新课标单元测试卷:高中数学
- 格式:docx
- 大小:14.84 KB
- 文档页数:1
高中教师数学新课程标准考试模拟试卷(一)附答案一、填空题(每小题4分,共40分)1. 数学教育在学校教育中占有特殊的地位,它使学生掌握数学的____________,___________, ______________, 使学生表达清晰、思考有条理,使学生具有_____________,______________________, 使学生会用数学的思考方式__________、____________。
2.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的___________、_____________,提高提出问题、分析和解决问题的能力, 形成___________, 发展_____________________具有基础性的作用。
3. 高中数学课程标准最突出的特点就是体现了_______、________和_________。
4. 高中数学课程应力求通过各种不同形式的__________、____________, 让学生体验数学___________________的历程, 发展他们的____________。
5, 高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。
人们在学习数学和运用数学解决问题时,不断地经历__________、_________、_________、___________、_________、__________、__________、__________、___________、___________等思维过程。
6, 为了适应信息时代发展的需要,高中数学课程应增加______的内容,把最基本的________、________等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服"_________"的倾向。
7, 普高中数学课程的总目标是:___________________________________________________________ ________。
2024年高考新课标一卷数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A = {xx^2-3x + 2 = 0},B={xx > 1},则A∩ B=()A. {1}B. {2}C. {1, 2}D. varnothing2. 复数z=(2i)/(1 - i)(i为虚数单位)的共轭复数¯z为()A. -1 - iB. -1 + iC. 1 - iD. 1 + i3. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x=()A. -2B. 2C. -(1)/(2)D. (1)/(2)4. 在等差数列{a_n}中,a_1=1,公差d = 2,则a_5=()A. 9B. 11C. 13D. 155. 函数y=sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)6. 从5名男生和3名女生中任选3人参加志愿者活动,则所选3人中至少有1名女生的选法有()种。
A. 46B. 56C. 70D. 807. 已知双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1(a>0,b>0)的一条渐近线方程为y=(3)/(4)x,且过点(4,3√(3)),则双曲线的方程为()A. frac{x^2}{16}-frac{y^2}{9}=1B. frac{x^2}{9}-frac{y^2}{16}=1C. frac{x^2}{4}-frac{y^2}{3}=1D. frac{x^2}{3}-frac{y^2}{4}=18. 若f(x)是定义在R上的偶函数,且f(x + 4)=f(x),当x∈[0,2]时,f(x)=x^2-2x,则f(7)=()A. -1B. 0C. 1D. 3二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
2019年高中数学单元测试试题 计数原理专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.(2006年高考重庆理)若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为( )(A )-540 (B )-162 (C )162 (D )5402.(2006年高考浙江理)若多项式=+++++++=+910102910102,)1()1()1(a x a x a x a a x x 则 D(A)9 (B)10 (C )-9 (D )-10【考点分析】本题考查二项式展开式的特殊值法,基础题。
3.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是( B )(A )1800 (B )3600 (C )4320 (D )5040(2006年高考重庆文)4.(2008年高考江西理)(1+3x )6(1+41x )10展开式中的常数项为A .1B .46C .4245D .42465.(2005浙江文)在54(1)(1)x x+-+的展开式中,含3x的项的系数是( )(A)5- (B) 5 (C) -10 (D) 106.现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是A.45 B. 56 C. 5654322⨯⨯⨯⨯⨯D.6543⨯⨯⨯⨯2(2010湖北文数)6.7.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288种(B)264种(C)240种(D)168种(2010天津理数)(10)8.甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150种(B)180种(C)300种(D)345种(2009全国卷Ⅰ文)【解析】本小题考查分类计算原理、分步计数原理、组合等问题,基础题。
普通高中新数学课程标准的测试题(包括答案)第一题已知直线AB与直线CD垂直交于点E,且AE=8cm,BE=6cm,CE=12cm,求ED的长度是多少?答案:根据直角三角形的勾股定理可得,ED的长度为10cm。
第二题已知函数f(x) = 2x^2 + 3x - 5,求f(x)的最小值点的横坐标是多少?答案:首先,可以通过求导数的方法找到f(x)的最小值点。
对f(x)求导得到f'(x) = 4x + 3。
令f'(x) = 0,解得x = -3/4。
所以,f(x)的最小值点的横坐标为-3/4。
第三题已知集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6, 7},求A与B的交集和并集分别是哪些元素?答案:A与B的交集是{3, 4, 5},并集是{1, 2, 3, 4, 5, 6, 7}。
第四题已知三角形ABC的三个内角分别为30°,60°,90°,求三角形ABC的周长。
答案:根据三角形的性质可知,三角形ABC是一个特殊的30°-60°-90°三角形。
设BC = x,则AC = x√3,AB = 2x。
所以,三角形ABC的周长为x + x√3 + 2x = (3 + √3)x。
第五题已知函数f(x) = 3x^2 - 2x + 4,求f(x)的对称轴方程。
答案:对称轴方程可以通过求函数f(x)的一阶导数的零点得到。
对f(x)求导得到f'(x) = 6x - 2。
令f'(x) = 0,解得x = 1/3。
所以,f(x)的对称轴方程为x = 1/3。
第六题已知等差数列的首项是2,公差是5,求该等差数列的前10项之和。
答案:等差数列的前n项和可以通过公式Sn = (n/2)(a + l)得到,其中Sn表示前n项和,a表示首项,l表示末项。
根据已知条件,首项a = 2,公差d = 5,所以末项l = a + (n-1)d = 2 + 9*5 = 47。
高二周末检测题2013/10/25一、选择题1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2 .垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 3.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A .三条交线为异面直线B .三条交线两两平行C .三条交线交于一点D .三条交线两两平行或交于一点4. 在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、 能相交于点P ,那么 ( )A 、点P 必在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面BCD 内 D 、点P 必在平面ABC 外5.若平面α⊥平面β,α∩β=l ,且点P ∈α,P ∉l ,则下列命题中的假命题是( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的直线在α内C .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的平面垂直于β 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1; ②EF ∥AC ; ③EF 与AC 异面; ④EF ∥平面ABCD . 其中一定正确的有( )A .①②B .②③C .②④D .①④8.如图,在△ABC 中,∠BAC =90°,P A ⊥面ABC ,AB =AC ,D 是BC 的中点,则图中直角三角形的个数是( ) A .5 B .8 C .10D .69.如右图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM ( ) A .与AC 、MN 均垂直相交 B .与AC 垂直,与MN 不垂直 C .与MN 垂直,与AC 不垂直 D .与AC 、MN 均不垂直10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A 、2V B 、3V C 、4V D 、5V 11.(2009·海南、宁夏高考)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 二、填空题13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ,平行则四边形ABCD 一定是 .14.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的平面角大小为 .QP C'B'A'CBA15.如下图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________.(2)∠BAC=________.16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形.②四边形BFD′E有可能是正方形.③四边形BFD′E在底面ABCD内的投影一定是正方形.④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)三、解答题17、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.18.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M 为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1. 20.(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.高二周末检测题答案2013/10/25一、选择题 1-5 BDDAB 6-10 DDBAB 11-12 DC 二、填空题13、菱形 14、90° 15、(1)BD ⊥CD (2)60° 16、①③④ 三、解答题17、证明:(1)∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面EFC , 又∵BD ⊂平面BCD , ∴平面EFC ⊥平面BCD .18、[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA , ∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM . ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM . (2)解:由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.19[分析] 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件. [证明] (1)在正三棱柱ABC -A 1B 1C 1中, ∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1. 又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.20.(1)证明:因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 又PQ ⊄平面ACD , 从而PQ ∥平面ACD .(2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB . 因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC ,因此CQ ⊥EB . 故CQ ⊥平面ABE .由(1)有PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形,故DP ∥CQ , 因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55, 因此AD 和平面ABE 所成角的正弦值为55.21[分析] (1)转化为证明GF 平行于平面ABC 内的直线AC ;(2)转化为证明AC 垂直于平面EBC 内的两条相交直线BC 和BE ;(3)几何体ADEBC 是四棱锥C -ABED . [解] (1)证明:连接AE ,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED , ∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB , ∴CA 2+CB 2=AB 2, ∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE . (3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22, ∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.高二周末检测题答案页2013/10/25二、填空题13、14、15、(1);(2)16、三、解答题17、18.班级:姓名;学号;19.20.21、。
《常用逻辑用语》单元测试卷一、单选题1.(2019·山东济宁·高一月考)命题“2,220x x x ∃∈++≤R ”的否定是( )A .2,220x x x ∀∈++>RB .2,220x R x x ∀∈++≤C .2,220x x x ∃∈++>RD .2,220x x x ∃∈++≥R【答案】A【解析】 特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.2.(2020·安徽省六安中学高二期中(文))设p :x<3,q :-1<x<3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】∵:3p x <,:13q x -<<∴q p ⇒,但,∴p 是q 成立的必要不充分条件,故选C. 3.(2020·湖南怀化·高三二模(文))除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B4.(2020·湖南天心·长郡中学高三其他(文))已知命题:p x R ∃∈,2230x x ++<,则命题p 的否定是( )A .x R ∃∈,2230x x ++>B .x R ∀∈,2230x x ++≤C .x R ∀∈,2230x x ++≥D .x R ∀∈,2230x x ++>【答案】C【解析】命题p 为特称命题,其否定为:p x R ⌝∀∈,2230x x ++≥.故选:C.5.(2020·全国高一课时练习)下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题【答案】D【解析】对于A ,改写成“若p ,则q ”的形式应为“若两个角都是直角,则这两个角相等”,则A 错误;对于B ,所给语句是命题,则B 错误;对于C ,边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形,对角线相互垂直,但不是菱形,则C 错误;对于D ,当5a =时,16450∆=-⨯<,方程x 2-4x +a =0无实根,则D 正确;故选:D6.(2020·全国高一课时练习)下列语句:①32>;②作射线AB ;③sin 3012=;④210x -=有一个根是-1;⑤1x <. 其中是命题的是( )A .①②③B .①③④C .③D .②⑤ 【答案】B【解析】解析②是祈使句,故不是命题,⑤无法判断真假,故不是命题.①③④符合命题的定义,故选:B.7.(2020·全国高一课时练习)已知不等式x +3≥0的解集是A ,若a ∈A 是假命题,则a 的取值范围是( ) A .a ≥-3 B .a >-3C .a ≤-3D .a <-3【答案】D【解析】∵x +3≥0,∴A ={x |x ≥3-},又∵a ∈A 是假命题,即a ∉A ,∴a <3-.故选:D 8.(2020·湖南雨花·雅礼中学高三其他(理))设集合{}1,2M =,{}2N a=,则“1a =-”是“N M ⊆”的( )A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件 【答案】A【解析】当1a =-时,{}1N =,满足N M ⊆,故充分性成立; 当N M ⊆时,{}1N =或{}2N =,所以a 不一定满足1a =-,故必要性不成立.故选:A.9.(2019·内蒙古集宁一中高三月考)命题“存在实数x,,使x > 1”的否定是( )A .对任意实数x, 都有x > 1B .不存在实数x ,使x ≤1C .对任意实数x, 都有x ≤1D .存在实数x ,使x ≤1【答案】C【解析】特称命题的否定是全称命题,否定结论的同时需要改变量词.∵命题“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”故选C .10.(2019·浙江湖州·高二期中)已知a R ∈,那么“1a >”是“21a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】当1a >时,21a >成立,取2a =-,此时21a >成立,但是1a >不成立,“1a >”是“21a >”的充分不必要条件,故选:A.二、多选题11.(2020·浙江高一单元测试)下列不等式中可以作为21x <的一个充分不必要条件的有( ) A .1x <B .01x <<C .10x -<<D .11x -<<【答案】BC【解析】解不等式21x <,可得11x -<<, {}11x x -<< {}1x x <,{}11x x -<< {}01x x <<,{}11x x -<< {}10x x -<<,因此,使得21x <的成立一个充分不必要条件的有:01x <<,10x -<<.故选:BC.12.(2020·迁西县第一中学高二期中)下列命题的否定中,是全称命题且是真命题的是( )A .21,04x R x x ∃∈-+<B .所有正方形都是矩形C .2,220x R x x ∃∈++=D .至少有一个实数x ,使310x += 【答案】AC【解析】由题意可知:原命题为特称命题且为假命题. 选项A. 原命题为特称命题,2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以原命题为假命题,所以选项A 满足条件. 选项B. 原命题是全称命题,所以选项B 不满足条件.选项C. 原命题为特称命题,在方程2220x x ++=中4420∆=-⨯<,所以方程无实数根,所以原命题为假命题,所以选项C 满足条件.选项D. 当1x =-时,命题成立. 所以原命题为真命题,所以选项D 不满足条件.故选:AC13.(2020·山东省桓台第一中学高二期中)(多选)对任意实数a ,b ,c ,给出下列命题:①“a b =”是“ac bc =”的充要条件;②“5a +是无理数”是“a 是无理数”的充要条件;③“4a <”是“3a <”的必要条件;④“a b >”是“22a b >”的充分条件.其中真命题是( ).A .①B .②C .③D .④【答案】BC【解析】①由“a b =”可得ac bc =,但当ac bc =时,不能得到a b =,故“a b =”是“ac bc =”的充分不必要条件,故①错误;②因为5是有理数,所以当5a +是无理数时,a 必为无理数,反之也成立,故②正确;③当4a <时,不能推出3a <;当3a <时,有4a <成立,故“4a <”是“3a <”的必要不充分条件,故③正确.④取1a =,2b =-,此时22a b <,故④错误;故答案为:BC14.(2020·全国高一单元测试)下列命题中,是全称量词命题的有( )A .至少有一个x 使2210x x ++=成立B .对任意的x 都有2210x x ++=成立C .对任意的x 都有2210x x ++=不成立D .存在x 使2210x x ++=成立 E.矩形的对角线垂直平分【答案】BCE【解析】A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题;B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题;E 中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.故选:BCE三、填空题15.(2020·全国高一课时练习)把命题“当x =2时,x 2-3x +2=0”改写成“若p ,则q ”的形式:____________________________.【答案】若x =2,则x 2-3x +2=0【解析】命题“当x =2时,x 2-3x +2=0”可以改写成“若x =2,则x 2-3x +2=0”故答案为:若x =2,则x 2-3x +2=016.(2020·安徽金安·六安一中高二期中(文))命题“0,210x x ∃>-≤”的否定是________. 【答案】0,210x x ∀>->【解析】命题为特称命题,则命题的否定为“0x ∀>,210x ”.故答案为:0x ∀>,210x .17.(2020·浙江高一单元测试)已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________ 【答案】21,32⎡⎤-⎢⎥⎣⎦ 【解析】因为p 是q 的充分非必要条件,所以()(),13,-∞-⋃+∞是()(),312,m m -∞+⋃++∞的真子集,故31123m m +≥-⎧⎨+≤⎩解得:2-13m ≤≤,又因为312m m +≤+,所以12m ≤,综上可知21-32m ≤≤,故填21,32⎡⎤-⎢⎥⎣⎦. 四、双空题18.(2020·全国高一课时练习)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p ,则q ”的形式,则p 是____________________,q 是__________________.【答案】一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧【解析】已知中的命题改为“若p ,则q ”的形式为“若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧”,p :一条直线是弦的垂直平分线;q :这条直线经过圆心且平分弦所对的弧.故答案为:一条直线是弦的垂直平分线;这条直线经过圆心且平分弦所对的弧19.(2020·上海)“0x >”的一个充分非必要条件可以为________;一个必要非充分条件可以为________.【答案】2x =(答案不唯一) 1x >-(答案不唯一)【解析】“0x >”的充分非必要条件可以为2x =;一个必要非充分条件可以为1x >-;故答案为:2x =(答案不唯一);1x >-(答案不唯一)20.(2019·宁波中学高二期中)下列语句是命题的有______,其中是假命题的有______.(只填序号) ①等边三角形是等腰三角形吗?②作三角形的一个内角平分线③若x y +为有理数,则x ,y 也都是有理数.④8x >.【答案】③ ③【解析】①②不是陈述句,④不能判断真假,均不符合命题定义,不是命题③是可以判断真假的陈述句,是命题;当x =y =时,x y +为有理数,但,x y 不是有理数 ∴③是假命题本题正确结果:③;③21.(2020·广东中山·高二期末)命题p :0x R ∃∈,200250x x ++=是__________(填“全称命题”或“特称命题”),它是_________命题(填“真”或“假”).【答案】特称命题 假【解析】由题知命题p :0x R ∃∈,200250x x ++=中条件为0x R ∃∈,故命题为特称命题,又因为方程2250x x ++=中2245160∆=-⨯=-<,故方程2250x x ++=没有根,所以命题为假命题.故答案为:特称命题;假.五、解答题22.(2020·全国高一课时练习)将下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当1a >-时,方程2210ax x 有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知,x y 为非零自然数,当2y x -=时,4,2y x ==.【答案】答案见解析.【解析】(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若1a >-,则方程2210ax x 有两个不等实根,因为当0a =时,原方程只有一解,所以原命题是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知,x y 是非零自然数,若2y x -=,则4,2y x ==,是假命题.23.(2020·浙江)判断下列命题的真假.(1)2,560x R x x ∀∈-+=.(2)2,10x x ∃∈+=R .(3)*22,,20a b N a b ∃∈+=.【答案】(1)假命题;(2)假命题;(3)真命题.【解析】(1)假命题,因为只有2x =或3x =时满足2560x x -+=.(2)假命题,因为不存在实数x ,使210x +=成立.(3)真命题,因为存在正整数2和4,使222420+=.24.(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【答案】(1)是全称量词命题;是真命题;(2)是存在量词命题;是假命题;(3)是全称量词命题;是假命题.【解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题.(2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题.(3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题.25.(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直; (2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【答案】(1)真命题;(2)假命题;(3)真命题【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.26.(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2)2,10x x x ∀∈++>R ;(3)平行四边形的对边相等;(4)2,10x x x ∃∈-+=R .【答案】(1)有的人不晨练;(2)2,10x x x ∃∈++≤R ;(3)存在平行四边形,它的对边不相等;(4);2,10x x x ∀∈-+≠R【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“2,10x x x ∀∈++>R ”是全称命题,所以其否定是“2,10x x x ∃∈++≤R ”.(3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题, 所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“2,10x x x ∃∈-+=R ”是特称命题,所以其否定是“2,10x x x ∀∈-+≠R ”.27.(2020·浙江)写出下列命题的否定并判断真假.(1)不论m 取何实数,方程20x x m ++=必有实数根.(2)所有末位数是0或5的整数都能被5整除.(3)某些梯形的对角线互相平分.(4)被8整除的数能被4整除.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【解析】(1)这一命题可以表述为“对所有的实数m ,方程20x x m ++=都有实数根”, 其否定为“存在实数m ,使得20x x m ++=没有实数根”,注意到当140m ∆=-<, 即14m >时,一元二次方程没有实根,因此其否定是真命题; (2)命题的否定是“存在末位数字是0或5的整数不能被5整除”,是假命题; (3)命题的否定是“任何一个梯形的对角线都不互相平分”,是真命题; (4)命題的否定是“存在一个数能被8整除,但不能被4整除”,是假命题.。
高中数学必修一第一章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个2.下列各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( ) A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 8.已知反比例函数y =k x的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝ ⎛⎦⎥⎤0,14 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+a +1x +ax为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5x ≤0,x +50<x ≤1,-2x +8x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分) 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.答案1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k<0,排除C.9.D 解析:根据题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C 解析:由已知得,⎩⎪⎨⎪⎧a >0,12a≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即x 2-a +1x +a -x =-x 2+a +1x +a x,∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1. 16.y =x2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x(答案不唯一)解析:可结合条件来列举,如:y =x2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}. 18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51--5=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x1=(x 2-x 1)+9x 1-x 2x 1x 2=x 2-x 1x 1x 2-9x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c , ∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c ) =2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1.∴a =-1,b =2.∴f (x )=-x 2+2x +8. (2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8) =(x 22-x 21)+2(x 1-x 2) =(x 2-x 1)(x 2+x 1-2). 又由假设知x 2-x 1>0, 而x 2>x 1≥1, ∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数. 22.解:(1)由题意可知f (-x )=-f (x ), ∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax1+x2.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x2.(2)f (x )在(-1,1)上为增函数. 证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 1+x 21>0,1+x 22>0, ∴x 1-x 21-x 1x 21+x 211+x 22<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ), 又f (x )是定义在(-1,1)上的奇函数, ∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x 2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,12.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1x ≥2,-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( ) A .1 B .-1 C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( ) A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________. 15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集. (1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f (x )的值满足f (x )>0(当x ≠0时),对任意实数x ,y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当0<x <1时,f (x )∈(0,1).(1)求f (1)的值,判断f (x )的奇偶性并证明; (2)判断f (x )在(0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.答案1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf x 2fx +3=x ,f (x )=3x c -2x =cx2x +3,得c =-3. 6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a2-a +1)≤f ⎝ ⎛⎭⎪⎫34. 解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1); 令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.16.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1,即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下: 任取x 1,x 2∈3,5]且x 1<x 2. ∵ f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3x 1-x 2x 1+1x 2+1,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴ f (x )在3,5]上为增函数. (2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=32, f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a . ①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2, 即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2, 即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数. (2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2.∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. (3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3, ∴9=f (3)]3,∴f (3)=39, ∵f (a +1)≤39,∴f (a +1)≤f (3), ∵a ≥0,∴a +1≤3,即a ≤2, 综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ). ∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2,由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。
2020年人教版新课标高中数学模块测试卷概 率一、选择题(本大题共12小题,每小题5分,共60分)1.我校有高一学生850人,高二学生900人,高三学生1 200人,学校团委欲用分层抽样的方法抽取30名学生进行问卷调查,则下列判断正确的是( ) A .高一学生被抽到的概率最大 B .高二学生被抽到的概率最大 C .高三学生被抽到的概率最大D .每名学生被抽到的概率相等2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( ) A .正面朝上的概率为0.6 B .正面朝上的频率为0.6 C .正面朝上的频率为6D .正面朝上的概率接近于0.63.事件分为必然事件、随机事件和不可能事件,其中随机事件A 发生的概率的范围是( ) A .()0P A >B .()1P A <C .()01P A <<D .()01P A ≤≤4.同时抛掷两枚大小相同的骰子,用(),x y 表示结果,记A 为所得点数之和为8,则事件A 包含的样本点总数是( ) A .3B .4C .5D .65.袋内装有一个黑球与一个白球(除颜色外其他都相同),从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A .49B .51C .0.49D .0.516.把形状、质量、颜色等完全相同,标号分别为1,2,3,4,5,6的6个小球放入一个不透明的袋子中,从中任意抽取一个小球,记下号码为x ,把第一次抽取的小球放回去之后再从中抽取一个小球,记下号码为y ,设“6xy =”为事件A ,则()=P A ( )A .118B .112C .19D .167.某校高中三个年级人数统计图如图5-5-1所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为( )A .24B .30C .32D .358.假设某运动员每次投篮命中的概率都为40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .720B .14C .15D .3209.关于图5-5-2的说法,错误的一个是( )A .甲的极差是29B .甲的中位数是25C .乙的众数是21D .甲的平均数比乙的大10.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2511.甲、乙两名同学6次考试的成绩统计图如图5-5-3所示,两组数据的平均数分别为x 甲,x 乙,标准差分别为σ甲,σ乙,则( )A .x x 乙甲<,σσ乙甲<B .x x 乙甲<,σσ乙甲>C .x x 乙甲>,σσ乙甲<D .x x 乙甲>,σσ乙甲>12.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B .同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜C .从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D .甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜 二、填空题(本大题共4小题,每小题5分,共20分) 13.对某班一次测验成绩进行统计,如下表所示:则(1)该班成绩在[]80,100内的概率为________; (2)该班成绩在[]60,100内的概率为________.14.若一个三位数的各位数字互不相同,且各位数字之和等于10,则称此三位数为“十全十美三位数”(如235),任取一个“十全十美三位数”,该数为奇数的概率为________.15.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆2216x y +=内的概率为________.16.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a ,{}0,1,2,,9b ∈.若||1a b -≤,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则两人“心有灵犀”的概率为________. 三、解答题(本大题共6小题,共70分)17.(10分)某公司随机收集了该公司所生产的四类产品的售后调查数据,经分类整理得到下表:使用满意率是指一类产品销售中获得用户满意评价的件数与该类产品的件数的比值.(1)从公司收集的这些产品中随机选取1件,求这件产品是获得用户满意评价的丙类产品的概率; (2)假设该公司的甲类产品共销售10 000件,试估计这些销售的甲类产品中,不能获得用户满意评价的件数.18.(12分)为了研究某种理财工具的使用情况,对[]20,70年龄段的人员进行了调查研究,将各年龄段人数分成5组:[)20,30,[)30,40,[)40,50,[)50,60,[]60,70,并整理得到频率分布直方图如图5-5-4: (1)求直方图中a 的值.(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中各抽取多少人?(3)在(2)中抽取的8人中,随机抽取2人,则这2人都来自第三组的概率是多少?19.(12分)已知某种高炮在它的控制区域内击中目标的概率为0.2.(1)假设有5门这种高炮控制某个区域,求目标进入这个区域后未被击中的概率;(2)要使目标一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?(参考值lg20.301≈)20.(12分)某教育集团为办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(最高110分,最低0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低),去年测评的数据如下: 甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106.(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数. (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差. (3)根据以上数据,你认为这两所学校哪所学校人民满意度更高?21.(12分)一只口袋内装有形状、大小、质地等都相同的4个小球,这4个小球上分别标记着数字1,2,3,4.甲、乙、丙三名同学约定: ①每人不放回地随机摸取一个球; ②按照甲、乙、丙的次序依次摸取; ③谁摸取的球的数字最大,谁就获胜.用有序数组(),,a b c 表示这个试验的基本事件,例如:()1,4,3表示在一次试验中,甲摸取的是标记着数字1的小球,乙摸取的是标记着数字4的小球,丙摸取的是标记着数字3的小球. (1)列出基本事件,并指出基本事件的总数; (2)求甲获胜的概率;(3)求出乙获胜的概率,并指出甲、乙、丙三名同学获胜的概率与其摸球的次序是否有关.22.(12分)某种产品的质量按照其质量指标值M 进行等级划分,具体如下表:现从某企业生产的这种产品中随机抽取100件作为样本,对其质量指标值M 进行统计分析,得到如图5-5-5所示的频率分布直方图.(1)记A 表示事件“任取一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10 000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).2020年人教版新课标高中数学模块测试卷概 率·答案一、 1.【答案】D【解析】由抽样的定义知,无论哪种抽样,样本被抽到的概率都相同,故每名学生被抽到的概率相等,故选D 。
新课标高中数学(必修2)单元测试卷目录第一章空间几何体[基础训练A组] (1)第一章空间几何体[综合训练B组] (3)第一章空间几何体[提高训练C组] (5)第二章点、直线、平面之间的位置关系[基础训练A组] ........................................... 错误!未定义书签。
第二章点、直线、平面之间的位置关系[综合训练B组] ........................................... 错误!未定义书签。
第二章点、直线、平面之间的位置关系[提高训练C组] ........................................... 错误!未定义书签。
第三章直线与方程[基础训练A组] .............................................................................. 错误!未定义书签。
第三章直线与方程[综合训练B组] ............................................................................... 错误!未定义书签。
第三章直线与方程[提高训练C组] ............................................................................... 错误!未定义书签。
第四章圆与方程[基础训练A组] .................................................................................. 错误!未定义书签。
第四章圆与方程[综合训练B组] ................................................................................... 错误!未定义书签。
高中数学新课程标准的标准测试题目(附解答)一、选择题1. 已知函数 $f(x) = 2x^2 - 3x + 1$,则 $f(2)$ 的值为多少?- A. $1$- B. $3$- C. $5$- D. $7$解答:将 $x$ 替换为 $2$,得到 $f(2) = 2(2)^2 - 3(2) + 1 = 9$,所以答案是 D. $7$。
2. 若 $a$、$b$、$c$ 是等差数列的前三项,且 $a + c = 12$,则$b$ 的值为多少?- A. $3$- B. $4$- C. $6$- D. $8$解答:由等差数列性质可知,$b = \frac{a + c}{2} = \frac{12}{2} = 6$,所以答案是 C. $6$。
二、填空题1. 已知函数 $f(x) = |2x - 1|$,则 $f(x)$ 的最小值为$\underline{\quad\quad}$。
解答:对于任意实数 $x$,$2x - 1$ 的绝对值最小值为 $0$,所以 $f(x)$ 的最小值为 $0$。
2. 若 $\log_2(x+1) = 3$,则 $x$ 的值为$\underline{\quad\quad}$。
解答:根据对数的定义可得 $2^3 = x + 1$,解方程得 $x = 5$。
三、解答题1. 写出方程 $x^2 + 4x + 4 = 0$ 的解。
解答:将方程变形为 $(x + 2)^2 = 0$,解得 $x = -2$。
所以方程$x^2 + 4x + 4 = 0$ 的解为 $x = -2$。
2. 已知等差数列的前两项之和为 $10$,公差为 $3$,求这个数列的前 $5$ 项。
解答:设等差数列的首项为 $a$,则第二项为 $a + d$,其中$d$ 为公差。
根据已知条件得到方程 $a + a + d = 10$,$d = 3$。
解得 $a = 3$。
所以这个数列的前 $5$ 项依次为 $3, 6, 9, 12, 15$。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1. 设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则//αβ; ②若//αβ,α⊂l ,则//l β;③若α⊂m ,α⊂n ,//m β,//n β,则//αβ;④若l αβ=I ,m βγ=I ,n γα=I ,//l γ,则//m n 。
其中命题正确的是 ▲ .(填序号)2.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π (2011年高考全国卷理科11)3.已知直线a 与平面β,则在平面β内必存在直线与直线a ------------------------------------------------------------------------( )(A)平行 (B)相交 (C)异面 (D)垂直4.空间四边形ABCD 的两条对角线AC 和BD 的长分别为6和4,它们所成的角为60,则这四边形两组对边中点的距离等于----------------------------------------------------------------------( )以上都不5.空间三条直线a b c 、、,若,a b b c ∥∥,则由直线a b c 、、确定的平面个数为----( )(A) 1 (B) 2 (C) 3 (D) 1或 二、填空题6.如图,⊥PA 平面ABCD ,四边形ABCD 是正方形, 2==AD PA ,点E 、F 、G 分别为线段PA 、PD 和CD 的中点.(Ⅰ)求异面直线EG 与BD 所成角的余弦值(Ⅱ)在线段CD 上是否存在一点Q ,使得点A 到平面EFQ 的距离恰为45?若存在,求出线段CQ 的长;若不存在,请说明理由.7.球的表面积与它的内接正方体的表面积之比是_______________8.在棱长为4的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、11D C 上的动点,点G 为正方形11B BCC 的中心. 则空间四边形AEFG 在该正方体各个面上的正投影构成的图形中,面积的最大值为 ▲ . 关键字:投影;正方体;求最值9.已知l ,m ,n 是三条不同的直线,γβα,,是三个不同的平面,下列命题: ①若l ∥m ,n ⊥m ,则n ⊥l ; ②若l ∥m ,m ⊂α,则l ∥α;③若l ⊂α,m ⊂β,α∥β,则l ∥m ; ④若α⊥γ,β⊥γ,α∩β=l ,则l ⊥γ其中真命题是 ▲ .(写出所有真命题的序号)。
高中数学新课程标准的标准测试题目(附解答)一、选择题1. 下列选项中,哪一个不是高中数学新课程标准中所要求的基本技能?A. 熟练掌握各种数学运算B. 能够运用数学知识解决实际问题C. 精通编程语言D. 具备良好的逻辑思维能力{答案:C}2. 在高中数学新课程标准中,哪个领域的内容是最重要的?A. 几何B. 代数C. 概率与统计D. 函数{答案:D}二、填空题3. 高中数学新课程标准中,数学学科的核心素养包括______、______、______和______。
{答案:逻辑推理、数学建模、数据分析、数学运算}4. 在高中数学新课程标准中,______是一个重要的数学概念,它表示两个变量之间的依赖关系。
{答案:函数}三、简答题5. 请简述高中数学新课程标准中的基本理念。
{答案:高中数学新课程标准的基本理念包括:培养学生的数学核心素养,提高学生的数学思维能力;强调数学知识的应用,解决实际问题;注重学生的个性化研究,发挥学生的主动性;强调数学知识的整体性,促进学生的全面发展。
}6. 请解释什么是数学建模。
{答案:数学建模是指利用数学知识和方法对现实世界中的问题进行简化、抽象和描述,建立数学模型,并通过数学模型的求解来分析和解决实际问题的过程。
}四、计算题7. 解方程:2x - 5 = 3{答案:x = 4}8. 计算积分:∫(从0到π) sin(x)d x{答案:-cos(x)|_0^π = 2}五、应用题9. 小明的身高是1.75米,小华的身高是1.60米。
请问小明比小华高多少百分比?{答案:小明比小华高15.38%。
}10. 一家工厂生产的产品,其质量服从正态分布,平均质量为50kg,标准差为5kg。
请问该工厂生产的产品质量在45kg到55kg 之间的概率是多少?{答案:产品质量在45kg到55kg之间的概率为68.27%。
}以上就是高中数学新课程标准的标准测试题目及解答。
希望这份文档能帮助您更好地理解和掌握高中数学新课程标准。
可编辑修改精选全文完整版新课程标准考试数学试题一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。
2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。
3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。
4、高中数学课程应注重提高学生的数学(思维)能力。
5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。
6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。
7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。
8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。
9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。
10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。
二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。
(错,改:高中数学课程每个模块2学分,每个专题1学分。
)2、函数关系和相关关系都是确定性关系。
(错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
)3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。
(对)5、教师应成为学生进行数学探究的领导者。
(错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。
)三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
高中数学新课标检测卷一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 72. 已知集合A = {1, 2, 3},集合B = {2, 4, 6},求A∩B。
A. {1, 3}B. {2}C. {2, 3}D. {1, 2, 3, 4, 6}3. 若等差数列的前三项依次为2, 5, 8,求第10项的值。
A. 19B. 20C. 21D. 224. 已知函数y = 3x - 2,当x = 1时,y的值为多少?A. 1B. 2C. 3D. 45. 函数f(x) = x^3 - 6x^2 + 9x + 1的零点个数是?A. 1B. 2C. 3D. 46. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π7. 已知向量a = (3, -4),向量b = (2, 5),求a·b的值。
A. -23B. -21C. -19D. -178. 已知等比数列的前三项依次为2, 6, 18,求第5项的值。
A. 54B. 56C. 60D. 629. 函数y = x^2 - 4x + 4的顶点坐标为?A. (2, -4)B. (2, 0)C. (-2, 0)D. (-2, -4)10. 已知三角形的两边长分别为3和4,第三边长为整数,求第三边长的可能值。
A. 1, 2, 3, 4B. 1, 2, 3, 4, 5C. 2, 3, 4, 5D. 1, 2, 3, 4, 5, 6二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 2x + 1,求f(-1)的值。
12. 一个等腰三角形的两边长分别为5和8,求第三边长。
13. 已知函数y = 2x + 3,当y = 7时,求x的值。
14. 一个圆的直径为10,求其周长。
15. 已知等差数列的前三项依次为-2, 0, 2,求第10项的值。
三、解答题(每题10分,共50分)16. 已知函数f(x) = x^3 - 3x^2 + 2,求导数f'(x)。
(完整)新课标⼈教A版⾼中数学必修五第⼀章《解三⾓形》单元测试题解三⾓形第Ⅰ卷(选择题共60分)⼀、选择题(共12⼩题,每⼩题5分,只有⼀个选项正确):1.在△ABC 中,若∠A =60°,∠B =45°,BC =23,则AC =( ) A .43 B .22 C .3 D .32.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .⾮钝⾓三⾓形 3.在△ABC 中,已知a =11,b =20,A =130°,则此三⾓形( )A .⽆解B .只有⼀解C .有两解D .解的个数不确定4. 海上有A 、B 两个⼩岛相距10海⾥,从A 岛望C 岛和B 岛成60ο的视⾓,从B 岛望C 岛和A岛成75ο视⾓,则B 、C 两岛的距离是()海⾥A. 65B. 35C. 25D. 5 5.边长为3、7、8的三⾓形中,最⼤⾓与最⼩⾓之和为 ( ) A .90° B .120° C .135° D .150°6.如图,设A ,B 两点在河的两岸,⼀测量者在A 的同侧,在所在的河岸边选定的⼀点C ,测出AC 的距离为502m ,45ACB ∠=?,105CAB ∠=?后,就可以计算出A ,B 两点的距离为 ( )A. 100mB. 3mC. 1002mD. 200mB .2 C. 2 D. 38.如图,四边形ABCD中,B=C=120°,AB=4,BC=CD=2,则该四边形的⾯积等于( )A. 3 B.5 3C.6 3 D.7 39.在△ABC中,A=120°,AB=5,BC=7,则sin Bsin C的值为( )A.85B.58C.53D.3510.某海上缉私⼩分队驾驶缉私艇以40 km/h的速度由A处出发,沿北偏东60°⽅向航⾏,进⾏海⾯巡逻,当⾏驶半⼩时到达B处时,发现北偏西45°⽅向有⼀艘船C,若C船位于A处北偏东30°⽅向上,则缉私艇B与船C的距离是( )A.5(6+2) km B.5(6-2) kmC.10(6+2) km D.10(6-2) km11.△ABC 的周长为20,⾯积为A =60°,则BC 的长等于( ) A .5 B.6 C .7D .812.在ABC △中,⾓A B C 、、所对的边分别为,,a b c ,若120,C c ∠=?=,则() A .a b > B .a b <C .a b =D .a 与b 的⼤⼩关系不能确定第Ⅱ卷(⾮选择题共90分)⼆、填空题(共4⼩题,每⼩题5分):13.三⾓形的两边分别是5和3,它们夹⾓的余弦值是⽅程06752=--x x 的根,则此三⾓形的⾯积是。
2019年高中数学单元测试试题 统计专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.(2013年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602.1 .(2012陕西理)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则 ( )A . x x <甲乙,m 甲>m 乙B .x x <甲乙,m 甲<m 乙7 8 994 4 4673 C .x x >甲乙,m 甲>m 乙 D .x x >甲乙,m 甲<m 乙3.样本(x 1,x 2,x n )的平均数为x,样本(y 1,y 2,,y n )的平均数为()y x y ≠.若样本(x 1,x 2,x n ,y 1,y 2,,y n )的平均数(1)z ax a y =+-,其中0<α<12,则n,m 的大小关系为 ( )A .n<mB .n>mC .n=mD .不能确定(2012江西理)4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( )A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样(2005湖北理) [答案] D[解析] 因为③为系统抽样,所以选项A 不对;因为②为分层抽样,所以选项B 不对;因为④不为系统抽样,所以选项C 不对.故选D.5.(2004湖南文)农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元根据以上数据,2008年该地区农民人均收入介于( )A .4200元~4400元B .4400元~4600元C .4600元~4800元D .4800元~5000元第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题6.右图是七位评委打出的分数的茎叶统计图,去掉一个 最高分和一个最低分后,所剩数据的方差为▲ .7.一个总体中的80个个体编号为0,l ,2,……,79,并依次将其分为8个组,组号为0,1,…,7,要用(错位)系统抽样的方法抽取一个容量为8的样本.即规定先在第0组随机抽取一个号码,记为i ,依次错位地得到后面各组的号码,即第k 组中抽取个位数为i +k (当i +k <10)或i +k -10(当i +k ≥10)的号码.在i =6时,所抽到的8个号码是 .8.某校参加2009年高考的考生数学成绩按“好、中、差”分层的人数比例恰为3:5:2,抽样调查发现此次考试“好、中、差”三层的人平分分别为121、104和78,则该校此次高考数学的人平分应为____________分(精确到0.1),若已知“好成绩”的共有180人,则“差成绩”的考试总分为_______________分.〖解〗103.9,93609.若12320082009,,,,,x x x x x 的方差为3,则12200820093(2),3(2),,3(2),3(2)x x x x ----的方差为 .10.某单位有27名老年人,54名中年人,81名青年人. 为了调查他们的身体情况,用分层抽样的方法从他们中抽取了n 个人进行体检,其中有6名老年人,那么n =_________. 〖解〗3611.一个总体含有300个个体,以简单随机抽样方式从该总体中抽取一个容量为20的样本,则指定的某个个体被抽到的概率为 .〖解〗15112.一次奥运会比赛中,有男运动员560人,女运动员420人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为280的样本进行尿样兴奋剂检查,其中男运动员应抽____ 人. 〖解〗16013.某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( ) A .24 B .18C .16D .12 (2008广东理)14.从2005个编号中抽取20个号码入样,若采用系统抽样的方法,则抽样的间隔为 。