数学北师大版七年级上册探索规律
- 格式:doc
- 大小:40.00 KB
- 文档页数:6
北师大版数学七年级上册3.5《探索与表达规律》(第1课时)教案一. 教材分析《探索与表达规律》是北师大版数学七年级上册3.5的内容,本节课主要让学生通过观察、分析、归纳等方法探索数学规律,进一步培养学生的逻辑思维能力和抽象概括能力。
教材内容主要包括探索数字变化的规律、图形的规律和字母表示的规律等,通过这些探索活动,让学生体会数学的趣味性和魅力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于简单的规律探索和归纳总结已经有了一定的能力。
但学生在探索复杂规律时,可能还会存在一定的困难,需要教师在教学中给予引导和帮助。
此外,学生可能对数学规律的探究兴趣不够浓厚,教师需要通过设计有趣的教学活动,激发学生的学习兴趣。
三. 教学目标1.知识与技能目标:让学生通过观察、分析、归纳等方法探索数学规律,提高学生的逻辑思维能力和抽象概括能力。
2.过程与方法目标:培养学生独立思考、合作交流的能力,提高学生的解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的趣味性,培养学生的学习兴趣,增强学生对数学的热爱。
四. 教学重难点1.教学重点:让学生掌握探索数学规律的方法,提高学生的逻辑思维能力和抽象概括能力。
2.教学难点:如何引导学生发现并表达复杂的数学规律,以及如何运用规律解决实际问题。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、分析、归纳,发现数学规律。
2.合作交流法:学生分组讨论,分享各自的发现和思考,共同探索数学规律。
3.实践操作法:学生通过动手操作,验证规律的正确性,加深对规律的理解。
六. 教学准备1.教师准备:教师需要准备相关的教学素材,如数字变化规律的图片、图形变化规律的例子等。
2.学生准备:学生需要提前预习本节课的内容,了解探索数学规律的基本方法。
七. 教学过程1.导入(5分钟)教师通过提出一个简单的数字变化规律问题,激发学生的学习兴趣,引导学生进入本节课的主题。
2.呈现(15分钟)教师展示相关的数字变化规律的图片和图形变化规律的例子,让学生观察、分析,尝试归纳出规律。
3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水.2只青蛙2张嘴,4只眼睛8条腿.扑通一声跳下水,3只青蛙3张嘴,6只眼睛12条腿,扑通1声跳下水……(2)联欢会上,小明按照4个红球、3个黄球、2个绿球、1个白球的顺序把气球串起来装饰会场,第52个气球是什么颜色?教师提出问题引导学生进行解决,初步感受探索规律.二、探究新知1.提出问题“低多边形风格”是一种数字艺术设计风格.它将整个区域分割为若干三角形,通过把相邻三角形涂上不同颜色,产生立体及光影的效果,随着三角形数量增加,效果更为斑斓绚丽.将长方形区域分割成三角形的过程是:在长方形内取一定数量的点,连同长方形的4个顶点,逐步连接这些点,保证所有连线不再相交产生新的点,直到长方形内所有区域都变成三角形.如图3-10,当长方形内有1个点时,可分得4个三角形;当长方形内有2个点时,可分得6个三角形(不计被分割的三角形).问题:当长方形内有35个点时,可分得多少个三角形?2.理解问题(1)先引导学生动手画一画,感受分割得到三角形的过程.(2)已知条件是什么?目标是什么?3.拟订计划(1)直接研究“长方形内有35个点”的情形,你遇到了什么困难?(2)哪些情形容易研究?从中你能发现什么规律?(3)你发现的规律正确吗?你能给出合理的解释吗?4.实施计划(1)先研究长方形内有三个点、四个点的情形,点数较少,易操作.(2)通过几种简单情形的数据,发现规律:长方形内点的个数每增加1,三角形的个数增加2.(3)得出结论:当长方形内有35个点的时候,分得的三角形个数是:4+2×34=725.回顾反思(1)从特殊到一般,当长方形内有n个点时,分得的三角形个数是多少?用含n的代数式来表示.归纳:4+2×(n-1)=2n+2(2)从一般再到特殊,当长方形内有100、1000、10000个点时,分得的三角形个数是多少?总结:在运用归纳策略寻找规律时,要先在若干简单情形中寻找相应的规律.初步发现规律后,可以通过更多的情形验证,再考虑一般情况.最后,试着给出合理的解释,并用数学语言简洁地表达规律.三、课堂练习教材P102~P103第1~4题.四、课堂小结本节课你有哪些收获呢?五、课后作业教材P107~P108第17,18,19题.本节课的教学过程中,教师通过设计不同的情景活动,引导学生去猜测,发现其中的规律,并尝试用代数式解释这个规律,让同学们体验从特殊到一般的教学思想.整个课堂同学们积极参与,合作交流,提高了他们探索、发现和归纳的能力.。
第三章字母表示数
6.探索规律(二)
一、学生起点分析:
本节内容是北师大版数学教材七年级上册第三章《字母表示数》的最后一节——“6.探索规律”的第二课时,它既是对全章知识的复习巩固,也是对全章知识的综合运用。
在本节课前,学生在《字母能表示什么》与《去括号》等节的学习中,已经初步地进行了对简单图形规律的探索,也得到了从不同角度分析问题方法的训练。
再加上上一课时学生对生活中熟悉的日历及其简单图形的规律的探索,在学生的头脑中已经基本形成了探索规律的方法和技巧,这些均为本节课的顺利完成做好了铺垫。
二、教学任务分析:
本节课的学习内容都是现实生活和数学计算中常见的、而且是学生熟知的,规律的发现也相对比较容易,学生完全可以通过“做数学”开展独立探索或小组合作学习完成学习任务。
本节内容具有较强的趣味性、挑战性和探索性,因此是一节极好的培养学生数学兴趣和爱好的数学活动课,更是一节培养学生学会研究数学问题的探究课。
以面向全体学生为重点,教材以学生熟知的生活中摆放桌椅问题为情境,设置问题串,为学生提供了充分的探索规律的活动,让学生在经历符号化的过程后,进一步体会用字母表示数和用代数式表示规律的含义和方法,进一步体会“从特殊到一般、再到特殊”的辩证思想。
通过“摆放桌椅”问题给他们提供探索的机会并让他们尝试到探索成功的快乐,以此来激发学生探索规律的兴趣,增强他们的学习信心,培养他们的学习热情。
另外,教材还为学生设置了“探索简单数列的变化规律”的内容,让学生进一步掌握“探索数量关系,运用符号表示规律,通过验算验证规律”的方法和技能。
并通过“摆放桌椅”和“简单数列”问题的对照来培养学生从生活中发现数学问题的意识和用数学方法解决生活问题的能力。
根据以上分析,可确定本节课的教学目标如下:
1、知识与技能
(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。
(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。
2、过程与方法
(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。
(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。
(3)教育科研的有效运用,以培养全体同学的参与和动手能力为终极目标。
3、情感、态度与价值观
通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。
教学重点:探索实际问题中蕴涵的关系和规律。
教学难点:用字母、符号表示一般规律。
三、教学过程设计:
本节课设计了六个教学环节,第一环节:复习铺垫、导入新课;第二环节:创设情境、设疑激趣;第三环节:自主探究、合作交流;第四环节:动手操作、实践新知;第五环节:变式训练、巩固提高;第六环节:归纳小结、评价升华。
具体内容和过程分析如下:
第一环节复习铺垫、导入新课
内容:
让学生通过反思以往的探索活动过程,明晰一些重要的探索规律方法。
教师适时引出本课主题:探索规律(2)。
目的:通过对上节课的简要回顾,再现学生探索规律的方法,为本节课作好必要的铺垫和准备。
效果:知识的学习是一个由“旧”到“新”,由“易”到“难”,由“少”到“多”的过程,上面简要的提问和回答,其实是一个对知识梳理的过程,也是一个为学
生学习本节课指引方向和方法的过程,还是一个承上启下、自然过渡的过程。
因而教学很自然地就过渡到了下一个环节,达到了复习铺垫、过渡自然、导入新课的目的。
第二环节创设情境、设疑激趣
内容:
设计学生熟悉并感兴趣的、具有探索空间的问题情景,或直接给出教材中的实例,以激发学生的兴趣和探究欲望。
目的:
创设情境、设疑激趣,目的是把学生置于一种探究的欲望之中。
让学生欲答而不能,欲说而无语,迫使学生不得不去思,不得不去想,不得不去“做数学”。
同时,设置情境也达到了丰富教学内容的作用。
效果:
联系实际学数学,学生就会感到熟悉,设置疑难让学生来解决,学生就会感到有事做,就会感到自身的价质。
因此,学生就有了对该问题探究的欲望,更有了后面学习的情感储备和思维、灵感储备。
第三环节自主探究、合作交流。
内容:
探索上述问题情境中蕴含的数学规律。
在活动过程中,教师应及时了解学生的活动情况,或以合作者的身份参与交流、或及时给出必要的帮助。
讨论结束后,在班级组织交流。
目的:
一是给学生自主探究的时间和空间,让学生学会独立思考问题的习惯,再次经历探索数量关系、运用符号表示规律、通过计算验证规律的过程,进一步发展其符号感。
二是给学生交流表达的机会,让学生明确说理的方法和技巧,并能对简单的规律进行解释。
效果:
一是因为本环节的场景是学生生活中非常熟悉的事物,因此有效地调动了学
生的积极性。
二是由于给了学生自主探究的时间和空间,所以学生在回答问题时快而准确,也较好地培养了学生独立解决问题的能力。
三是师生共同交流较为充分,并不断鼓励学生用不同方法解释规律,倡导探索规律方法的多样性。
这些都较好地帮助学生突破了用含n的代数式表示出桌椅摆放的规律这一重点和难点问题。
同时经过尝试比较,也培养了学生优化方案设计的意识。
第四环节动手操作、实践新知
内容:
完成教材第126页做一做。
在学生完成问题解答以后,适时提出反思性
要求,尤其是对解决问题方法的反思,以帮助学生归纳出具有一般意义的基本
方法:
“特殊—一般—特殊”的方法;“观察、分析、比较、归纳、猜想、验证”
的过程。
目的:
通过这一环节,让学生感受这种探索规律的方法与上一环节中探索规律方法的共同点和不同之处,使学生明白不同的问题需要灵活对待,切不可生搬硬套。
同时让学生在这个问题的讨论中明白,对于这种数列的规律的探索思路是从渐变趋势中得出变化规律的。
这是对探索规律过程的再次体验,通过这个过程让学生体会到探索规律的方法的多样性,以培养学生的发散思维和创新精神。
效果:
通过计算,学生很快能够明白数列的规律和变化趋势,并可根据这个规律或趋势来作出正确的结论。
由于这部分内容并不是很难,所以教师要敢于放手让学生自己“做数学”,要积极参与学生的活动,在巡视的过程中兼顾对学困生的指导和帮助,这样的效果就会更好。
第五环节变式训练、巩固提高
内容:
完成教材第127页问题解决及其相关拓展内容。
如:
下列每个图是由若干盆花组成的“△”图案,每条边有n (n>1)盆花,每个图案花盆的总数是S ,按此规律推断,S 与n 关系式为 。
目的:
安排学生独立作业,对学生进行变式训练,目的是让学生巩固所学知识,进一步掌握探索规律的方法和技能。
设计变式训练的另一个目的是拓展探索规律的范围,以便开拓学生视野,训练学生的发散思维品质。
效果:
同学们基本上能独立完成本环节的第1题和第2题,一部分同学还能完成第3题,另一部分同学开始对于算式S=1+2+3+4+……+n=()2
1+n n ,(n >1)这个结果不是很理解,但在教师引导学生分析后都能理解和明确,并能很好地掌握。
第六环节 归纳小结、评价升华
内容:
教师指导学生归纳与整理所感受的方法;布置作业。
目的:
通过学生归纳小结和完成作业,目的是帮助学生梳理知识体系,提炼思维方法,揭示事物的规律。
通过对学生学习情况的了解,对学生作出真实、可靠并带有鼓励性的评价,帮助学生对自己的学习情况有个确切地了解和树立长久的学习热情。
同时也是为了帮助学生巩固所学知识,提高学生的独立思考问题的能力和灵活运用能力。
效果:
由学生在课中进行归纳总结时的精彩表现,到课后教师对学生作业的批改,可以说学生顺利地通过了对全节的回顾而较好地完成了“特殊——一般——特殊”抽象过程。
通常情况下学生能够在课内完成作业题的第1、第2两题,第
3……
题可让学有余力的同学选做。