七年级数学上册第三章整式及其加减3.4整式的加减练习题(新版)北师大版
- 格式:doc
- 大小:50.00 KB
- 文档页数:4
数学北师大版七年级上册整式的加减练习题整式的加减是代数学习的重要基石,对于七年级的学生来说,理解并掌握整式的加减法则是进一步学习更高级数学课程的关键。
下面,我将提供一些由浅入深的练习题,以帮助学生掌握整式的加减法。
一、单项式的加减例1.1: (-2) + (-3) = ?例1.2: (2/3) + (-1/4) = ?例1.3: (-2/3) + (2/3) = ?二、多项式的加减例2.1: (x + y) + (x - y) = ?例2.2: (-2x + 3y) + (3x - 4y) = ?例2.3: (2x - 3y) + (-4x + 5y) = ?三、合并同类项例3.1: (2x + 3y) + (4x + 5y) = ?例3.2: (-2x - 3y) + (4x + 5y) = ?例3.3: (2x - 3y) + (-4x + 5y) = ?四、去括号例4.1: (2x - 3y) - (4x + 5y) = ?例4.2: (-2x - 3y) - (4x + 5y) = ?例4.3: (2x - 3y) - (-4x + 5y) = ?五、整式的加减应用题例5.1:一个长方形的长是6m,宽是4m。
求这个长方形的周长。
例5.2:一个梯形的上底是7m,下底是3m,高是5m。
求这个梯形的面积。
在解答这些练习题时,学生们应先尝试独立完成,然后再对照答案进行自我评估。
这样,他们不仅能加深对整式的加减运算的理解,还能提升解决实际问题的能力。
老师或家长也可以根据这些练习题的解答情况,了解学生对整式加减法的掌握程度,从而调整教学策略或辅导方法。
七年级上册数学整式的加减》测试题七年级上册数学整式的加减测试题一、填空题(每小题3分,共30分)1、已知一杯茶要放25g奶粉,那么10杯茶需要放奶粉________g.2、已知一次劳务费为a元,按每月5%的比例提取,经过n个月后,总共提取________元.3、若n为整数,则用n的代数式表示偶数为________,奇数为________.4、某商店原来平均每天要用去打印纸500张,最近因扩大业务范围,每天需要用去打印纸________张.5、已知x+y=3,xy=2,则x-y=________.6、一个长方形的长为2a+3b,宽为a,则这个长方形的周长为________.7、若代数式3x-4与代数式x+3的和是10,则x的值是________.8、某市出租车收费标准是:起步价为7元,2千米以后每千米为2.6元,则乘坐出租车走x(x为大于起步路程小于9千米的整数)千米的路程时,需要付________元.9、已知单项式2x^{m}y^{n-1}的次数是5,则m、n的值分别为m=,n=.10、在多项式中,每个单项式叫做多项式的________,多项式中各项的________叫做这个多项式的次数.二、选择题(每小题3分,共30分)11、下列各组数中,不是同类项的是()A. -7与-4 BB.与-2C.与D. -1与−1∣111、下列各式的值等于5的是()A. B. C. D.1111、下列各式的计算中,正确的是()A. B. C. D.下列各式的化简结果为不同的是()A.与B.与C.与D.与下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D下列各式的计算中,正确的是()A B C D下列各式的化简结果为不同的是()A B C D19下列各式的计算中,正确的是()A B C D 20下列各式的化简结果为不同的是()A B C D三、化简下列各式(每小题5分,共30分) 21 (6a+5b)+(4a-3b) 22 -(2x+3y)+(4x-5y) 23 3(2a-b)-2(a+3b) 24x-[4x-(3x-7)]+[2x-(x+5)] 25 3(-ab+2a)-(3a-b) 26 (6a-7b)-(4a+b) 27 2x-[5x-(3x-1)]+[4x-(x+5)] 28 x+(3x+6)-(4x+2)四、解方程(每小题5分,共10分) 29 x+2=5 30 x-4=6五、应用题(每小题10分,共20分) 31在一块长为40m、宽为22m的矩形地面上要建造一个长为18m、宽为10m的长方形花坛,请你求出这快地面上还剩下的空地面积。
课时练3.4整式的加减一、单选题1.下列各组中的两个单项式,属于同类项的是()A.a2与a B.a2b与ab2C.−0.5ab与13ab D.a与b2.下列计算正确的是( )A.6b−5b=1B.2m+3m2=5m2C.−2(c−d)=−2c+2d D.–(a−b)=−a−b3.下列各式计算正确的是()A.a2+a2=2a4B.5m2﹣3m2=2C.﹣x2y+yx2=0D.4m2n﹣m2n=2mn4.多项式8x2-3x+5与多项式3x3+2mx2-5x+7相加后,不含二次项,则常数m的值是()A.2B.-4C.-2D.-8二、填空题5.若单项式xy m与2x n﹣1y3是同类项,则m+n=.6.若单项式3x m y的与−2x6y是同类项,则m=.7.若16x2y4和x m y n+3是同类项,那么n﹣m2的值是.8.a、b、c在数轴上的位置如图所示:试化简|a−b|−2c−|c+b|+|3b|=.三、计算题9.先化简再求值:2m-2(m2+m-1),其中m=-2.10.先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.四、解答题11.有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=12,y=−1”.甲同学把“ x=12”错抄成“ x=−12”,但他计算的结果也是正确的,试说明理由,并求出这个结果.12.化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣12.13.如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.参考答案1.C2.C3.C4.B5.56.67.﹣38.a−3b−c9.解:原式=2m-2m2-2m+2=-2m2+2,当m=-2时,原式=-2×(-2)2+2=-2×4+2=-8+2=-6.10.解:原式= x2−5x2+4y+3x2−3y=x2−5x2+3x2+4y−3y=(1−5+3)x2+(4−3)y=−x2+y当x=−1,y=2时,原式=−(−1)2+2=−1+2=111.解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关12.解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y= −12时,原式=﹣42+4× (−12)2﹣6=﹣2113.解:设A正方形边长为a,E正方形边长为x ,则正方形F的边长为a+x,正方形B的边长为a+x+a=2a+x, 于是大长方形的长为B、F的边长之和,为2a+x+a+x=3a+2x;大长方形的宽为E和F的正方形边长之和,为x+a+x=2x+a, 则大长方形周长为2×(3a+2x+2x+a)=8x+8a;∵a+x=6,所以8x+8a=8(a+x)=48.。
3.1 字母表示数 1.填空:(1)小明比小红大3岁,当小红m 岁时,小明________岁. 2)三角形的底边是a ,对应该边上的高是h ,则该三角形的面积是_____ . (3)拿100元钱去买钢笔和笔记本,买了单价为2元的钢笔n 支,买了单价为3元的笔记本m 个,则一共花钱_________ 元.2.把长和宽分别是a 、b 的长方形纸片的四个角都剪去一个边长为x 的正方形.则纸片剩余部分的面积为________. 1.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示(). A.(x+y) B.(x -y) C.3(x -y) D.3(x+y)公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.3.2 代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中不含有“=、>、<、≥、≤、≠”等符号。
②代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数,如a ⨯312应写作a 37;④在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑤在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米。
1.下列代数式中,符合代数式书写要求的有().(1)2113x y ;(2)3ab c ÷;(3)2m n ;(4)225a b -;(5)()2m n ⨯+;(6)4mb ⋅A.1个B.2个C.3个D.4个2.下列各式中哪些是代数式?哪些不是代数式? (1)12-x (2)1=a (3)2R s =(4)27(5)21>31 3.一个分数,分子是x ,分母比分子的5倍小3,则这个数是(). A .53x x - B .53x x + C .5(3)x x - D .53xx - 5.a b 、和的2倍乘以x 与y 的2倍的和的积,用代数式可表示为_______.1.小宁买了20个练习本,店主给他打八折(即标价的80%)优惠,结果便宜1.60元,则每个练习本的标价是()元.A.0.20元B.0.40元C.0.60元D.0.80元2.当4,8==b a 时,代数式ab ab 22-的值是().A.63B.62C.1022D.1263.如果012=-+x x ,那么代数式7223-+x x 的值为(). A.6 B.8 C.-6 D.-84.按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为.5.现规定一种运算*a b ab a b =+-,其中a ,b 为有理数,则3*5的值为.☆能力提升11.代数式a 2+b 2的意义是().A.a 与b 的和的平方B.a+b 的平方C.a 与b 的平方和D.以上都不对 12.一个两位数,个位是a ,十位比个位大1,这个两位数是(). A.a(a+1) B.(a+1)a C.10(a+1)a D.10(a+1)+a 14.下列说法中错误的是( ).A.x 与y 平方的差是x 2-y 2B.x 加上y 除以x 的商是xyx +C.x 减去y 的2倍所得的差是x-2yD.x 与y 和的平方的2倍是2(x+y)2 15.若23(2)0m n -++=,则2m n +的值为(). A .4- B .1- C .0D .419.下面选项中符合代数式书写要求的是 ( ).A.123cb 2a B.ay ·3 C.24ab D .a ×b+c22.已知3a b ==-,x 、y 互为倒数,则()132a b xy +-的值是().A .12B .0C .-6D .-9 3.3 整式:单项式和多项式统称为整式。
第三章整式及其加减3.1 字母表示数1 已知a≠0,S1=2a,S2=2S1,S3=2S2,…,S2 013=2S2 012,则S2 013=__________.(用含a的式子表示)2 将一些小圆点按如图所示的规律摆放,第1个图形中有6个小圆点,第2个图形中有10个小圆点,第3个图形中有16个小圆点,第4个图形中有24个小圆点,……,依此规律,第6个图形中有__________个小圆点,第n个图形中有__________个小圆点.3(1)某种糖每千克10元,小红妈妈买了3千克,共花了多少元?(2)某种糖每千克a元,小红妈妈买了b千克,共花了多少元?3.2 代数式 第1课时 代数式一、填空题1.小丁期中考试考了a 分,之后他继续努力,期末考试比期中考试提高了b %,小丁期末考试考了_______分.2.人的头发平均每月可长1厘米,如果小红现在的头发长a 厘米,两个月不理发,她的头发长为_______厘米.3.妈妈买了一箱饮料共a 瓶,小丁每天喝1瓶,_______天后喝完.4.代数式(x +y )(x -y )的意义是___________.5.小明有m 张邮票,小亮有n 张邮票,小亮过生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有_______张邮票.二、判断题1.3x +4-5是代数式. ( )2.1+2-3+4是代数式. ( )3.m 是代数式,999不是代数式. ( )4.x >y 是代数式.( ) 5.1+1=2不是代数式.( )三、选择题1.下列不是代数式的是( ) A.(x +y )(x -y )B.c =0C.m +nD.999n +99m2.代数式a 2+b 2的意义是( ) A.a 与b 的和的平方B.a +b 的平方C.a 与b 的平方和D.以上都不对3.如果a 是整数,则下面永远有意义的是( )A.a 1B.221a C.21aD.11 a4.一个两位数,个位是a ,十位比个位大1,这个两位数是( ) A.a (a +1)B.(a +1)aC.10(a +1)aD.10(a +1)+a四、解答题1.小明今年x 岁,爸爸y 岁,3年后小明和爸爸的年龄之和是多少?2.小丁和小亮一起去吃冰糕,小丁花了m 元,小亮花了n 元,已知每个冰糕0.5元,小丁和小亮各吃了几个?三、能力提升:[例1]一种树苗的高度与生长年数之间的关系如下表所示:(树苗原高是100 cm)(1)填出第4年树苗可能达到的高度.(2)请用含a的代数式表示高度h.(3)用你得到的代数式求生长了10年后的树苗可能达到的高度.[例2]某电影院有20排座位,已知第一排有18个座位,后面一排比前一排多2个座位,请写出计算第n排的座位数,并求出第19排的座位数.1.用代数式表示.(1)“x的5倍与y的和的一半”可以表示为_____.(2)南平乡有水稻田m亩,计划每亩施肥a千克;有玉米田n亩,计划每亩施肥b千克,共施肥_____千克.(3)有三个连续的整数,最小数是m,则其他两个数分别是_____和_____.(4)全班总人数为y,其中男生占56%,那么女生人数是_____.2.用语言描述下列代数式的意义.(1)(a+b)2可以解释为_____.(2)3x+3可以解释为_____.3.2 代数式第2课时代数式的求值1. 一个正方体边长为a,则它的表面积是_______.2. 鸡,兔同笼,有鸡a只,兔b只,则共有头_______个,脚_______只.3. 当a=2,b=1,c=-3时,代数式2c ba c-+的值为___________4. 代数式21aa+有意义,则a应取的值是_______.5. 代数式2x2+3x+7的值为12,则代数式4x2+6x-10=___________.6. 已知1x+1y=3,则33x xy yx xy y++-+的值等于________.7.按这种方式排下去,(1)第5、6排各有多少个座位?(2)第n排有多少个座位?请说出你的理由.8. (本题8分)某地区夏季高山上的温度从山脚处开始每升高100米降低0.7℃,如果山脚温度是28℃,那么山上500米处的温度为多少?想一想,山上x米处的温度呢?9. (本题8分)当a=5,b=-2时,求下列代数式的值:(1)(a+2b)(a-2b)(2)1a+1b;(3)a2-2b2(4)a2+2ab+b2.10. (本题12分)20-(x+y)2是有最大值,还是有最小值?这个值是多少?这时x与y 的关系如何?3.3 整式一、选择题(每小题4分,共12分)1.下列说法正确的是( )A.2a不是单项式B.是单项式C.的一次项系数是1D.1是单项式2.单项式-的系数与次数分别是( )A.-3,3B.-,3C.-,4D.-,33.多项式(a-1)x3+(b-1)x是关于x的一次式,则a,b的值可以为( )A.0,3B.0,1C.1,2D.1,1二、填空题(每小题4分,共12分)4.单项式32013xy2的次数是.5.如果mx n y是关于x,y的一个单项式,且系数是9,次数是4,则m= ,n= .6.(2012·沈阳中考)有一组多项式:a+b2,a2-b4,a3+b6,a4-b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.三、解答题(共26分)7.(8分)把下列代数式按单项式、多项式、整式进行分类.x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1,.8.(8分)关于x,y的多项式(3a+2)x2+(9a+10b)xy-x+2y+7不含二次项,求3a-5b.【拓展延伸】9.(10分)已知多项式a4+(m+2)a n b-ab+3.(1)当m,n满足什么条件时,它是五次四项式?(2)当m,n满足什么条件时,它是四次三项式?答案解析1.【解析】选D.A、2a是单项式,B 、=+是多项式,C 、=-,故一次项系数是.2.【解析】选D.因为-的系数为-,次数为1+2=3,所以选D.3.【解析】选C.因为是关于x的一次式,所以不含有x的3次项,即a-1=0,所以a=1,是关于x的一次式,故b-1≠0.综上满足条件的只有C.4.【解析】因为单项式中的字母指数分别是1,2,故32013xy2是3次单项式.答案:35.【解析】因为mx n y是关于x,y的一个单项式,且系数是9,次数是4,所以m=9,n+1=4,则n=3.答案:9 36.【解析】观察第1个多项式为:a1+b2×1,第2个多项式为:a2-b2×2,第3个多项式为:a3+b2×3,第4个多项式为:a4-b2×4,…所以第n个多项式为:a n+(-1)n+1b2n,所以第10个多项式为:a10-b20.答案:a10-b207.【解析】本题的实质就是识别单项式、多项式与整式.单项式中数和字母、字母和字母之间必须是相乘的关系,多项式必须是几个单项式的和的形式.单项式有x2y,-,-29,600xz,axy.多项式有a-b,x+y2-5,2ax+9b-5,xyz-1.整式有x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1.8.【解析】由题意,知(3a+2)x2,(9a+10b)xy这两项是二次项,由于不含有二次项,所以3a+2=0,9a+10b=0,所以a=-,b=,所以3a-5b=3×(-)-5×=-2-3=-5.9.【解析】(1)当a4+(m+2)a n b-ab+3是五次四项式时,m+2≠0,n+1=5,所以当m≠-2,n=4时,多项式是五次四项式.(2)当a4+(m+2)a n b-ab+3是四次三项式时,①m+2=0,m=-2.与n 的值无关,即m=-2,n 为任意数时,它是四次三项式. ②m+2-1≠0,且n=1,即m ≠-1,n=1时它是四次三项式.【归纳整合】有关多项式的次数和项数的问题,应注意多项式的次数是指多项式中次数最高项的次数,而不是各项次数的和,多项式中的项是指多项式中的每一个单项式,这里的“项”应包括其前面的符号.3.4 整式的加减 第1课时 合并同类项在线检测1.将如图两个框中的同类项用线段连起来: 2.当m=________时,-x 3b 2m 与14x 3b 是同类项. 3.如果5a k b 与-4a 2b 是同类项, 那么5a k b +(-4a 2b )=_______. 4.直接写出下列各式的结果: (1)-12xy+12xy=_______; (2)7a 2b+2a 2b =________; (3)-x-3x+2x=_______; (4)x 2y-12x 2y -13x 2y=_______;(5)3xy 2-7x y 2=________.5.选择题:(1)下列各组中两数相互为同类项的是( ) A .23x 2y 与-x y 2; B .0.5a 2b 与0.5a 2c; C .3b 与3abc; D .-0.1m 2n 与12m n 2 (2)下列说法正确的是( )A .字母相同的项是同类项B .只有系数不同的项,才是同类项C .-1与0.1是同类项D .-x 2y 与x y 2是同类项 6.合并下列各式中的同类项:(1)-4x 2y-8xy 2+2x 2y-3xy 2; (2)3x 2-1-2x-5+3x-x 2;(3)-0.8a2b-6ab-1.2a2b+5ab+a2b;(4)5yx-3x2y-7x y2+6xy-12xy+7x y2+8x2y.7.求下列多项式的值:(1)23a2-8a-12+6a-23a2+14,其中a=12;(2)3x2y2+2xy-7x2y2-32xy+2+4x2y2,其中x=2,y=14.3.4 合并同类项(答案)1.略 2.略 3.ab4.(1)0 (2)9a2b(3)-2x (4)16x2y (5)-4x y25.(1)D (2)C6.(1)-2x2y-11xy2(2)2x2+x-6 (3)-a2b-ab (4)-xy+5x2y7.(1)-54(2)943.4 整式的加减第2课时去括号考点浏览☆考点整式运算中的去括号与添括号.例1去括号.(1)x2+(-3x-2y+1);(2)x-(x2-x3+1).【解析】第(1)题括号前是“+”,去括号后-3x,-2y和+1都不变号;第(2)•题括号前是“-”,去括号后x2,-x3和+1都要变号.答案是:(1)x2-3x-2y+1 (2)•x-x2+x3-1.例2先去括号,再合并同类项.(1)(2m-3)+m-(3m-2);(2)3(4x-2y)-3(-y+8x).【解析】去括号时,括号前面如果有数字,要根据乘法分配律用它与括号内各项相乘,再把所得的积相加.答案是:(1)原式=2m-3+m-3m+2=(2+1-3)m+(-3+2)=-1;(2)原式=12x-6y+3y-24x=(12-24)x+(-6+3)y=-12x-3y.在线检测1.去掉下列各式中的括号.(1)(a+b)-(c+d)=________;(2)(a-b)-(c-d)=________;(3)(a+b)-(-c+d)=_______;(4)-[a-(b-c)]=________.2.下列去括号过程是否正确?若不正确,请改正.(1)a-(-b+c-d)=a+b+c-d.()______________(2)a+(b-c-d)=a+b+c+d.()______________(3)-(a-b)+(c-d)=-a-b+c-d.()______________3.在下列各式的括号内填上适当的项.(1)x-y-z=x+()=x-();(2)1-x2+2xy-y2=1-();(3)x2-y2-x+y=x2-y2-()=(x2-x)-().4.下列去括号中,正确的是()A.a2-(2a-1)=a2-2a-1 B.a2+(-2a-3)=a2-2a+3C.3a-[5b-(2c-1)]=3a-5b+2c-1 D.-(a+b)+(c-d)=-a-b-c+d5.下列去括号中,错误的是()A.a2-(3a-2b+4c)=a2-3a+2b-4c; B.4a2+(-3a+2b)=4a2+3a-2bC.2x2-3(x-1)=2x2-3x+3; D.-(2x-y)-(-x2+y2)=-2x+y+x2-y2 6.不改变代数式a-(b-3c)的值,把代数式括号前的“-”号变成“+”号,•结果应是()A.a+(b-3c) B.a+(-b-3c) C.a+(b+3c) D.a+(-b+3c)7.化简下列各式并求值:(1)x-(3x-2)+(2x-3);(2)(3a2+a-5)-(4-a+7a2);(3)3a2-2(2a2+a)+2(a2-3a),其中a=-2;(4)(9a2-12ab+5b2)-(7a2+12ab+7b2),其中a=12,b=-12.8.把多项式x5-3x3y2-3y2+3x2-y5写成两个整式的和,使其中一个只含5次项.9.把多项式3x2-2xy-y2-x+3y-5分成两组,两个括号间用“-”号连接,并且使第一个括号内含x项.去括号(答案)1.略 2.(1)× a+b-c+d (2)× a+b-c-d (3)× -a+b+c-d3.略 4.C •5.B 6.D7.(1)-1 (2)-4a2+2a-9 (3)20 (4)68.(x5-3x3y2-y5)+(3x2-3y2)9.(3x2-2xy-x)-(y2-3y+5)3.4 整式的加减 第3课时 整式的加减1、把下式化简求值,得( )(a 3—3a 2+5b)+(5a 2—6ab)—(a 3—5ab+7b),其中a=—1,b=—2 A 、4 B 、48 C 、0 D 、202、一个多项式A 与多项式B =2x 2-3xy -y 2的差是多项式C =x 2+xy +y 2,则A 等于( ) A 、x 2-4xy -2y2B 、-x 2+4xy +2y 2C 、3x 2-2xy -2y2D 、3x 2-2xy3、若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( ) A 、三次多项式 B 、四次多项式 C 、七次多项式 D 、四次七项式4、多项式3a n +3-9a n +2+5a n +1-2a n 与-a n +10a n +3-5a n +1-7a n +2的差是 。
七年级数学上册第三章《整式及其加减》试题姓名:学号:分数:一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知:化简后只有一项,则的值为()A. B. C. D.2. 已知,则的值为( )A. B. C. D.不能确定3. 若与相加后,结果仍是个单项式,则相加后的结果为( )A. B. C. D.4. 如果与是同类项,则的值为()A. B. C. D.5. 下列运算正确的是()A. B.C. D.6. 若,则的值为()A. B. C. D.7. “减去的倒数的差”可以用代数式表示为( )A. B. C. D.8. 多项式的次数及最高次项的系数分别是A.,B.,C.,D.,9. 下列说法,哪个是正确的( )A.两个含相同字母的单项式一定是同类项B.单独的一个数或一个字母一定是单项式C.单项式中次数最高的那个字母的次数就是该单项式的次数D.多项式的次数就是它包含的各单项式的次数之和10. 想象有一条很长的绳子可以绕地球赤道一圈,且绳子与地球之间的间隙是厘米,设地球半径为千米,则绳子的长度比地球赤道的长度长A.厘米B.厘米C.厘米D.厘米二、填空题(本题共计6 小题,每题3 分,共计18分,)11. 设某数为,则某数的一半减去某数的平方的差可以表示为________.12. 已知,则________.13. 已知一组按规律排列的式子:,,,,…,则第(为正整数)个式子是________.14. 从运算来讲,核心思想是化归,多项式(单项式)乘多项式,归结为项与项相乘,即________乘________,单项式乘单项式归结为系数相乘和________的乘法.幂的运算是整式运算的基础.15. 如图,由等圆组成的一组图中,第个图由个圆组成,第个图由个圆组成,第个图由个圆组成,…,按照这样的规律排列下去,则第个图形由________个圆组成,16. 如图是一组有规律排列的图案,它们是由边长为的正方形组成,第个图案有边长为的小正方形个,第个图案有边长为的小正方形个,第个图案有边长为的小正方形个,依此规律,则第个图案中,边长为的小正方形有________个.三、解答题(本题共计4 小题,共计50分,)17. 化简(1)(2)18.分解因式:;计算:.19 已知,如图,某长方形广场的四角都有一块边长为米的正方形草地,若长方形的长为米,宽为米.请用代数式表示阴影部分的面积;若长方形广场的长为米,宽为米,正方形的边长为米,求阴影部分的面积.20 小王家买了一套新房,其结构如图所示(单位:).他打算将卧室铺上木地板,其余部分铺上地砖.木地板和地砖分别需要多少平方米?如果地砖的价格为每平方米元,木地板的价格为每平方米元,那么小王一共需要花多少钱?21. 某同学进行整式的加减,在计算某整式减去时,因为粗心,把减去误作加上,得结果.试求:(1)原整式是怎样的一个整式;(2)正确结果是什么.22. 先观察下列算式,再解答问题.,,.按上述规律填空:________________,________________;计算:….23. 如图所示,将一个边长为的正方形纸片分割成个部分,部分①是边长为的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依次类推.根据图形填写下表:①②③面积阴影部分的面积是多少?计算:……(用两种方法计算).猜想:.。
3.4整式的加减【素养基础达标】2023-2024学年北师大版数学七年级上册二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.注意:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.(1)合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.(2)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.整式的加减实质上就是合并同类项.一.选择题(共10小题)1.下列各式中,能与合并同类项的是 A.B.C.D.2.下列各算式中,从左到右变形正确的是 A.B.C.D.3.若与是同类项,则的值为 A.1B.5C.6D.4.下列运算正确的是 A.B.C.D.5.下列各项中,去括号正确的是 A.B.C.D.6.多项式的值与字母的取值无关,则的值是 A.B.C.D.77.如果多项式中不含项,则的值为 A.2或B.C.0D.28.已知,,则下列说法正确的是 A.B.C.、可能相等D.、大小不能确定9.已知,对多项式任意添加绝对值(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含加减法运算,称这种操作为“添绝对值操作”,例如:,等,下列结论正确的个数是 ①至少存在一种“添绝对值操作”,使化简其结果与原多项式相等;②存在某种“添绝对值操作”,使其结果与原多项式之和为0;③若只添加一个绝对值,则所有可能的化简结果共有8种.A.0B.1C.2D.310.下列计算,结果正确的是 A.B.C.D.二.填空题(共8小题)11.下列计算正确的是: .①;②;③;④.12.已知:,,若的值与的取值无关,则的值为 .13.若关于,的多项式与的差的值与字母的取值无关,则 .14.有三堆棋子,数目相等,每堆至少有5枚,从左堆中取出4枚放入中堆,从右堆中取出5枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是 .15.某居民生活用水收费标准:每月用水量不超过20立方米,每立方米元;超过部分每立方米元.该区某家庭上月用水量为25立方米,则应缴水费 元.16.若与是同类项,则 , .17.已知,为两个整式,其中,,且的结果中不含项,则的值为 .18.已知,,,则代数式的值为 .三.解答题(共8小题)19.材料一:若一个四位数的各个数位数字之和为16,并且千位数字与十位数字之差的绝对值等于2,百位数字与个位数字之差的绝对值等于2,则这个四位数为“差2数”.例如:,,且,是“差2数”.又如:,,不是“差2数”.材料二:若一个四位数的各个数位数字成比例,则这个四位数为“成比例数”.例如:,各个数位数字由小到大排列后为1,2,3,6,满足,为“成比例数”.又如:,各个数位数字由小到大排列后为1,2,3,4,,不是“成比例数”.(1)1735是“差2数”吗?是“成比例数”吗?请说明理由;(2)若一个四位数既是“差2数”,又是“成比例数”,请求出所有满足条件的.20.“计算的值,其中,”.甲同学把“”错抄成“”,但他计算的最后结果,与其他同学的正确结果都一样.试说明理由,并求出这个结果21.小琦同学在自习课准备完成以下题目时:化简□发现系数“□”印刷不清楚.(1)他把“□”猜成2,请你化简;(2)老师见到说:“你猜错了,我看到该题标准答案的结果是常数”,请你通过计算说明原题中“□”是几.22.先化简,再求值:.其中,,.23.在整式的加减练习课中,已知,嘉淇错将“”看成“”,得到的结果是.请你解决下列问题.(1)求整式;(2)若为最大的负整数,为的倒数,求该题的正确值.24.化简:(1);(2).25.【阅读理解】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,解决问题的策略一般都是进行一定的转化,其中“作差法”就是常用的方法之一.作差法:就是通过作差、变形,利用差的符号确定它们的大小.即要比较代数式、的大小,只要算的值,若,则;若,则;若,则.【知识运用】(1)请用上述方法比较下列代数式的大小(直接在空格中填写答案)①当时, ;②若,则 ;(2)试比较与的大小,并说明理由;【拓展运用】(3)甲、乙两班同学同时从学校沿同一路线到离学校的研学基地参加研学甲班有一半路程以的速度行进,另一半路程以的速度行进:乙班有一半叶间以的速度行进,另一半时间以的速度行进.设甲、乙两班同学从学校到研学基地所用的时间分别为,.①试用含,,的代数式分别表示和,则 , .②请你判断甲、乙两班中哪一个班的同学先到达研学基地,并说明理由.26.先化简,再求值:,其中,.3.4整式的加减【素养基础达标】2023-2024学年北师大版数学七年级上册二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.注意:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.(1)合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.(2)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.整式的加减实质上就是合并同类项.一.选择题(共10小题)1.下列各式中,能与合并同类项的是 A.B.C.D.【答案】【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,判断即可.【解答】解:、与不是同类项,不能合并,故不符合题意;、与不是同类项,不能合并,故不符合题意;、与是同类项,能合并,故符合题意;、与不是同类项,不能合并,故不符合题意;故选:.2.下列各算式中,从左到右变形正确的是 A.B.C.D.【答案】【分析】依据添括号法则进行解答即可.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【解答】解:.,原计算错误,故此选项不符合题意;.,原计算错误,故此选项不符合题意;.,原计算错误,故此选项不符合题意;.,原计算正确,故此选项符合题意.故选:.3.若与是同类项,则的值为 A.1B.5C.6D.【答案】【分析】根据同类项的定义,得到关于、的等式,然后求出、的值并计算即可得到答案.【解答】解:由同类项的概念可知:,,解得:,,,故选:.4.下列运算正确的是 A.B.C.D.【答案】【分析】分别运用积的乘方、合并同类项、同底数幂相乘和同底数幂除法进行逐一计算、辨别.【解答】解:,选项符合题意;,选项不符合题意;,选项不符合题意;,选项不符合题意;故选:.5.下列各项中,去括号正确的是 A.B.C.D.【答案】【分析】根据去括号法则,逐一进行判断即可.【解答】解:、,选项错误,不符合题意;、,选项错误,不符合题意;、,选项错误,不符合题意;、,选项正确,符合题意.故选:.6.多项式的值与字母的取值无关,则的值是 A.B.C.D.7【答案】【分析】去括号、合并同类项,令含的项的系数为0,即可解出、的值,再代入所求式子运算即可.【解答】解:,多项式的值与字母的取值无关,,,解得:,,.故选:.7.如果多项式中不含项,则的值为 A.2或B.C.0D.2【答案】【分析】根据合并同类项法则将原式化为,再令项的系数为0即可.【解答】解:多项式,由于不含项,,,故选:.8.已知,,则下列说法正确的是 A.B.C.、可能相等D.、大小不能确定【答案】【分析】根据,进而判断即可.【解答】解:,,故选:.9.已知,对多项式任意添加绝对值(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含加减法运算,称这种操作为“添绝对值操作”,例如:,等,下列结论正确的个数是 ①至少存在一种“添绝对值操作”,使化简其结果与原多项式相等;②存在某种“添绝对值操作”,使其结果与原多项式之和为0;③若只添加一个绝对值,则所有可能的化简结果共有8种.A.0B.1C.2D.3【答案】【分析】根据绝对值的意义求解.【解答】解:①,故①正确;②,则,添绝对值变为16,则之和为0,②正确;③③,可得:的符号不变,、、、的符号会发生变化,列举法得到化简后的结果为:,,,,,,,,共八种,故③正确,故选:.10.下列计算,结果正确的是 A.B.C.D.【答案】【分析】根据合并同类项的法则进行计算即可得到答案.【解答】解:.,计算错误,不符合题意;.与不是同类项,计算错误,不符合题意;.,计算正确,符合题意;.与不是同类项,计算错误,不符合题意;故选:.二.填空题(共8小题)11.下列计算正确的是: ③④ .①;②;③;④.【答案】③④.【分析】根据合并同类项的运算法则逐一判断即可.【解答】解:①不能合并,故错误,不符合题意;②不能合并,故错误,不符合题意;③,计算正确,符合题意;④,计算正确,符合题意;故答案为:③④.12.已知:,,若的值与的取值无关,则的值为 7 .【答案】7.【分析】先化简,然后根据多项式的值与字母取值无关,可知的系数为0,从而可以求得的值.【解答】解:,,,多项式的值与字母取值无关,,得,即的值是7.故答案为:7.13.若关于,的多项式与的差的值与字母的取值无关,则 3 .【答案】3.【分析】先算,然后根据多项式与的差的值与字母的取值无关,即可求得、的值.【解答】解:,多项式与的差的值与字母的取值无关,,,解得,,故答案为:3.14.有三堆棋子,数目相等,每堆至少有5枚,从左堆中取出4枚放入中堆,从右堆中取出5枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是 13枚 .【答案】13枚.【分析】根据题意,可以用代数式表示出最后中堆棋子的枚数,然后化简,即可解答本题.【解答】解:设原来每堆的棋子有枚,则最后的中堆棋子有:(枚,故答案为:13枚.15.某居民生活用水收费标准:每月用水量不超过20立方米,每立方米元;超过部分每立方米元.该区某家庭上月用水量为25立方米,则应缴水费 元.【答案】.【分析】根据所给的收费标准进行求解即可.【解答】解:由题意得,该区某家庭上月用水量为25立方米,则应缴水费元.故答案为:.16.若与是同类项,则 5 , .【分析】利用同类项的定义求出与的值即可.【解答】解:与是同类项,,,解得:,.故答案为:5;1.17.已知,为两个整式,其中,,且的结果中不含项,则的值为 2 .【答案】2.【分析】先合并同类项,根据结果中不含项,得到项的系数为0,进行计算即可.【解答】解:,,;结果中不含项,,;故答案为:2.18.已知,,,则代数式的值为 .【答案】.【分析】去括号、合并同类项化简后,再将条件化为,,整体代入计算即可.【解答】解:原式,由,,可得,,,所以原式.故答案为:.三.解答题(共8小题)19.材料一:若一个四位数的各个数位数字之和为16,并且千位数字与十位数字之差的绝对值等于2,百位数字与个位数字之差的绝对值等于2,则这个四位数为“差2数”.例如:,,且,是“差2数”.又如:,,不是“差2数”.材料二:若一个四位数的各个数位数字成比例,则这个四位数为“成比例数”.例如:,各个数位数字由小到大排列后为1,2,3,6,满足,为“成比例数”.又如:,各个数位数字由小到大排列后为1,2,3,4,,不是“成比例数”.(1)1735是“差2数”吗?是“成比例数”吗?请说明理由;(2)若一个四位数既是“差2数”,又是“成比例数”,请求出所有满足条件的.【答案】(1)是“差2数”,不是“成比例数”,理由见详解;(2)3355、5533、3553、5335.【分析】(1)根据“差2数”和“成比例数”的定义直接判断即可;(2)设有四个小于10的正整数:、、、,且,即、、、的平均数为4,结合“差2数”和“成比例数”的特点,设、、、满足,当,时,可得,即有,,此时依据“成比例数”的定义判断即可;当,时,可得,即有,,则,,此时依据“成比例数”的定义判断即可作答,问题随之得解.【解答】解:(1),且,是“差2数”,各个数位数字由小到大排列后为1,3,5,7,且,不是“成比例数”;(2)设有四个小于10的正整数:、、、,且,即、、、的平均数为4,显然当时,组成的数字4444不是“差2数”,当、、、,有三个数大于4时,这四个是必为:5、5、5、1,则5、5、5、1组成的数既无法是“差2数”,也无法是“成比例数”;当、、、,有三个数小于4时,这四个是必为:3、3、3、7,则3、3、3、7组成的数既无法是“差2数”,也无法是“成比例数”;结合“差2数”和“成比例数”的特点,设、、、满足,当,时,,,,,,,,将、、、从小达到排列为1,3,5,7,且,,3,5,7,无法组成“成比例数”,故此种情况舍去;当,时,,,,,,,,得到四个数字:3、3、5、5,组成的数字必定是“成比例数”,此时可以组成的“差2数”有:3355、5533、3553、5335;综上:满足条件的有:3355、5533、3553、5335.20.“计算的值,其中,”.甲同学把“”错抄成“”,但他计算的最后结果,与其他同学的正确结果都一样.试说明理由,并求出这个结果【分析】先去括号,合并同类项化简原式,再将的值代入计算可得.【解答】解:原式,由结果可知:化简结果与无关,所以答案一样,所以原式.21.小琦同学在自习课准备完成以下题目时:化简□发现系数“□”印刷不清楚.(1)他把“□”猜成2,请你化简;(2)老师见到说:“你猜错了,我看到该题标准答案的结果是常数”,请你通过计算说明原题中“□”是几.【答案】(1);(2)5.【分析】(1)先去括号,再合并同类项即可;(2)结果为常数,则其他项的系数为0,据此可求解.【解答】解:(1);(2)设“□”是,则有:,答案的结果是常数,,解得:,即“□”.22.先化简,再求值:.其中,,.【答案】,12.【分析】先将原式去括号,再合并同类项,然后将代入计算即可.【解答】解:,,原式.23.在整式的加减练习课中,已知,嘉淇错将“”看成“”,得到的结果是.请你解决下列问题.(1)求整式;(2)若为最大的负整数,为的倒数,求该题的正确值.【答案】(1);(2),4.【分析】(1)直接用即可得到答案;(2)先求出,再求出、的值,最后代值计算即可.【解答】解:(1)由题意得,,;(2),,,为最大的负整数,为的倒数,,,原式.24.化简:(1);(2).【答案】(1);(2).【分析】(1)先把同类型放在一起,然后合并同类项即可;(2)先去括号,然后合并同类项即可.【解答】解:(1);(2).25.【阅读理解】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,解决问题的策略一般都是进行一定的转化,其中“作差法”就是常用的方法之一.作差法:就是通过作差、变形,利用差的符号确定它们的大小.即要比较代数式、的大小,只要算的值,若,则;若,则;若,则.【知识运用】(1)请用上述方法比较下列代数式的大小(直接在空格中填写答案)①当时, ;②若,则 ;(2)试比较与的大小,并说明理由;【拓展运用】(3)甲、乙两班同学同时从学校沿同一路线到离学校的研学基地参加研学甲班有一半路程以的速度行进,另一半路程以的速度行进:乙班有一半叶间以的速度行进,另一半时间以的速度行进.设甲、乙两班同学从学校到研学基地所用的时间分别为,.①试用含,,的代数式分别表示和,则 , .②请你判断甲、乙两班中哪一个班的同学先到达研学基地,并说明理由.【答案】(1)①;②;(2);(3)①,;②当时,甲、乙同时到达;当时,乙先到;当时,乙先到,理由见解析.【分析】(1)根据材料提示,运用“作差法”即可求解;(2)运用“作差法”,乘法公式,不等式的性质,即可求解;(3)①根据行程问题的数量关系即可求解;②根据“作差法“,整式的混合运算法则进行计算即可.【解答】解:(1)①,,,;②,,,,,;故答案为:(1)①;②;(2).理由如下:,,;(3)路程为,①甲班有一半路程以的速度行进,另一半路程以的速度行进,,乙班有一半时间以的速度行进,另一半时间以的速度行进,,则,故答案为:,;②,,,,,,,当时,甲、乙同时到达;当时,乙先到;当时,乙先到.26.先化简,再求值:,其中,.【答案】2.【分析】原式去括号合并同类项得到最简代数式,把与的值代入计算即可求出值【解答】解:;当,时,原式.。
北师大版数学七年级上3.4《整式的加减》测试(含答案)整式的加减测试时间:60分钟总分:100分题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.已知某三角形的第一条边的长为(2a−b)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少b(cm),则这个三角形的周长为( )A. (7a−4b)cmB. (7a−3b)cmC. (9a−4b)cmD. (9a−3b)cm2.(m+n)−2(m−n)的计算结果是()A. 3n−2mB. 3n+mC. 3n−mD. 3n+2m3.数x、y在数轴上对应点如图所示,则化简|x+y|−|y−x|的结果是( )A. 0B. 2xC. 2yD. 2x−2y4.一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,则长方形的周长为()A. 6aB. 10a+3bC. 10a+ 2bD. 10a+6bA. 少24B. 多24C. 少4D. 多45.若A和B都是4次多项式,则2A+3B一定是()A. 8次多项式B. 4次多项式C. 次数不高于4次的整式D. 次数不低于4的整式二、填空题(本大题共10小题,共30.0分)6.若a、b、c在数轴上的位置如图,则|a|−|b−c|+|c|=______ .7.已知5a+3b=−4,则代数式2a+2b−(4−4b−8a)+2的值为______.8.若a+2b+3c=5,3a+2b+c=7,则7a+7b+7c=______.9.一个长方形的一边长是2a+3b,另一边长是a+b,则这个长方形的周长是______.10.计算2(4a−5b)−(3a−2b)的结果为______.11.化简:a−(a−3b)=______.12.已知a,b,c为有理数,且满足−a>b> |c|,a+b+c=0,则|a+b|+|a−2b|−|a+2b|=______(结果用含a,b的代数式表示)13.七年级一班有2a−b个男生和3a+b个女生,则男生比女生少______ 人.14.计算:2(x−y)+3y=________.15.已知m−n=100,x+y=−1,则代数式(n+x)−(m−y)的值是______ .三、计算题(本大题共4小题,共24.0分)16.已知x+y=1,求代数式3x−2y+1+ 3y−2x−5的值.17.已知a2−1=b,求3(a2−b)+a2−b)的值.2(a2−1218.已知A=2x2−3x+1,B=−3x2+5x−7,(1)求A−2B;(2)求当x=−1时A−2B的值.19.先化简,后求值.2(a2b+ab2)−(2ab2−1+a2b)−2,其中(2b−1)2+|a+2|=0.四、解答题(本大题共2小题,共16.0分)20.已知A=3a2b−4ab2−3,B=−5ab2+2a2b+4,并且A+B+C=0.(1)求多项式C;(2)若a,b满足|a|=2,|b|=3,且a+b< 0,求(1)中多项式C的值.21.第一车间有x人,第二车间比第一车间人少20人,如果从第二车间调出10人数的34到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?答案和解析【答案】1. C2. C3. C4. C5. C6. D7. A8. C9. A10. C11. b−a12. −1013. 2114. 6a+8b15. 5a−8b16. 3b17. −3a−b18. a+2b19. 2x+y20. −10121. 解:∵x+y=1,∴原式=x+y−4=1−4=−3.22. 解:原式=3a2−3b+a2−2a2+b=2a2−2b,∵a2−1=b,∴a2−b=1,则原式=2(a2−b)=2.23. 解:(1)∵A=2x2−3x+1,B=−3x2+ 5x−7,∴A−2B=2x2−3x+1−2(−3x2+5x−7)=2x 2−3x +1+6x 2+10x −14=8x 2+7x −13;(2)当x =−1时,原式=8−7−13=−12.24.解:∵(2b −1)2+|a +2|=0,∴b =12,a =−2,原式=2a 2b +2ab 2−2ab 2+1−a 2b −2 =a 2b −1,当a =−2,b =12,原式=(−2)2×12−1=2−1=1.25.解:(1)∵A +B +C =0,∴C =−(A +B),∵A =3a 2b −4ab 2−3,B =−5ab 2+2a 2b +4,∴C =−(3a 2b −4ab 2−3−5ab 2+2a 2b+4)=−(5a 2b −9ab 2+1)=−5a 2b +9ab 2−1;(2)∵|a|=2,|b|=3, ∴a =±2,b =±3, ∵a +b <0,∴a =2,b =−3或a =−2,b =−3. 当a =2,b =−3时,C =−5×22×(−3)+9×2×(−3)2−1=221;当a=−2,b=−3时,C=−5×(−2)2×(−3)+9×(−2)×(−3)2−1=−103.26. 解:(1)∵第一车间有x人,第二车间比第一车间人数的34少20人,∴第二车间的人数是(34x−20)人,∴x+(34x−20)=(74x−20)人.答:两个车间共有(74x−20)人;(2)∵从第二车间调出10人到第一车间,∴第一车间有(x+10)人,第二车间的人数是(34x−30)人,∴(x+10)−(34x−30)=x+10−34x+30=(14x+40)人.答:调动后,第一车间的人数比第二车间多(14x+40)人.【解析】1. 解:根据题意得:(2a−b)+(2a−b+a+b)+2(2a−b)−b=2a−b+2a−b+a+b+4a−2b−b =(9a−4b)cm,则这个三角形的周长为(9a−4b)cm.故选C根据题意表示出第二条边与第三条边,进而表示出周长即可.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.2. 解:原式=m+n−2m+2n=−m+3n,故选C.先去括号再合并同类项即可.本题考查了整式的加减,掌握去括号与合并同类项是解题的关键.3. 解:∵由图可知,y<0<x,x>|y|,∴原式=x+y−(x−y)=x+y−x+y=2y.故选C.先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.4. 解:∵一根铁丝正好围成一个长方形,一边长为2a+b,另一边比它长a−b,∴此长方形的周长是:(2a+b+a−b+2a+ b)×2=(5a+b)×2=10a+2b,选C.根据长方形的周长等于(长+宽)×2可以解答本题.本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.5. 解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=14a,图①中阴影部分的周长为2(b−2y+a)=2b−4y+2a,图②中阴影部分的周长2b+ x+2y+a−x=a+2b+2y,则图①阴影部分周长与图②阴影部分周长之差为2b−4y+2a−a−2b−2y=a−6y=a−32a=−12a.故选C.设图③中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6. 解:根据题意得:12⋅6m −(m +n)=3m −m −n =2m −n ,故选D由长方形周长=2(长+宽),求出另一边长即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7. 解:|a +b +c|−|a −b −c|−|a −b +c|−|a +b −c|=(a +b +c)−(b +c −a)−(a −b +c)−(a +b −c)=a +b +c −b −c +a −a +b −c −a −b +c=0故选:A .首先根据:三角形两边之和大于第三边,去掉绝对值号,然后根据整式的加减法的运算方法,求出结果是多少即可.此题主要考查了三角形的三边的关系,以及整式加减法的运算方法,要熟练掌握,解答此题的关键是要明确:三角形两边之和大于第三边.8. 解:4(2x−1)−2(−1+10x)=8x−4+2−20x=−12x−2,故选C.由4(2x−1)−2(−1+10x),根据去括号和合并同类项的方法可以对原式进行化简,从而本题得以解决.本题考查整式的加减,解题的关键是对原式的化简要化到最简.9. 解:正确结果为4(x+8)=4x+32,则将代数式4(x+8)写成了4x+8,则结果比原来少24,故选A求出正确的结果,比较即可.此题考查了整式的加减,熟练掌握去括号法则是解本题的关键.10. 解:若A和B都是4次多项式,则A+B的结果的次数一定是次数不高于4次的整式.故选C.若A和B都是4次多项式,通过合并同类项求和时,结果的次数定小于或等于原多项式的最高次数.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11. 解:根据数轴上点的位置得:a<b<0< c,∴b−c<0,则原式=−a+b−c+c=b−a,故答案为:b−a根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.12. 解:原式=2a+2b−4+4b+8a+2= 10a+6b−2=2(5a+3b)−2=−10,故答案为:−10.把5a+3b=−4,代入代数式进行计算即可.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.13. 解:由题意得:(a+2b+3c)+(3a+2b+c)=5+7,得:4a+4b+4c=12,即a+b+c=3,则7a+7b+7c=7×3=21,故答案为:21发现系数间的关系,把两个等式相加,便可求出a+b+c的值,代入原式计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14. 解:根据题意列得:2[(2a+3b)+(a+b)]=2(3a+4b)=6a+8b,则这个长方形的周长为6a+8b.故答案为:6a+8b.长方形的周长等于两邻边之和的2倍,表示出周长,去括号合并即可得到结果.此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.15. 解:原式=8a−10b−3a+2b=5a−8b,故答案为:5a−8b原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.16. 解:原式=a−a+3b=3b故答案为:3b根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17. 解:∵−a>b>|c|,a+b+c=0,∴a<0,b>c>0,|a|>|b|>|c|,∴a+b<0,a−2b<0,a+2b>0,∴|a+b|+|a−2b|−|a+2b|=−a−b+ 2b−a−a−2b=−3a−b,故答案为:−3a−b.根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义计算即可得到结果.本题考查了整式的加减求值,绝对值的性质,解答本题的关键是掌握绝对值的性质,进行绝对值的化简.18. 解:∵年级一班有2a−b个男生和3a+b个女生,∴3a+b−(2a−b)=(a+2b)人.故答案为:a+2b,用女生的人数减去男生的人数即可得出结论.本题考查的是整式的加减,根据题意列出关于a、b的式子是解答此题的关键.19. 解:原式=2x−2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20. 解:∵m−n=100,x+y=−1,∴原式=n+x−m+y=−(m−n)+(x+ y)=−100−1=−101,故答案为:−101原式去括号整理后,将已知等式代入计算即可求出值.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.21. 原式合并同类项得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.22. 原式去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.23. (1)把A与B代入A−2B中,去括号合并即可得到结果;(2)把x=−1代入结果中计算即可得到结果.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.24. 先利用非负数的性质求出a和b的值,再去括号、合并得到原式=a2b−1,然后把a和b的值代入计算即可.本题考查了整式的加减−化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. (1)先由A+B+C=0可得C=−(A+B),再将A=3a2b−4ab2−3,B=−5ab2+2a2b+4代入计算即可;(2)先由|a|=2,|b|=3,且a+b<0确定a,b的值,再代入(1)中多项式C,计算即可求解.本题考查了整式的加减、去括号法则、绝对值的定义以及代数式求值.解题的关键是熟记去括号法则,熟练运用合并同类项的法则.26. (1)用x表示出第二车间的人数,再把两式相加即可;(2)用x表示出调动后两车间的人数,再作差即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.。
第三章 整式的加减 单元测试题 2024-2025学年北师大版七年级数学上册A 卷( 共 100 分)第Ⅰ卷(选择题,共 32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,请将答案写在答题表格内)1 . 下列代数式书写规范的是( )A . x12B . x ÷ yC . a(x + y )D . 121xy 2 . 用代数式表示“x 与y 的2倍的和”,正确的是( )A . x + 2yB . 2x + yC . 2x + 2yD . x 2 + y 23 . 在代数式:- π ,0 ,a , 65,1,3ab x y x -- 中,单项式有( ) A . 2 个 B . 3 个 C .4 个 D .5 个4 . 多项式a 3 - 4 a 2 b 2+ 3 ab - 1的项数和次数分别是( )A . 3 和4B . 4 和4C . 3 和3D . 4 和35 . 一个三位数,百位上的数字为x,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含x 的代数式表示为( )A . 112x - 30B . 100x - 30C . 112x + 30D . 102x + 306 . 某产品原价为a 元,提价10% 后又降价了10% ,则现在的价格是( )A . 0 . 9 a 元B . 1 . 1 a 元C . a 元D . 0 . 99 a 元7 . 已知a 2 + 2a - 3 = 0 ,则代数式2a 2+ 4 a - 3 的值是( )A . - 3B . 0C . 3D . 68. 按如图所示的方式摆放圆和三角形,观察图形,则第10 个图形中圆有( )A . 36 个B . 38 个C . 40 个D . 42 个第Ⅱ 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20 分)9 . 去括号:+ ( a - b ) = _______ , - ( a + b) = ________.10 . 单项式-2 πab 2 的系数是________,次数是_________.11 . 若单项式3x m y 与-2x 6 y 是同类项,则m =________.12 . 已知一个多项式与多项式3x 2 + x 的和等于3x 2 + 4x - 1,则这个多项式是________.13 . 已知a 1 = 23-,a 2=55,a 3=107-,a 4 =179,a 5=2611- ,则a 8=_______. . 三、解答题(本大题共5个小题,共48分)14 .(本小题满分12 分,每题3分)计算:( 1 )5 m 2 - 5 m + 7 - 6 m 2- 5 m - 10 ; (2 ) ( 8a - 7 b ) - (4 a - 5 b ) ;(3 )5 (a 2 b - 3 ab 2 ) - 2 (a 2 b - 7 ab 2 ) ; (4 )5 abc - { 2a 2 b - [ 3 abc - (4 ab 2- ab 2 ) ] } .15 .(本小题满分9分)列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2, 用 含m 的代数式表示这个三位数;(2)东方红电影院第一排有15 个座位,后面每排比前一排多2 个座位,用含n 的代数式表示 第n 排的座位数;(3 ) 如图,将长为4m 的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,用含m 的代数式表示每个小长方形的周长.16 .(本小题满分8分)先化简,再求值:(7x + 4y + xy) - 6 (xy x y -+65),其中x-y = 5 , - xy = 3 .17 .(本小题满分9分) 先化简,再求值:a 2 - 10ab -5a 2 + 12ac - c 2+ 3 ab - 8ac + 4a 2 , 其中a 是平方等于它本身倒数的数,且|b + 2|+ (3a + c +21 )2 = 0 .18 .(本小题满分10 分)某商家销售一款定价1200 元的空调和300 元的电扇.“五一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台空调送一台电扇;方案二:空调和电扇都按定价的90%付款.现某客户要到该商场购买空调6 台,电扇x 台(x > 6).(1)若该客户按方案一购买,则需付款_____元;若该客户按方案二购买,则需付款_________元;(用含x 的代数式表示)(2)当x= 10 时,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案并计算需付款多少元.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19 . 一辆公交车原有a 名乘客,到某站后,下去一半乘客,又上来b 名乘客,此时公交车上乘客的人数为_________.20 . 一组按规律排列的式子:,......,,,41138252ab a b a b a b -- 第n 个式子是________(n 为正整数).21 . 若b a b a +-2 = 5,则代数式 b a b a +-)2(2+ ba b a -+2)(3的值为_______ . 22 . 有理数a 、b 、c 在数轴上对应的点的位置如图所示,试化简:|a + c|-|a - b - c| -|b - a| +|b + c|=__________. .23 . 观察下列等式:第一个等式:a 1=22213⨯⨯=211⨯-2221⨯; 第二个等式:a 2=32324⨯⨯=2221⨯-3231⨯; 第三个等式:a 3=22435⨯⨯=3231⨯-4241⨯; 第四个等式:a 4=52546⨯⨯=4221⨯-5251⨯……, 按上述规律,回答以下问题:(1 )用含n 的代数式表示第n 个等式:a n =___________.(2)计算:a 1+ a 2+ a 3+ …+a 20=_________.二、解答题(本大题共3个小题,共30 分)24 .(本小题满分8分)已知代数式2x 2 + ax - y + 6 - bx 2 + 3 x - 5 y - 1 的值与x 的取值无关,且A = 4a 2 - ab + 4b 2,B = 3a 2 - ab + 3b 2,求3A -2(3A - 2B )- 3(4A - 3 B )的值.25 .(本小题满分10 分)(1)探索规律并填空:1 + 2 =2)21(2+⨯;1 + 2 + 3 =2)31(3+⨯;1 + 2 + 3 + 4 =2)41(4+⨯; 则1 + 2 + 3 + …+20 =_________,1 + 2 + 3 + …+ n =__________.(2)将火柴棒按如图所示的方式搭图形.① 填表:②照这样的规律搭下去:(i)第n 个图形的大三角形周长的火柴棒是几根?(ii)第n 个图形的小三角形有几个?第100 个图形的小三角形有几个?(iii)第n 个图形需要多少根火柴棒?26 .(本小题满分12 分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费标准如表:(注:水费按月份结算,m3表示立方米)例:若某户居民1月份用水8m3,应交水费2 × 6 + 4 ×(8 - 6)= 20元. 请根据表中信息解答下列问题:(1)若该户居民2月份用水4m3,则应交水费多少元?(2)若该户居民3 月份用水am 3(其中6 < a < 10),则应交水费多少元?(用含a 的代数式表示)(3)若该户居民4、5 两个月共用水15 m3(5 月份用水量超过了4月份),设4月份用水xm 3,求该户居民4、5 两个月共交水费多少元?(用含x的代数式表示)。
第三章整式的加减一.选择题1.代数式x2﹣的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数2.下列代数式中符合书写要求的是()A.ab2×4B.C.D.6xy2÷33.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.254.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.45.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.6.已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=()A.﹣3B.﹣7C.﹣17D.77.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.3是单项式D.﹣x2y+xy﹣7是5次三项式8.下列说法中,正确的是()A.单项式xy2的系数是x B.单项式﹣5x2的次数为﹣5C.多项式x2+2x+18是二次三项式D.多项式x2+y2﹣1的常数项是19.下列关于多项式﹣3a2b+ab﹣2的说法中,正确的是()A.最高次数是5B.最高次项是﹣3a2bC.是二次三项式D.二次项系数是010.化简:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]的结果是()A.2b2﹣a2B.﹣a2C.a2D.a2﹣2b2二.填空题11.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.12.如图,用含a、b的代数式表示图中阴影部分的面积.13.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.14.当k=时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.15.把多项式2x2+3x3﹣x+5x4﹣1按字母x降幂排列是.16.若a2m b3和﹣7a2b3是同类项,则m值为.17.合并同类项﹣ab+7ab﹣9ab=.18.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是.三.解答题19.已知多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,求(﹣m)3+2n 的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,若该多项式不含二次项,求3a+2b.22.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.23.已知A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.24.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣4.25.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.26.数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.(2)丁的多项式是什么?(请直接写出所有答案).27.已知A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关.(1)求m、n的值;(2)求式子﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.28.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,若把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中一种非常重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的值为;(2)已知x+2y=3,求代数式3x+6y﹣8的值;(3)已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.29.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:3(x﹣1)+▇=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣3,求所挡的二次三项式的值.30.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.31.已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣.(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当|a+|与b2互为相反数时,求(1)中式子的值.32.已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.33.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点A、B之间的距离是,如果|AB|=2,则x为.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为.相应的x的取值范围是.34.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.35.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?36.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.参考答案一.选择题1.【解答】解:代数式x2﹣的正确解释是x的平方与y的倒数的差,故选:B.2.【解答】解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.3.【解答】解:∵x﹣2y=3,∴2(x﹣2y)2+4y﹣2x+1=2(x﹣2y)2﹣2(x﹣2y)+1=2×32﹣2×3+1=18﹣6+1=13.故选:B.4.【解答】解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数,两次后输出22时,3x+1=7,解得:x=2,故选:B.5.【解答】解集:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.6.【解答】解:把x=﹣3,y=7代入y=ax5+bx3+cx﹣5得:﹣35a﹣33b﹣3c﹣5=7,即﹣(35a+33b+3c)=12把x=3代入ax5+bx3+cx﹣5得:35a+33b+3c﹣5=﹣12﹣5=﹣17.故选C.7.【解答】解:A、﹣的系数为﹣,错误;B、32x3y的次数是4,错误;C、3是单项式,正确;D、多项式﹣x2y+xy﹣7是三次三项式,错误;故选:C.8.【解答】解:A、单项式xy2的系数是,原说法错误,故此选项不符合题意;B、单项式﹣5x2的次数为2,原说法错误,故此选项不符合题意;C、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意;D、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意,故选:C.9.【解答】解:A、多项式﹣3a2b+ab﹣2次数是3,故此选项错误;B、最高次项是﹣3a2b,故此选项正确;C、是三次三项式,故此选项错误;D、二次项系数是1,故此选项错误;故选:B.10.【解答】解:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]=﹣(a2﹣b2)﹣(﹣b2)=﹣a2+b2+b2=2b2﹣a2故选:A.二.填空题11.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.12.【解答】解:阴影部分面积=ab﹣=ab﹣.故答案为:ab﹣πb2.13.【解答】解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.14.【解答】解:整理只含xy的项得:(k﹣3)xy,∴k﹣3=0,k=3.故答案为:3.15.【解答】解:多项式2x2+3x3﹣x+5x4﹣1的各项是2x2,3x3,﹣x,5x4,﹣1,按x降幂排列为5x4+3x3+2x2﹣x﹣1.故答案为:5x4+3x3+2x2﹣x﹣1.16.【解答】解:∵a2m b3和﹣7a2b3是同类项,∴2m=2,解得m=1.故答案为:1.17.【解答】解:原式=(﹣1+7﹣9)ab=﹣3ab.故答案为﹣3ab.18.【解答】解:设“□”为a,∴(4x2﹣6x+7)﹣(4x2﹣口x+2)=4x2﹣6x+7﹣4x2+ax﹣2=(a﹣6)x+5,∵该题标准答案的结果是常数,∴a﹣6=0,解得a=6,∴题目中“□”应是6.故答案为:6.三.解答题19.【解答】解:∵多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,∴m+1+2=6,2n+5﹣m=6,解得:m=3,n=2,则(﹣m)3+2n=﹣27+4=﹣23.20.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.21.【解答】解:∵多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,该多项式不含二次项,∴a﹣2=0,2b+1=0,解得:a=2,b=﹣,∴3a+2b=3×2+2×(﹣)=5.22.【解答】解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.故答案为:﹣3.23.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab (2)∵|3a+1|+(2﹣3b)2=0,∴3a+1=0,2﹣3b=0,解得a=﹣,b=,∴A﹣2B=a2﹣8ab=﹣8×(﹣)×=+=24.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=,b=﹣4时,原式=﹣3﹣8=﹣11.25.【解答】解:x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2,=﹣3x+y2,当x=﹣2,时,原式=﹣3×(﹣2)+()2=6+=6.26.【解答】解:(1)∵(3x2﹣x+1)﹣(2x2﹣3x﹣2),=3x2﹣x+1﹣2x2+3x+2,=x2+2x+3,∴甲、乙、丙三位同学的多项式是“友好多项式”;(2)∵甲、乙、丁三位同学的多项式是“友好多项式”,∴分两种情况:①(2x2﹣3x﹣2)﹣(3x2﹣x+1)或(3x2﹣x+1)﹣(2x2﹣3x﹣2),(2x2﹣3x﹣2)﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3(3x2﹣x+1)﹣(2x2﹣3x﹣2)=3x2﹣x+1﹣2x2+3x+2=x2+2x+3,②(3x2﹣x+1)+(2x2﹣3x﹣2),=5x2﹣4x﹣1;∴丁的多项式是﹣x2﹣2x﹣3 或x2+2x+3或5x2﹣4x﹣1.27.【解答】解:(1)∵A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关,∴2A﹣B=2(x2﹣mx+2)﹣(nx2+2x﹣1)=2x2﹣2mx+4﹣nx2﹣2x+1=(2﹣n)x2﹣(2m+2)x+5,∴2﹣n=0,2m+2=0,解得:n=2,m=﹣1;(2)﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]=﹣3m2n+6mn2﹣m2n﹣2mn2+4m2n+5mn2=9mn2,当n=2,m=﹣1时,原式=9×(﹣1)×22=﹣36.28.【解答】解:(1)﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)原式=3(x+2y)﹣8=3×3﹣8=1;(3)∵y﹣xy=﹣2,xy+x=﹣6,∴xy﹣y=2,x+y=xy+x+y﹣xy=﹣8,则原式=2x+2(xy﹣y)2﹣3(xy﹣y)2+3y﹣xy=2x+3y﹣xy﹣(xy﹣y)2=2(x+y)+(y﹣xy)﹣(xy﹣y)2=﹣16+(﹣2)﹣4=﹣22.29.【解答】解:(1)由题意,可得所挡的二次三项式为:(x2﹣5x+1)﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣3时,x2﹣8x+4=(﹣3)2﹣8×(﹣3)+4=9+24+4=37.30.【解答】解:(1)由长方体纸盒的平面展开图知,a与﹣1、b与2、c与3是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以a=1,b=﹣2,c=﹣3.故答案为:1,﹣2,﹣3.(2)5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc=5a2b﹣(2a2b﹣6abc+3a2b)+4abc=5a2b﹣2a2b+6abc﹣3a2b+4abc=10abc.当a=1,b=﹣2,c=﹣3时,原式=10×1×(﹣2)×(﹣3)=10×6=60.31.【解答】解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵|a+|与b2互为相反数,∴|a+|+b2=0,则a=﹣,b=0,6a2+3b2﹣10ab+11=6×+11=.32.【解答】解:由题意可知:x2+ax﹣y+b+bx2﹣3x+6y﹣3=(b+1)x2+(a﹣3)x+5y+b﹣3该多项式的值与x无关,所以b+1=0,a﹣3=0所以b=﹣1,a=3原式=3a2﹣6ab+3b2﹣(3a2﹣2ab+3b2)=3a2﹣6ab+3b2﹣3a2+2ab﹣3b2=﹣4ab=1233.【解答】解:(1)﹣2﹣(﹣5)=3,1﹣(﹣3)=4,;(2)|x﹣(﹣3)|=|x+3|,∵|x+3|=2,∴x+3=±2,∴x=﹣1或﹣5;(3)由题意可知:当x在﹣1与2之间时,此时,代数式|x+1|+|x﹣2|取最小值,最小值为2﹣(﹣1)=3,此时x的取值范围为:﹣1≤x≤2;故答案为:(1)3,4;(2)|x+3|,﹣1或﹣5;(3)3,﹣1≤x≤2.34.【解答】解:∵B=2x2+3x﹣4,A+2B=5x2+8x﹣10,∴A=5x2+8x﹣10﹣2(2x2+3x﹣4)=5x2+8x﹣10﹣4x2﹣6x+8=x2+2x﹣2,∴A﹣2B=x2+2x﹣2﹣2(2x2+3x﹣4)=x2+2x﹣2﹣4x2﹣6x+8=﹣3x2﹣4x+6.35.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.36.【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,由①+②可得a﹣c=﹣2,由②+③可得2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.。
整式的加减
班级:___________姓名:___________得分:__________
一、选择题(每小题8分,共40分)
1.已知2x b+5y3a与-4x2a y2-4b是同类项,则b a的值为()
A、2
B、-2
C、1
D、-1
2. 下列各组单项式:-2a2b3与,-5与0;4a2b与2ab2-3x2与xy;-m2n与32m2n;7ab2与-ab2c,是同类项的有()
A.1组 B.2组 C.3组D.4组
3. 下列合并同类项中,正确的是()
4. 下列计算正确的是()
A.4x-9x+6x=-x B.2a-2a=0
5. 若多项式-4x3-2mx2+2x2-6合并同类项后是一个三次二项式,则m满足条件()
二、填空题(每小题8分,共40分)
6.已知4x2m y m+n与-3x6y2是同类项,则m=______,n=______.
7. 将-10x2+13x3-2+3x3-4x2-3+5x2合并同类项的结果,按字母x的降幂排列,得______.
8.若2a3n与-3a9的和仍为一个单项式,则n=______.
10.在6xy-3x2-4x2y-5yx2+x2中没有同类项的项是______.
三、解答题(共20分)
11. A=4x2-4xy+y2,B=x2+xy-5y2,求(3A-2B)-(2A+B)。
12.李明在计算一个多项式减去3x2-2x+1时,误看成加上此式,计算的错误结果是x2-4x-5。
请你帮助他求出正确的答案。
参考答案
一、选择题
1.C
【解析】由同类项的定义,得
b+5=2a
3a=2-4b ,
解得:
a=2 b=-1 .
∴b a=(-1)2=1.
故选C.
2.C
【解析】(1)正确,符合题意;
(2)两个常数项是同类项,故正确,符合题意;
(3)相同的字母指数不同,故错误,不符合题意;
(4)不含相同的字母,故错误,不符合题意;
(5)正确,符合题意;
(6)不含相同的字母,故错误,不符合题意.
故是同类项的有3组.
故选C.
3. C
【解析】A选项不是同类项不能合并,B选项也不是同类项,C选项正确,D选项结果应为2x。
故选C
4.B
【解析】①4x-9x+6x=x;②2a-2a=0③x3-x2不是同类项,不能合并;④xy-2xy=-xy.
5.C
【解析】由题意知二次项合并后系数为0,
即2-2m=0,即m=1.
故选C.
二、填空题
6. 3,-1
【解析】根据题意得:
2m=6
m+n=2 ,
解得:
m=3 n=-1 .
故答案是:3,-1.
7. 16x3-9x2-5.
【解析】-10x2+13x3-2+3x3-4x2-3+5x2=-9x2+16x3-5
=16x3-9x2-5.
故答案为16x3-9x2-5.
8.3
【解析】∵2a3n与-3a9的和仍为一个单项式,
∴2a3n与-3a9是同类项,
∴3n=9,
解得:n=3.
故答案为:3.
9.5
【解析】由同类项的定义可知a=3,b=2,a+b=5.
10. 6xy
【解析】根据同类项的定义,在6xy-3x2-4x2y-5yx2+x2中-3x2与x2是同类项;-4x2y与5yx2是同类项.只有6xy没有同类项.
11.解:(3A-2B)-(2A+B)
=3A-2B-2A-B
=A-3B
=()-3()
=-3x2-3xy+15y2
=x2-7xy+16y2
12.解:设这个多项式为A,则A+(3x2-2x+1)=x2-4x-5
∴A=( x2-4x-5)-(3x2-2x+1)
=
正确答案是: (-2x2-2x-6)-(3x2-2x+1)=-5x2-7。