RLC电路谐振特性研究
- 格式:pdf
- 大小:275.61 KB
- 文档页数:11
大学物理实验设计性实验实验报告实验题目:RLC串联电路谐振特性的研究班级:姓名:学号:指导教师:一.目的1.研究LRC 串联电路的幅频特性;2.通过实验认识LRC 串联电路的谐振特性. 二.仪器及用具DH4503RLC 电路实验仪 电阻箱 数字储存示波器 导线三.实验原理LRC 串联电路如图3.12-1所示.若交流电源U S 的电压为U ,角频率为ω,各元件的阻抗分别为则串联电路的总阻抗为串联电路的电流为式中电流有效值为电流与电压间的位相差为它是频率的函数,随频率的变化关系如图3.12-2所示.电路中各元件电压有效值分别为C j Z L j Z R Z C L R ωω1===)112.3()1(--+=C L j R Z ωω)212.3()1(-=-+==••ϕωωj Ie C L j R Z I UU )312.3()1(22--+==C L R U Z U I ωω)412.3(1arctan --=RC L ωωϕ)512.3()1(22--+==CL R R RI U R ωω)612.3()1(22--+==U C L R LLI U Lωωωω)712.3()1(1122--+==U CL R C I CU C ωωωω图3.12-1/π-/π图3.12-2(3.12-5)和(3.12-6),(3.12-7) 式可知,U R ,U L 和U C 随频率变化关系如图3.12-3所示.(3.12-5),(3.12-6)和(3.12-7)式反映元件R 、L 和C 的幅频特性,当时,ϕ=0,即电流与电压同位相,这种情况称为串联谐振,此时的角频率称为谐振角频率,并以ω0表示,则有从图3.12-2和图3.12-3可见,当发生谐振时,U R 和I 有极大值,而U L 和U C 的极大值都不出现在谐振点,它们极大值U LM 和U CM 对应的角频率分别为0(3.1211)C ωω==-式中Q 为谐振回路的品质因数.如果满足21>Q ,可得相应的极大值分别为电流随频率变化的曲线即电流频率响应曲线(如图3.12-5所示)也称谐振曲线.为了分析电路的频率特性.将(3.12-3)式作如下变换)912.3(10-=LCω)1012.3(2111220222--=-=ωωQ C R LC L )1312.3(411142222LM --=-=Q QL Q U Q U )1412.3(4112CM --=Q QUU 22)1()I(CL R Uωωω-+=)812.3(1-=L Cωω(a) 图3.12-3从而得到此式表明,电流比I /I 0由频率比ω/ω0及品质因数Q 决定.谐振时ω/ω0,I /I 0=1,而在失谐时ω/ω0≠1, I /I 0<1.由图3.12-5(b )可见,在L 、C 一定的情况下,R 越小,串联电路的Q 值越大,谐振曲线就越尖锐.Q 值较高时, ω稍偏离ω0.电抗就有很大增加,阻抗也随之很快增加,因而使电流从谐振时的最大值急剧地下降,所以Q 值越高,曲线越尖锐,称电路的选择性越好.为了定量地衡量电路的选择性,通常取曲线上两半功率点(即在210=I I 处)间的频率宽度为“通频带宽度”,简称带宽如图3.12-5所示,用来表明电路的频率选择性的优劣.由(3.12-17)式可知,当210=I I 时,Q 100±=-ωωωω,若令解(3.12-18)和(3.12-19)式,得200002)(CL R U ωωωωωω-+=20022)( ωωωωρ-+=R U2002)(1ωωωω-+=Q R U20020)(1 ωωωω-+=Q I 20020)(Q 11ωωωω-+=I I )1812.3(11001--=-Q ωωωω)1912.3(12002-=-Qωωωω(a) (b )图3.12-5所以带宽为 可见,Q 值越大,带宽∆ω越小,谐振曲线越尖锐,电路的频率选择性就好.四.实验内容与步骤 1.计算电路参数(1)根据自己选定的电感L 值,用(3.12-9)式计算谐振频率f 0=2kHz 时,RLC 串联电路的电容C 的值,然后根据(3.12-12)式计算品质因数Q =2和Q =5时电阻R 的值.2.实验步骤(1)按照实验电路如图3.12-6连接电路,r 为电感线圈的直流电阻,C 为电容箱,R 为电阻箱,U S 为音频信号发生器.(2)Q=5,调节好相应的R , 将数字储存示波器接在电阻R 两端,调节信号发生器的频率,由低逐渐变高(注意要维持信号发生器的输出幅度不变),读出示波器电压值,并记录。
RLC串联电路的谐振特性研究实验报告摘要本研究讨论了RLC串联电路的谐振特性。
串联电路的最大谐振频率和最小谐振频率通过实验测量,通过电路计算来验证。
特性曲线的形状是理论测量的结果一致的,说明实验结果可靠。
结果表明,当阻抗器的电阻值增加时,最大和最小谐振频率比较稳定。
关键词:RLC串联电路;谐振特性;实验测量;计算验证;特性曲线1 引言RLC串联电路是电力系统中常见的高阻抗电源和测量电路,它由电阻R、电感L及电容C三个元件组成,是用于测量谐振特性最常见的电路之一。
由于谐振特性及其相关特性与RLC串联电路的参数密切相关,所以要准确测量谐振特性,就必须对这三个基本元件的各种特性进行准确的测试和验证。
本文将对RLC串联电路的谐振特性进行测量和验证,以分析其特性表现,以作为进一步的基础研究。
2 电路实验RLC串联电路的实验图如图1所示,由电阻R、电感L和电容C三个元件组成。
示波器用来测量RLC串联电路中交流电压的波形变化,正弦波发生器用来产生一定的输出电压,可改变频率来测量最大、最小谐振频率的值,而变阻器用来改变RLC串联电路的电阻R的电阻值,可分析子图形1中电感L、电容C外部给定的谐振频率。
实验采用正弦波发生器输出不同频率信号,对RLC串联电路中U-V示波器测量输出电压波形,当变阻器的电阻值一定时,随着输出电压频率变化而变化。
当输出电压频率与RLC电路谐振频率相符时,其输出电压有更显著的波动,电源从高频到低频,以及由低频到高频,都能够找到一个共振的频率值,这个值分别是最大谐振频率和最小谐振频率。
3 结果分析本次实验结果显示,随着阻抗器电阻值的改变,最大谐振频率和最小谐振频率也有所变化,而在不同的电阻值上,谐振频率的变化幅度都很小。
比较理论计算和实验测量的结果,证明了实验测量的准确性。
可以发现,实验测量和理论计算的特性曲线基本构成一致,并且越靠近频率值越接近,证明了谐振特性的实验测量结果的可靠性。
RLC串联谐振电路是由电感(L)、电阻(R)和电容(C)依次串联组成的电路。
它在特定频率下能够表现出谐振现象,即电路对该频率的信号具有最大的响应。
研究RLC串联谐振电路通常涉及以下几个方面:
谐振频率的计算:研究RLC串联谐振电路的第一步是计算谐振频率,即电路对输入信号具有最大响应的频率。
谐振频率可通过以下公式计算:
ω = 1 / √(LC)
其中,ω为谐振角频率,L为电感值,C为电容值。
响应特性的分析:研究RLC串联谐振电路的响应特性,包括幅频特性和相频特性。
幅频特性是指在不同频率下,电路的幅度响应;相频特性是指在不同频率下,电路输出信号的相位与输入信号的相位之间的关系。
阻尼特性的研究:RLC串联谐振电路的阻尼特性对谐振现象的影响较大。
可以研究电路中的阻尼系数,根据阻尼系数的大小将电路分为三种情况:欠阻尼、临界阻尼和过阻尼。
瞬态响应的分析:研究RLC串联谐振电路的瞬态响应,即在输入信号发生变化时电路的响应过程。
可以通过分析电路的自然响应和强迫响应,了解电路的动态特性。
参数调节和优化:可以通过改变电感、电阻和电容的数值来调节和优化RLC串联谐振电路的性能。
通过合理选择电路元件的数值,可以实现在特定频率下的最大响应、频率选择性和增益控制等特性。
研究RLC串联谐振电路还可以应用于各种工程和科学领域,如通信系统、滤波器设计、无线电频率选择器等。
在具体研究中,可以使用数学建模、电路仿真和实验验证等方法,深入探究电路的行为和性能。
LRC 电路谐振特性的研究一、实验原理1、RLC 串联电路的稳态特性 如下图当 d-二丄时,可知,Z =R * =0, i m =u ,这时的 沪3。
, f= f 0=——C R 0LC2 ■■- LC这个频率称为谐振圆频率。
电感上的电压U L = i m Z L 二独 U ,电容上的电压U C = i m Z C =1U 。
RRco o C此时电路阻抗Z( CD o) = R 为纯电阻。
电压和电流同相,我们将电路此时的工 作状态称为谐振。
由于这种谐振发生在 R 、L 、C 串联电路中,所以又称为串联 谐振。
4=丄就是串联电路发生谐振的条件。
由此式可求得谐振角频率D o女口«C13 ----- =LC谐振频率为电路的总阻抗叭心石,i=UR 2(L「C )2L=arctan ——下:由此可知,串联电路的谐振频率是由电路自身参数 L 、C 决定的.与外部条 件无关,故又称电路的固有频率。
当电源频率一定时,可以调节电路参数L 或C , 使电路固有频率与电源频率一致而发生谐振; 在电路参数一定时,可以改变电源 频率使之与电路固有频率一致而发生谐振。
2.Q 值的计算U C 或U L 与U 的比值称为品质因数 Q 。
U C 或U L 与U 的比值称为品质因数 Q 。
从而得到Q 值两种计算方法 (1) 电压谐振法根据图一所示电路图, 调节信号源的输出电压值保证在各种不同频率时都相等, 然后测量R 两端的交流电压当其最大时说明电路处于谐振状态,用交流毫伏表测量L 和C 两端的U , U电压,则Q_ ------ _ C 可以计算出来。
U U(2) 频带宽度法 据图一所示电路, 按照上述要求测量各种频率时R 两端的电压值,做出U-f 曲线图,找出电压最大时频率f 即谐振频率,再求出U(f )=—尸L 时的频率f , , f 2值根据公式 • f 二f 2 - f ,= “计算Q 值的大小。
Q3、LRC 并联电路如图,根据并联电路的计算,ab 两点间的导纳为:r .L J-2LC j CRZ R j LR j LR2+®L『\'(1 -B 2LC f +(^CRf当C 'R ^ L 2 -0,tan ? =0” =0时,即交流电的角频率满足关系式:co时,并联电路谐振。
RLC串联谐振电路特性研究RLC串联谐振电路是一种电路,由电感(L)、电容(C)和电阻(R)组成。
在谐振频率下,电路中的电感、电容和电阻之间会产生共振,使电压和电流达到最大值。
本文将从谐振频率、幅频特性和相频特性三个方面介绍RLC串联谐振电路的特性。
首先,RLC串联谐振电路的谐振频率可以通过以下公式计算:f=1/(2π√(LC))其中,f为谐振频率,L为电感的感值,C为电容的容值。
根据该公式,可以知道谐振频率与电感和电容的值有关,当电感或电容的值变化时,谐振频率也会相应变化。
而当电感和电容的值确定时,可以通过改变电阻的值来调节谐振频率。
其次,RLC串联谐振电路的幅频特性表明了在不同频率下电路的电压和电流的幅值变化。
在谐振频率下,电压和电流的幅值最大,此时电路具有最大的共振效应。
而在谐振频率上方和下方,幅值逐渐减小。
在谐振频率附近,幅频特性呈现出一个尖峰,该尖峰的带宽与电路的品质因数Q有关。
当电路具有较高的品质因数时,幅频特性的尖峰较窄,电路具有较窄的带宽。
反之,品质因数较低时,幅频特性的尖峰较宽,电路具有较宽的带宽。
最后,RLC串联谐振电路的相频特性表明了在不同频率下电路中电压和电流之间的相位差。
在谐振频率下,电压和电流之间的相位差为零,即二者完全同相。
而在谐振频率附近的上下方,相位差逐渐增大。
在谐振频率下方,电压超前电流;在谐振频率上方,电压滞后电流。
相频特性的斜率越大,相位差的变化越快。
综上所述,RLC串联谐振电路具有很多特性,包括谐振频率、幅频特性和相频特性。
谐振频率取决于电感和电容的数值,可以通过改变电阻值来调节。
幅频特性和相频特性描述了电压和电流在不同频率下的变化情况,以及它们之间的相位差。
这些特性对于理解和分析RLC串联谐振电路的工作原理和性能非常重要。
RLC串联电路的谐振特性研究实验报告.doc 实验目的:1. 了解RLC串联电路的工作原理及其谐振特性;2. 掌握测量RLC串联电路谐振频率和谐振带宽的方法。
实验仪器:1. RLC串联电路实验箱;2. 信号源;3. 示波器。
实验原理:RLC串联电路是由电阻、电感和电容串联形成的电路,它可以产生共振现象。
当其频率为共振频率时,电路中流过电流的大小取决于电路中的电感和电容。
此时,电路呈现出很高的阻抗,电流最大。
谐振频率 f0 由以下公式给出:f0 = 1 / (2π√LC)其中,L 为电路中的电感,C 为电路中的电容。
Z0 = R + j(XL - XC)谐振带宽 BW 的计算公式为:BW = Δf = f2 - f1其中,f1 和 f2 分别为电路总阻抗等于Z0/√2 时的频率。
实验步骤:1. 连接实验电路:将电阻、电感和电容串联起来,组成 RLC 串联电路,并连接信号源和示波器。
2. 设置信号源:将信号源的频率调节旋钮设置到最小值,同时将信号源电压调节旋钮调整到最大值。
3. 测量谐振频率:将示波器调节到 X-Y 模式,然后调节信号源频率调节旋钮,逐渐增大频率,直到示波器屏幕上显示出一个正弦波。
此时,记录下示波器显示的频率值,即为电路的谐振频率 f0。
实验结果:1. 在本次实验中,使用的电阻、电感和电容的值分别为:R = 1kΩ,L = 10mH,C = 0.1μF。
2. 在逐渐增大信号源频率的过程中,当频率达到 2231 Hz 时,电路中开始出现正弦波,此时记录下的频率值即为电路的谐振频率 f0。
3. 继续增大信号源频率,当频率达到 2358 Hz 时,电路总阻抗等于Z0/√2 时,记录下此时信号源频率调节旋钮的读数。
5. 通过计算,得到电路的谐振带宽为 157 Hz。
1. RLC串联电路可以产生共振现象,其频率为谐振频率 f0。
2. 对于给定的 RLC 串联电路,谐振频率 f0 取决于电路中的电感和电容的值。