象的运行状态,执行器负责根据控制器的指令执行相应的动作,而控制器则是整个系统的核心,根据感知器采集到的信号进行处理,并通过执行器对控制对象进行控制。
2. 控制系统的闭环与开环控制控制系统可以分为闭环控制和开环控制两类。
闭环控制是通过对控制对象的输出进行实时测量,并与预设的目标值进行比较,从而实现对系统状态的反馈控制。
开环控制则是不考虑控制对象的实际输出,仅根据预设的输入信号进行控制,无法实时调节系统状态。
3. 控制系统的稳定性控制系统的稳定性是指系统在受到外界扰动或控制指令变化时,能够恢复到稳定状态的能力。
稳定性分为绝对稳定和相对稳定两种。
绝对稳定是指系统在任何初始条件下都能恢复到稳定状态,相对稳定则是指系统在一定初始条件下能恢复到稳定状态。
稳定性分析常用的方法有根轨迹法、Nyquist稳定判据和Bode稳定判据等。
4. 控制系统的系统响应控制系统的系统响应描述了系统对输入信号的响应速度和质量。
常用的系统响应指标有超调量、调整时间、稳态误差和频率响应等。
超调量是指系统响应超过目标值的最大偏差,调整时间是系统从开始响应到稳定所需的时间,稳态误差是系统在稳定状态下与目标值之间的偏差,频率响应是系统对不同频率信号的响应特性。
5. PID控制器PID控制器是自动控制系统中最常用的控制器之一,它由比例项(P 项)、积分项(I项)和微分项(D项)组成。
比例项用于根据误差大小调节控制量,积分项用于对误差进行积分,以解决稳态误差问题,微分项用于预测误差的未来变化趋势,以减小超调和提高系统响应速度。
自动控制原理知识点总结咱们先来聊聊啥是自动控制原理哈。
想象一下,你有一辆遥控小汽车,你想让它按照你期望的速度和方向跑,这中间的种种操作和规律,就是自动控制原理要研究的东西。
这门学问里,首先得知道啥是控制系统。
简单说,就是一堆能让某个东西按照咱想法动起来的部件组合。
比如说家里的空调,你设定个温度,它就能自己调节制冷制热,让屋里保持在那个温度,这里面就有控制系统在工作。
再来说说反馈,这可是个重要概念。
就像你考试完了,老师给你打分告诉你哪儿对哪儿错,你才能知道咋改进,下次考得更好。
控制系统里也是这样,通过反馈,能把实际情况和期望情况做比较,然后进行调整。
开环控制和闭环控制也是不得不提的。
开环控制就像你蒙着眼睛扔飞镖,扔出去就不管了,结果咋样全靠运气。
闭环控制呢,则是你睁着眼睛扔,能看到飞镖的位置,随时调整扔的力度和角度,直到命中目标。
咱举个例子哈,比如说你想做个自动浇花的装置。
如果是开环控制,你就设定好每天几点浇水,浇多长时间,不管花需不需要,都这么浇。
但要是闭环控制,就会有个传感器能检测土壤的湿度,湿度不够了才浇水,够了就不浇,这多智能!还有系统的稳定性,这就好比你骑自行车,要是车不稳,东倒西歪的,你肯定骑不了。
控制系统也一样,不稳定就没法正常工作。
传递函数也是个关键知识点。
它就像是系统的“身份证”,通过它能了解系统的特性。
在自动控制原理里,时域分析能让我们直接看到系统对输入的响应随时间的变化。
比如说,你按了一下遥控器,遥控车多长时间能达到你想要的速度,这就是时域分析要研究的。
频域分析呢,则是从另一个角度看系统的性能。
就好像你听音乐,不同的频率有不同的声音,频域分析就是研究系统对不同频率输入的反应。
根轨迹法能帮我们分析系统参数变化对系统性能的影响。
想象一下,你调整遥控车的某个零件,看看车的速度和灵活性会怎么变,这就是根轨迹法在起作用。
最后说说校正装置,这就像是给系统“治病”。
如果系统性能不好,通过加上校正装置,能让它变得更好用。
自控原理知识点整理自控原理是一种用于管理个人行为的方法,旨在帮助人们通过自我约束和自我管理来实现目标和改变自己。
本文将介绍自控原理的一些关键概念、技巧和工具,以帮助你更好地应用自控原理来管理自己的行为。
1. 自控原理的概念自控原理是通过自我约束,运用意志力自我管理的一种方法。
这种方法可以帮助你克服心理和物质上的挑战,实现个人目标和改变自己的行为。
自控原理认为,人们能够通过自我控制和管理抵制短期诱惑,实现自己的长期目标和愿望。
这一方法可以帮助你在诸多方面做出艰难的决定、改变长期不良习惯,并改善个人生活品质。
2. 自控原理的技巧和工具(1)设定目标要明确目标的明确程度影响着你是否能够坚持下去。
应设立一个具体、可量化的目标,尽可能规定大、小目标之间的时间限制。
(2)掉头思考在决定做某事之前,要考虑一下后果和利益。
这种掉头思考可以帮助你远离即时的欢愉,保持心智清醒,更好地抵制诱惑。
(3)监控自己的行动和反思要时刻注意自己的行为,以确保你始终沿着目标方向前进。
抽出一些时间反思自己的表现,找出行为上的一些问题和欠缺,并设法解决。
(4) 建立压力差机制为让自己更好地控制诱惑,你需要在心理上建立一种压力差机制。
例如,你可以告诉朋友你的目标,这样如果你失败了就会让他们失望。
通过建立压力差机制,你可以在某种程度上让自己需要遵循自己的目标。
(5)给自己一个奖励当你完成了一个艰巨的任务时,一件神秘的特殊待遇将会激励你坚持下去。
给自己一个小小的奖励,可以帮助你保持积极的态度,推动自己迎接下一个挑战。
3. 自控原理的重要性自控原理在个人成长和发展中扮演着至关重要的角色。
成功的个人应该具备自主思考的能力、自我管理的技能、以及控制自己的情绪和行为的能力。
自控原理不仅可以帮助我们解决生活中的日常问题,还可以帮助我们实现长远的个人生涯和人生目标。
总体说来,自控原理可以使人们更好地应对生活中的困难和挑战。
希望本文介绍的相关概念、技巧和工具能够帮助您更好地应用自控原理来管理自己的行为,并取得成功。
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。
下面将对自动控制原理的一些关键知识点进行总结。
一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。
控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。
控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。
反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。
在控制系统中,常用的术语包括输入量、输出量、偏差量等。
输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。
二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。
状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。
三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。
常见的性能指标包括稳定性、准确性和快速性。
稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。
准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。
快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。
四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。
常用的稳定性判据有劳斯判据和赫尔维茨判据。
劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。
@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
自动控制原理知识点总结第一章1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。
3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。
4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
6、负反馈:反馈信号与输人信号相减,其差为偏差信号。
7、负反馈控制原理:检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
8、自动控制系统的两种常用控制方式是开环控制和闭环控制。
9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
11、控制系统的性能指标主要表现在:(1)、稳定性:系统的工作基础。
(2)、快速性:动态过程时间要短,振荡要轻。
(3)、准确性:稳态精度要高,误差要小。
12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。
第二章1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。
2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。
对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。
4、结构图的变换与化简化简方框图是求传递函数的常用方法。
自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。
它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。
下面是自动控制原理的一些重要知识点的汇总。
一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。
2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。
3.控制系统的分类:开环控制和闭环控制。
4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。
二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。
2.控制信号的形式化表示:开环信号和闭环信号。
三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。
2.传递函数的性质:稳定性、正定性、因果性等。
3.频率响应:描述了控制系统对不同频率输入信号的响应。
四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。
2.稳定性分析的方法:根轨迹法、频域方法等。
3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。
五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。
2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。
六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。
2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。
3.根轨迹的设计方法:增益裕量法、相位裕量法等。
七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。
2.频率响应的评价指标:增益裕量、相位裕量、带宽等。
3.频域设计方法:根据频率响应曲线来调整系统参数。
八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。
《自动控制原理》课程考试复习要点第1章控制原理绪论一、主要内容1、自动控制的概念,控制系统中各部分名称及概念2、开环控制于闭环控制的区别,负反馈原理3、系统的分类4、方框图绘制(原理图)5、对自动控制系统的一般要求(稳、准、快)二、自动控制概念中的基本知识点1、闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用。
2、典型闭环系统的功能框图。
自动控制在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。
自动控制系统由控制器和被控对象组成,能够实现自动控制任务的系统。
被控制量在控制系统中.按规定的任务需要加以控制的物理量。
控制量作为被控制量的控制指令而加给系统的输入星.也称控制输入。
扰动量干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
反馈通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
负反馈反馈信号与输人信号相减,其差为偏差信号。
负反馈控制原理检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
开环控制系统系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。
开环控制又分为无扰动补偿和有扰动补偿两种。
闭环控制系统凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。
自动控制原理课程中所讨论的主要是闭环负反馈控制系统。
复合控制系统复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。
它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。
自动控制系统组成组成一个自动控制系统通常包括以下基本元件1.给定元件给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。
自控原理复习总结自动控制原理自控控制是指在没有人的直接干预下,利用物理装置对生产设备或工艺过程进行合理的控制,使被控制的物理量保持恒定,或者按照一定的规律变化。
反馈的输出量与输入量相减,称为负反馈:反之,则称为正反馈。
自动控制原理系统基本组成示意图□测量元件:测量被控对象的需要控制的物理1=.量,如果这个物理量是非电量,一般需要转化为电量。
□给定元件:给出与期望的被控量相对应的系统输入量。
□比较元件:把测量元件检测的被控量实际值与给定元件给出的输入量进行比较,求出它们之间的偏差。
□放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
□执行元件:直接作用于被控对象,使其被控量发生变化,达到预期的控制目的。
□校正元件:也称补偿元件,它是结构或参数便于调整的元件。
对自动控制系统性能的基本要求:稳定性、快速性、准确性系统的传递函数:线性系统,在零初始条件下,输出信号的拉普拉斯变换与输入信号的拉普拉斯变化之比。
典型环节:比率环节:G(s) = K惯性环节:G(¥积分环节:Ts微分环节:G(s) = Ts一阶微分环节:G(s) = r$ + 1振荡环节:%)=宀—「护2Tn + 2gTs + 1 厂 + + co;延迟环节:G(s)二严数学模型:微分方程、传递函数、结构图、信号 流图、频率特性等结构图的等效变换:(例)无源电气网络的传递函数:P46习题2.7 用梅森公式求系统的闭环传递函数: P38例2.9 第三章: 典型输入信号:%恆儘區叽^_H JR(s)qqqc (s )J+qq^+Hjwqqq'阿J 河问C 冋I H, +Hp H 二--------动态性能指标:1.延迟时间td :响应曲线第一次达到稳态 值的一半所需的时间,叫延迟时间。
2•上升时间tr :响应曲线从稳态值的10% 上升到90%所需的时间。
对于有振荡的系统, 也可定义为响应从零第一次上升到稳态值 所需的时间。
3. 峰值时间tp :响应曲线超过其稳态值达 到第一个峰值所需要的时间。
4. 调节时间ts :指响应到达并保持在稳态 值5%或2%内所需的时间。
5. 超调量:指响应的最大偏离量h(tp)与稳 态值的差与稳态值的比,用百分号来表示, 即;:% h ^-)100%hD6•振荡次数"::是指在调节时间ts 内, h(t)波动的次数。
6 1Q Tm r«cjh(t)sis来、■基稳态性能指标:稳态误差却』JW 幡入騁們下的飜曉讹)=&R ) I+KXX IO Q 住I X Il mfij Ic (t )二 1-e 10.632一阶系统单位阶跃相应曲线二阶系统在不同值得瞬态相应曲线二阶系统阶跃响应的性能指标:「临0「":1欠阻尼T £二100% =e i 100% hL)超调量:%只是的函数, 阻尼比 越小超调量:%越 大T 2T 3T 4T图3-4指数响应曲线t5Tem 7 m wm IHD I in界阻尼;1过阻尼;左图为:阻尼比与超调量c%之间的关系调节时间的计算:t s —O =0.05)t s 二上(…0.02)_叫劳斯判据:系统特征方程式的根全部都再s左半平面的充分必要条件是劳斯表的第一列系数全部为正数。
如果劳斯表第一列出现小于零的数值,系统就不稳定,且第一列各系数符号的改变次数,代表特征方程式的正实部根的数目。
(P66)掌握绘制系统根轨迹的基本法则对于稳定的系统,闭环主导极点越远离虚轴,即闭环主导极点的实部绝对值越大,系统振荡越严重,从而系统超调量增大,振荡次数增多,引起系统的调整时间增加。
常见的开环零极点分布及相应的根轨迹图(P101)作业4-4(P120)答案:Nyquist 图绘制方法:① 写出A ( 3 )和"(3 )的表达式; ② 分别求出3 = 0和3 =+8时的G (j 3 ); ③ 求Nyquist 图与实轴的交点;④ 如果有必要,可求 Nyquist 图与虚轴的交 点,交点可利用 G 3 )的实部Re[G (j 3 )]=0 的关系式求出,也可利用/ Qj 3 )= n • 90° (其中n 为正整数)求出;⑤ 必要时画出Nyquist 图中间几点; ⑥ 勾画出大致曲线。
系统各频段的作用:低频段:系统的稳定性能 中频段:系统的动态性能100 -10 -20 -30(HP)亏)」步折频率'90 1/Ta) (rad/sec) 惯性环节的伯德图高频段:系统的抗干扰能力例题5-4 (P139)例题5-8 (P152)重要串联超前校正和串联滞后校正方法的适用范围和特点:(1)超前校正是利用超前网络的相角超前特性对系统进行校正,而滞后校正则是利用滞后网络的幅值在高频衰减特性。
(2)用频率法进行超前校正,旨在提高开环对数幅频渐进线在截止频率处的斜率(-40dB/dec 提高到-20dB/dec),和相位裕度,并增大系统的频带宽度。
频带的变宽意味着校正后的系统响应变快,调整时间缩短。
(3)对同一系统超前校正系统的频带宽度一般总大于滞后校正系统,因此,如果要求校正后的系统具有宽的频带和良好的瞬态响应,则采用超前校正。
当噪声电平较高时,显然频带越宽的系统抗噪声干扰的能力也越差。
对于这种情况,宜对系统采用滞后校正。
(4)超前校正需要增加一个附加的放大器,以补偿超前校正网络对系统增益的衰减。
(5)滞后校正虽然能改善系统的静态精度,但它促使系统的频带变窄,瞬态响应速度变慢。
如果要求校正后的系统既有快速的瞬态响应,又有高的静态精度,则应米用滞后-超前校正。
工程最佳系统:二阶工程最佳系统、三阶工程最佳系统、四阶工程最阶系统。
采样定理:若已知连续信号弾)的最大角频谱为.^ax,采样周期为T ,则当米样周期满足T-^-时,米样信号e (t)max才能较好地复现连续函数的e(t)形式。
离散系统的数学模型:差分方程、脉冲传递函数(差分方程通过Z变换得到脉冲传递函数) 非线性系统的分析方法:描述函数法、相平面法自动控制系统忽略阻尼转矩和扭转弹性转矩,运动控制系统的简化运动方程式:jd d :eT Ldt = m生产机械的负载转矩特性:恒转矩负载,恒功率 负载,风机、泵类负载直流调速系统的可控直流电源:① 晶闸管整流器-电动机调速系统(V-M 系统);② PWI 变换器-电动机系统。
为了避免或减轻电流脉动的影响,需采用抑制电流脉动的措施,主要有:① 增加整流电路相数,或采用多重化技术;② 设置电感量足够大的平波电抗器。
整流电路形式最丈夫控时间 兀曲血(ms) 平均失控时间 兀(ms) 单相半波20 10 单相桥审(全波)10 5 -+IIT-波6.67 3.33 匸和桥式3 33 1.67V-M 系统机械特性:表鑒晶闸管整流器的失控时间〔户旳HR与V-M 系统相比,直流PWM 速系统在很多方面 有较大的优越性:① 主电路简单,需要的电力电子器件少;② 开关频率高,电流容易连续,谐波少,电动机 损耗及发热都较小;③ 低速性能好,稳速精度高,调速范围宽;④ 若与快速响应的电动机配合,则系统频带宽, 动态响应快,动态抗扰能力强;⑤ 电力电子开关器件工作在开关状态, 导通损耗 小,当开关频率适当时,开关损耗也不大,因而 装置效率较高;⑥ 直流电源采用不控整流时,电网功率因数比相 控整流器高。
转速控制的要求和稳态调速性能指标:1.调速范围:D=n max n minL n N s = n 03.调速范围、静差率和额定速降之间的关系: r^s例题2-2 (重要)2.静差率: D =An N (1 —s)某龙门刨床工作台拖动采用直流电动机,其额定数据如下:60kW 220V, 305A, 1000r/min ,采 用V-M 系统,主电路总电阻 R=0.18 Q,电动机 电动势系数 C e =0.2 V mi n/r 。
如果要求调速范围D=20,静差率s < 5%采用开环调速能否满足? 若要满足这个要求,系统的额定速降△ n N最多能 有多少? 解:当电流连续时,V-M 系统的额定速降为 305 0.18 =275r/m in 0.2开环系统在额定转速时的静差率为如要求D=20,s 兰5%,即要求图2-19 转速负反馈闭环直流调速系统稳态结构框图I dN RC e SN ^^=0^=21.6%十n Ns < 1000汉0.05 -D(1 —s) 一 20 (1 —二 2.63r /图2-22直流电动机动态结构框图的变换图2-23 转速反馈控制直流调速系统的动态结构框图在同样的负载扰动下,开环系统的转速降落叫与闭环系统的转速降落讥的关系是:例题2-3 (重要)在例题2-2中,龙门刨床要求D=20, s w5%已知匕=30,a = 0.015Vmin/r , G=0.2Vmi n/r,采用比例控制闭环调速系统满足上述要求时,比例放大器的放大系数应该有多少?开环系统额定速降为■:nop=275r/min ,闭环系统额定速降须为sn d < 2.63r / min ,由式(2-48 ) 可得275-1 1=103.62.63 代入已知参数,则得:即只要放大器的放大系数等于或大于 46 反馈控制规律:① 比例控制的反馈控制系统是被调量有静差的 控制系统;② 反馈控制系统的作用是:抵抗扰动,服从给 定;反馈控制系统所能抑制的只是被反馈环所包 围的前向通道上的扰动。
③ 系统的精度依赖于给定和反馈检测的精度。
比例控制闭环直流调速系统的动态稳定性其稳 定条件:K FT +T s )+T ;TT sPI 控制优点:PI 控制综合了比例控制和积分控制两种规律 的优点,又克服了各自的缺点。
比例部分能迅速响应控制作用,积分部分则最 终消除K pK Ks : 103.6 30 0.015/0.2 =46稳态偏差。
PI调节器的传递函数:W pi(s)=K p4 由扰动引起的稳态误差取决于误差点与扰动加入点之间的传递函数。
测速方法:M法测速(高速)、T法测速(低速)、M/T 法测速为了解决转速反馈闭环调速系统起动和堵转时电流过大的问题,系统引入电流截止负反馈。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
参数计算:* 叫IIIU i =Ui "i d ! ! !图3-6 双闭环直流调速系统起动过程的转速和电流波形双闭环直流调速系统的起动过程有以下三个特点:八\、•(1)饱和非线性控制;(2)转速超调;(3)准时间最优控制。
转速调节器的作用:(1)转速调节器是调速系统的主导调节器,它使转速n 很快地跟随给定电压U n*变化,稳态时可减小转速误差,如果采用PI 调节器,则可实现无静差。