新北师版初中数学八年级下册3.2第2课时旋转作图过关习题和解析答案
- 格式:doc
- 大小:987.00 KB
- 文档页数:4
旋转的基本作图一、选择题1、将如图绕某点逆时针旋转90°后,得到的图形是()A.B.C.D.2、如下左图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A.B.C.D.3、在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.二、解答题4、已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转90°得到的.(不写作法保留作图痕迹)5、我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心,旋转的角度称为旋转角.如图,△ABC经过旋转得到△DEF.试用直尺和圆规作出旋转中心(保留作图痕迹,不写作法).6、(1)图1,平移方格纸中的图形,使点A平移到点A′处,画出移后的图形.(2)在图2方格纸中画出三角形绕O点逆时针旋转90°后的图形.7、实验操作(1)如图1,在平面直角坐标系xOy中,△ABC的顶点的横、纵坐标都是整数,若将△ABC以点P(1,-1)为旋转中心,按顺时针方向旋转90°得到△DEF,请在坐标系中画出点P及△DEF;(2)如图2,在菱形网格图(最小的菱形的边长为1,且有一个内角为60°)中有一个等边△ABC,它的顶点A,B,C都落在格点上,若将△ABC以点P为旋转中心,按顺时针方向旋转60°得到△A′B′C′,请在菱形网格图中画出△A′B′C′.其中,点A旋转到点A′所经过的路线长为 __________ .8、如图,△ABC中,∠C=90°,将△ABC绕点A旋转得到△AB1C1,点C的对应点C1恰好落在AB边上.(1)作图:作出△AB1C1(保留作图痕迹,不要求写作法);(2)已知AC=5,BC=12,求BB1的长.9、如图,已知边长为a的正方形ABCD.求作该正方形绕点A逆时针旋转30°后的正方形AB1C1D1.(说明:请用无刻度的直尺和圆规作图,并保留作图痕迹)10、如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).11、画△ABC绕O点顺时针方向旋转90°后得到△A′B′C′.12、如图,在10×10的小正方形网格中,△ABC的顶点A、B、C在网格点上,P1、P2、P3、P4是其中一个小正方形的四个格点,将△ABC绕A点逆时针旋转90°,再向下平移2个单位,得到△A′B′C′;将△ABC按一定的规律顺次旋转,第一次将△ABC绕点P1逆时针旋转90°得到△A1B1C1;第二次将△A1B1C1绕点P2逆时针旋转90°得到△A2B2C2;第三次将△A2B2C2绕点P3逆时针旋转90°得到△A3B3C3,依次按旋转中心为P1、P2、P3、P4、P1、P2…旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)△ABC至少旋转第__________次后所得的三角形刚好与△A′B′C′重合.13、如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.14、请按下面要求画图(1)请在图1中画出一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形;(2)在图2中,将直角梯形ABMN绕点M按逆时针旋转180°,画出旋转后的图形.15、分析图①、②、④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.旋转的基本作图的答案和解析一、选择题1、答案:C试题分析:抓住几个关键图形逆时针旋转90°后的位置,结合选项进行判断即可.试题解析:绕某点逆时针旋转90°后,得到的图形是.故选C.2、答案:B试题分析:认真观察旋转得到的图案,找到旋转中心,即可判断.试题解析:A、顺时针,连续旋转60度,三次即可得到.B、不能作为“基本图案”.C、旋转180度,即可得到.D、旋转60度即可.故选B.3、答案:B试题分析:根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90°后的形状即可选择答案.试题解析:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选B.二、解答题4、答案:试题分析:利用旋转的性质分别得出对应点位置进而得出答案.试题解析:如图所示:四边形A′B′C′D′即为所求.5、答案:试题分析:根据旋转的性质,连接对应点AD、BE,再分别作AD、BE的垂直平分线,相交于点O,则点O即为旋转中心.试题解析:如图所示,点O即为△ABC旋转到△DEF的旋转中心.6、答案:试题分析:(1)利用网格特点和平移的性质画图;(2)利用网格特点和旋转的性质画图.试题解析:(1)如图1:(2)如图2:7、答案:试题分析:(1)先做出P点,然后找出点A、B、C绕点P顺时针旋转90°的位置,然后顺次连接即可;(2)找出点A、B、C绕点P顺时针旋转60°的位置,顺次连接A'B'、B'C'、C'A',然后根据弧长公式求出点A旋转到点A′所经过的路线长.试题解析:(1)(2)所作图形如下:;点A的运动路线==π.故答案为:π.8、答案:试题分析:(1)以点A为圆心,以AC为半径画弧,与AB相交于点C1,再以点A为圆心,以AB为半径画弧,以C1为圆心,以CB为半径画弧,两弧相交于点B1,然后顺次连接即可;(2)利用勾股定理列式求出AB,再求出BC1,再利用勾股定理列式计算即可得解.试题解析:(1)△AB1C1如图所示;(2)由勾股定理得,AB==13,BC1=13-5=8,B1C1=12,所以,BB1==4.9、答案:试题分析:①以点A为圆心,AD长为半径作圆,再以点D为圆心,DA长为半径作弧,与圆的交点为E,连接AE,DE,△ADE就是一个等边三角形.∠EAD=60°;②作∠EAD的角平分线,得到一个30°的角,角平分线与圆的交点为D1;③连接AC,以AC为一边根据②中30度的角作∠CAC1=30°,以点A为圆心,AC长为半径画弧与角的另一边交点为C1;④以AB为一边,作∠BAB1等于已知角30度,与圆的交点为B1.试题解析:所作图形如下:10、答案:试题分析:(1)按图2中的程序旋转一一找到对应点,第一次是绕点A顺时针旋转90°,得到对应点,再绕点B顺时针旋转90°,得到对应点.再绕点C顺时针旋转90°,得到对应点,再绕点D顺时针旋转90°,得到对应点即可.(2)从中可以看出它的路线长是4段弧长,根据弧长公式计算即可.(1)如图;(2)∵,∴点P经过的路径总长为6π.11、答案:试题分析:根据旋转的性质,将A,B,C绕O点顺时针旋转90°,由此即可画出旋转后的图形.试题解析:如图所示:12、答案:试题分析:(1)根据旋转和平移的概念在网格中画出△A′B′C′和△A2B2C2;(2)根据△ABC的旋转规律,把△ABC进行旋转,得到三角形刚好与△A′B′C′重合的旋转次数.试题解析:(1)如图:(2)把点A按照△ABC的旋转规律进行旋转,可以发现旋转第5次后所得的三角形刚好与A′重合,故答案为:5.13、答案:试题分析:将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.因为方格的比例就是b:a,所以只要顺时针旋转90°,在格点上的还让它在格点上,得到的图形就是所求的图形.试题解析:14、答案:试题分析:(1)画出一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形;根据等腰梯形的性质,即可作出图形;(2)将直角梯形ABMN绕点M按逆时针旋转180°,根据旋转的性质,即可作出旋转后的图形.试题解析:(1)如图1:(2)如图2:15、答案:试题分析:由①到②是旋转了90°,由②到④是旋转了180度,即通过两次旋转90度得到,据此即可判断.试题解析:如图。
找出旋转图形的旋转方向、旋转中心、旋转角一、选择题1、如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°2、如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)3、在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△,则其旋转中心可能是( )A .点AB .点BC .点CD .点D4、如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)5、在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D6、如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°7、如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q8、如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°二、填空题9、如图,在▱ABCD中,∠A=70°,将▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1= __________ .10、分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是__________度.11、如图所示,两个全等的正方形ABCD与CDEF,旋转正方形ABCD能和正方形CDEF重合,则可以作为旋转中心的点有__________个.三、解答题12、在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.13、如图,在△BDE中,∠BDE=90°,BD=4,点D的坐标是(5,0),∠BDO=15°,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为 __________ .14、如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE= __________ ,正方形ABCD的边长= __________ ;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.15、如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 __________ .16、如图是两个等边三角形拼成的四边形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心.(2)若△ACD旋转后能与△ABC重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.17、如图1,△ABC为边长为6的等边三角形,点D为AB边上的点,且AD=2BD;过D作DE∥BC交AC边于E;AH⊥BC于H,AH交于DE于点O.(1)求梯形BDEC的面积;(2)将图1中的△ADE以每秒1个单位长度的速度沿直线AH从上往下平移,直到点A与点H重合为止,设运动时间为t秒,△ADE与四边形BDEC重叠部分的面积为S,请求出S与t的函数关系,并写出相应的t的取值范围;(3)将图1中的△ADE沿直线DE向下翻折得△A′DE,连接CO:将△A′DE绕点O旋转,设直线A′O与直线BC相交于点P.问:是否存在这样的时刻,使得△CPO为等腰三角形?若存在,直接写出△A′DE绕点O旋转的方向(顺时针或逆时针)以及对应的旋转角度α的大小(0°<α<180°);若不存在,请说明理由.找出旋转图形的旋转方向、旋转中心、旋转角的答案和解析一、选择题1、答案:A试题分析:利用旋转的性质计算.解:∵∠ABC=60°,∴旋转角∠CB=180°-60°=120°.∴这个旋转角度等于120°.故选:A.2、答案:B试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1).故选B.3、答案:B试题分析:连接、、,分别作、、的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.解:∵△MNP绕某点旋转一定的角度,得到△,∴连接、、,作的垂直平分线过B、D、C,作的垂直平分线过B、A,作的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.4、答案:B试题分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心。
八年级数学下册第三章图形的平移与旋转3.2.2 图形的旋转课后作业(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第三章图形的平移与旋转3.2.2 图形的旋转课后作业(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第三章图形的平移与旋转3.2.2 图形的旋转课后作业(新版)北师大版的全部内容。
3.2.2图形的旋转课后作业1。
已知如图1所示的四张牌,若将其中一张牌旋转180º后得到图2,则旋转的牌是()2。
已知点A的坐标为(a,b),O为坐标原点,连结OA,将线段O A绕点O按逆时针方向旋转90°得OA₁,则点A₁的坐标为()。
A.()-, D.()b a-,b aa b, C.()-, B.()a b-3. 如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.4.如图,将△ABC绕点A顺时针旋转60°得到△A ED,若线段AB=5,求出BE的长是多少?参考答案1.A,2.C,3. 4,724.解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=5.。
2020春北师大版八下数学3.2图形的旋转同步练习(第1课时)旋转的概念与性质1.有四个图案,它们绕中心旋转一定的度数后都能和原来的图案相互重合.其中有一个图案与其余三个图案旋转的度数不同,它是()2.[2017·福州二模]如图30-7,△ABC中,∠ABC=50°,∠C=30°,将△ABC绕点B 逆时针旋转角α (0°<α≤90°)得到△DBE,若DE∥AB,则α为()图30-7A.50°B.70°C.80°D.90°3.如图30-8,将左边的“心形”图案绕点O顺时针方向旋转95°得到右边的“心形”图案.如果∠BOC=75°,BO=2.8 cm,则∠DOF=________,∠COD=________,DO=________.图30-84.如图30-9所示,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A 为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.图30-95.如图30-10所示,在Rt△ABC中,∠ABC=90°,AB=BC=2,将Rt△ABC绕A点逆时针旋转45°后得到Rt△ADE,则CD=.图30-106.如图30-11,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0),现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是________.图30-117.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?8.如图30-12所示,将两个斜边长相等的三角形纸片按图①放置,其中∠ACB=∠CED =90°,∠A=45°,∠D=30°,把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()图30-12A.10°B.20°C.7.5°D.15°9.如图30-13,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度,△AOC与△BOD关于直线对称,则对称轴是_______,△AOC绕原点O顺时针旋转得到△DOB,则旋转角可以是________度;(2)连接AD,交OC于点E,求∠AEO的度数.图30-13参考答案1.B 2.C 3.75°20° 2.8 cm4.25 5.22-2 6.(2,1)7.90°30°8.D9.(1)2y轴120(2)90°(第2课时)旋转作图1.如图31-6,将△ABC绕点P顺时针旋转得到△A′B′C′,则点P的坐标是()A. (1,1)B.(1,2)C.(1,3) D.(1,4)图31-62.如图31-7,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()图31-7A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移33.[2017·建邺区一模]如图31-8,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针旋转到△COD的位置,则旋转角为________.图31-84.在如图31-9所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的三个顶点都在格点(每个小方格的顶点叫格点)上.画出△ABC绕点O逆时针旋转90°后的△A′B′C′.图31-95.如图31-10,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.图31-106.[2017·福建]如图31-11,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则点P′所在的单位正方形区域是()图31-11A.1区B.2区C.3区D.4区7.如图31-12,在Rt△ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)△BDE可由△ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法).图31-12参考答案【分层作业】1.B 2.A 3.90° 4.略5.(1)略(2)略(3)(0,-2) 6.D7.略(第3课时)坐标系中的平移作图1.[2017·邵阳]如图29-5,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()图29-5A.Q′(2,3),R′(4,1) B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1) D.Q′(3,3),R′(3,1)2.如图29-6,点A,B的坐标分别为(1,0),(0,2).若将线段AB平移到A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a+b=________.图29-63.如图29-7,在平面直角坐标系中,点B的坐标为(4,2),过点B作BA⊥x轴于点A,连接OB.(1)将△OAB平移得到△O′A′B′,点A,B,O的对应点分别是A′,B′,O′,且点B′的坐标为(2,-1),在平面直角坐标系中画出平移后的△O′A′B′;(2)若连接AA′,OO′,求四边形OO′A′A的面积.图29-74.如图29-8所示,△ABC中,任意一点P(a,b)经平移后的对应点是P1(a-2,b+3).将△ABC作同样的平移得到△A1B1C1,求点A1,B1,C1的坐标.图29-85.如图29-9,A,B两点的坐标分别为A(2,2),B(5,0).(1)求△OAB的面积;(2)若将△OAB向左平移2个单位长度得△O′A′B′,求△O′A′B′三个顶点的坐标.图29-9参考答案【分层作业】1.A 2.2 3.(1)略(2)124.A1(-1,4)B1(-3,2)C1(2,1)5.(1)5(2)O′(-2,0)A′(0,2)B′(5-2,0)。
3.2图形的旋转一、选择题1.平面图形的旋转一般情况下改变图形的()A.位置B.大小C.形状D.性质2..9点钟时,钟表的时针和分针之间的夹角是()A.30°B.45°C.60°D.90°3.将平行四边形ABCD旋转到平行四边形A′B′C′D′的位置,下列结论错误的是()A.AB=A′B′B.AB∥A′B′C.∠A=∠A′D.△ABC≌△A′B′C′4.如图3-52所示,请仔细观察A,B,C,D四个图案,其中与E图案完全相同的是( )5.如图3-53所示,把菱形ABOC(四条边都相等)绕点O顺时针旋转得到菱形DFOE,则下列角中,不是旋转角的为()A. ∠BOFB. ∠AODC. ∠COED. ∠AOF6.如图3-54所示,把△ABC绕点C顺时针旋转90°得到△DEC,若∠A=25°,则∠CED等于()A.55°B.65°C.45°D.75°7.如图3-55所示,该图案是经过( )A.平移得到的B.旋转或轴对称得到的C.轴对称得到的D.旋转得到的二、填空题8.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______. 9.菱形ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',则四边形D C B A ''''是__________.10.△ABC 绕一点旋转到△A ′B ′C ′,则△ABC 和△A ′B ′C ′的关系是_______.11.钟表的时针经过20分钟,旋转了_______度.12.图形的旋转只改变图形的_______,而不改变图形的_______.13.如图3-56所示,△ABC 与△A ′B ′C ,是全等三角形,那么△A ′B ′C ,可以看做是由△ABC 以O 为旋转中心,旋转 度形成的.14.等边三角形至少要旋转 度才能与自身重合.15.如图3-57所示,钟表的指针AOBC 绕中心O 沿顺时针方向旋转60°得到四边形DOEF ,那么四边形DOEF 绕中心O 沿顺时针方向旋转 度才能得到四边形AOBC . 三、探索·创新16.下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.17.在四边形ABCD 中,∠ADE=∠B=900,DE ⊥AB,垂足为E,且DE=EB=5,请用旋转图形的方法求四边形ABCD 的面积.18.如图3-58所示,分析下列图形中阴影部分的分布规律,按此规律在图(3)中画出其中的阴影部分.19.如图3-59所示,边长为4的正方形ABCD 绕点D 逆时针旋转30°后能与四边形A ′B ′C ′D ′重合. (1)旋转中心是哪一点?(2)四边形A ′B ′C ′D ′,是怎样的图形?面积是多少? (3)求∠C ′DC 和∠CDA ′的度数; (4)连接AA ′,求∠DAA ′的度数.20.如图3-60所示,△ABC 外侧有正方形ABDE 与正方形ACFG ,请你设计一个方案,将△ABC 旋转一个角度,使得△AEG 与由△ABC 旋转得到的三角形的一边重合,另一边在同一条直线上.21.如图3-61所示,画出△ABC 绕点O 逆时针旋转60°后得到的△DEF ,使A,┌ ┌DCA E BB,C的对应点分别为D,E,F.答案1. A (旋转的性质)2. D3. B4.C5.D6.B7.B8. 旋转9. 菱形10. 全等11. 10 (时针每小时旋转30度)12. 位置形状和大小13.18014.12015.300[提示:都按顺时针方向旋转,由四边形AOBC到DOEF的旋转角度为60°,则由四边形DOEF到AOBC的旋转角度为360-60°=300°.]16. △OAE和△OBF,△OEB和△OFC,△OAB和△OBC,旋转的角度为90°17. 25(使三角形ADE绕点D旋转,使得旋转后边AD与边DC重合,通过割补则原图形变换为一个正方形,求出正方形的面积即可。
3.2图形的旋转同步习题一.选择题1.下列图形中,不是旋转对称图形的是()A.正三角形B.等腰梯形C.正五边形D.正六边形2.下列各图中,能通过一个三角形绕一点旋转一次得到另一三角形的图形是()A.B.C.D.3.把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°4.如图,把△OAB绕点O逆时针旋转80°,得到△OCD,则下列结论错误的是()A.BD=OB B.AB=CD C.∠AOC=∠BOD D.∠A=∠C5.如图,在△ABC中,∠B=50°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,则∠CB′C′的度数为()A.50°B.60°C.80°D.100°6.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B 的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A.①②B.②③C.③④D.②③④7.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上一点(点D不与点B,点C重合),将AC绕点A顺时针旋转至AC1,AC1交BC于点H,且AD平分∠CAC1,若DC1∥AB,则点B到线段AD的距离为()A.2B.C.4D.38.如图,将△ABC绕A点逆时针旋转60°得到△ADE,连接CD,若∠CDE=90°,则∠BCD 的度数是()A.110°B.120°C.130°D.150°9.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A.12°B.15°C.25°D.30°10.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,点D是BC上的一点,BD=1,点P是AC上的一个动点,连接DP,将线段DP绕点D顺时针旋转90°得到线段BQ,连接BQ,则线段BQ长的最小值是()A.1B.2C.D.二.填空题11.如图,在△ABC中,∠BAC=105°,将△ABC绕点A逆时针旋转得到△AB′C′.若点B 恰好落在BC边上,且AB′=CB′,则∠C′的度数为°.12.如图,Rt△ABC和Rt△DCE中,∠ACB=∠DCE=90°,∠A=30°,∠E=45°.B,C,E三点共线,Rt△ABC不动,将△DCE绕点C逆时针旋转α(0°<α<360°),当DE∥BC 时,α=.13.如图,等边△ABC,边长为4,动点D从点B出发,沿射线BC方向移动,以AD为边在右侧作等边△ADE,取AC中点F,连接EF,当EF的值最小时,BD=.14.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.15.如图,在Rt△ABC中,∠C=90°,∠A=30°,点P在AC边上,以点P为中心,将△ABC 顺时针旋转90°,得到△DEF,DE交边AC于G,当P为中点时,AG:DG的值为.三.解答题16.如图,D是△ABC的边BC延长线上一点,连接AD,把△ACD绕点A顺时针旋转60°恰好得到△ABE,其中D,E是对应点,若∠CAD=18°,求∠EAC的度数.17.如图,P是等边△ABC内的一点,且P A=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.(1)求点P与点Q之间的距离;(2)求∠BPC的度数;(3)求△ABC的面积.18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).分别画出下列图形.(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0);(2)若△ABC和△A2B2C2关于原点O成中心对称图形;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3.参考答案一.选择题1.解:A、正三角形旋转120°,可以与原图形重合,是旋转对称图形,不合题意;B、等腰梯形,不是旋转对称图形,符合题意;C、正五边形旋转72°,可以与原图形重合,是旋转对称图形,不合题意;D、正六边形旋转60°,可以与原图形重合,是旋转对称图形,不合题意;故选:B.2.解:根据旋转的定义,A,B,C中的三角形绕一点旋转一次不能得到另一三角形,不符合题意,选项D符合题意.故选:D.3.解:五角星可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360°÷5=72°,故选:B.4.解:∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠A=∠C,∠AOC=∠BOD,AB=CD,OB=OD,∵∠BOD≠90°,∴BD≠OB.故选:A.5.解:∵将△ABC绕点A按逆时针方向旋转得到△A′B′C′,∴AB=AB′,∠C′B′A=∠B,∴∠AB′B=∠B,∵∠B=50°,∴∠C′B′A=∠AB′B=50°,∴∠CB′C′=180°﹣∠C′B′A﹣∠AB′B=80°,故选:C.6.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①错误,③正确;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误.故选:C.7.解:如图,过点B作BF⊥AD于F,过点A作AE⊥BC于E,∵AB=AC=10,BC=16,AE⊥BC,∴CE=BE=8,∠C=∠ABC,∴AE===6,∵将AC绕点A顺时针旋转至AC1,∴AC=AC1,∵AD平分∠CAC1,∴∠CAD=∠C1AD,在△ACD和△AC1D中,,∴△ACD≌△AC1D(SAS),∴∠C=∠C1,∵DC1∥AB,∴∠C1=∠HAB,∵∠ADB=∠C+∠CAD,∠DAB=∠DAC1+∠HAB,∴∠DAB=∠ADB,∴AB=DB=10,∴DE=BD﹣BE=2,∴AD===2,∵S△ABD=×BD×AE=×AD×BF,∴10×6=2×BF,∴BF=3,故选:D.8.解:∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠CAE=60°,∠E=∠ACB,∴∠CAE+∠CDE=360°﹣(∠ACD+∠E),∵∠BCD=360°﹣∠ACB﹣∠ACD=360°﹣(∠ACD+∠E),∴∠BCD=∠CDE+∠CAE=60°+90°=150°,故选:D.9.解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,∴∠ABB′=∠AB′B=(180°﹣30°)=75°,∵∠BCB=90°,∴∠BB′C=90°﹣75°=15°,故选:B.10.解:过点D作DT⊥BC交AC于点T,在DC上取一点G,使得DG=DT,连接TG,GQ,过点B作BR⊥QG于R.∵∠TDC=∠PDQ=90°,∴∠PDT=∠GDQ,在△PDT和△QDG中,,∴△PDT≌△QDG(SAS),∴∠DTP=∠DGQ,∴点Q在射线GQ上运动,∠DGQ是定值,∵∠TDC=∠B=90°,∴DT∥AB,∴=,∠DTC=∠A,∴=,∠DGQ=∠A,∴DT=DG=,∵∠ABC=90°,AB=2,BC=4,∴AC===2,∴sin∠DGR=sin∠A,∴=,∴=,∴BR=,根据垂线段最短可知,当BQ与BR重合时,BQ的值最小,最小值为.故选:D.二.填空题11.解:∵∠BAC=105°,∴∠B+∠C=75°,∵AB′=CB′,∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AB=AB',∴∠B=∠AB'B=2∠C,∴∠C=25°,故答案为:25.12.解:如图1,当DE位于BC的上方,∵DE∥BC,∴∠D=∠BCD,∵∠E=45°,∠DCE=90°,∴∠D=90°﹣∠E=45°,∴∠BCD=45°,∴α=∠ACD=45°,如图2,当DE位于BC的下方,∵DE∥BC,∴∠E=∠BCE=45°,∴α=∠ACB+∠BCE+∠ECD=90°+45°+90°=225°,∴当DE∥BC时,α=45°或225°.故答案为:45°或225°.13.解:如图,连接CE,∵点F是AC的中点,∴AF=CF=2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,∠ABD=∠ACE=60°,∴点E在∠ACB的外角的角平分线上运动,∴当EF⊥CE时,EF有最小值,∴∠CFE=30°,∴CE=CF=1,∴BD=1,故答案为1.14.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.15.解:设BC=x,在Rt△ABC中,∠A=30°,∴AB=2x,AC=x,∵点P是AC中点,∴PC=P A=x,由旋转得,DP=DF=AC=x,DG=DE=AB=x,根据勾股定理得,PG===x,∴AG=AP﹣PG=x﹣x,∴==.故答案为.三.解答题16.解:∵把△ACD绕点A顺时针旋转60°恰好得到△ABE,∴∠DAE=60°,∴∠EAC=∠EAD﹣∠CAD=42°.17.解:(1)连接PQ,如图1,∵△ABC是等边三角形,∴∠ABC=60°,BA=BC,∵△QCB是△P AB绕点B逆时针旋转得到的,∴△QCB≌△P AB,∴BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,∵BP=BQ=4,∠PBQ=60°,∴△PBQ是等边三角形,∴PQ=PB=4;(2)∵QC=5,PC=3,PQ=4,而32+42=52,∴PC2+PQ2=CQ2,∴△PCQ是直角三角形,且∠QPC=90°,∵△PBQ是等边三角形,∴∠BPQ=60°,∴∠BPC=∠BPQ+∠QPC=60°+90°=150°;(3)如图2,过点C作CH⊥BP,交BP的延长线于H,∵∠BPC=150°,∴∠CPH=30°,∴CH=PC=,PH=HC=,∴BH=4+,∴BC2=BH2+CH2=+(4+)2=25+12,∵S△ABC=BC2,∴S△ABC=(25+12)=+9.18.解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2即为所求作.(3)如图,△A3B3C3即为所求作.。
《图形的旋转》习题一、选择题1.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是( )A.36°B.60°C.72°D.90°3.下面的图形(1)-(4),绕着一个点旋转120°后,能与原来的位置重合的是( )A.(1),(4)B.(1),(3)C.(1),(2)D.(3),(4)4.在平面上有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°5.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( )A.甲B.乙C.丙D.丁6.下面四个图案中,是旋转对称图形的是( )A. B. C. D.7.如图所示的图形中,是旋转对称图形的有( )A.1个B.2个C.3个D.4个二、填空题8.请写出一个既是轴对称图形又是旋转对称图形的图形_____.9.将等边三角形绕其对称中心O旋转后,恰好能与原来的等边三角形重合,那么旋转的角度至少是_____.10.如图所示的五角星_____旋转对称图形.(填“是”或“不是”).11.给出下列图形:①线段、②平行四边形、③圆、④矩形、⑤等腰梯形,其中,旋转对称图形有_____(只填序号).三、解答题12.如下图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为5cm2,∠AOB=120°,则图中阴影部分的面积之和为多少cm2.13.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?14.如图,△ABC和△BED是等边三角形,则图中三角形ABE绕B点旋转多少度能够与三角形重合.15.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案一、选择题1.答案:A解析:【解答】①正方形旋转的最小的能与自身重合的度数是90度,正确;②长方形旋转的最小的能与自身重合的度数是180度,错误;③等边三角形旋转的最小的能与自身重合的度数是120度,错误;④线段旋转的最小的能与自身重合的度数是180度,错误;⑤角旋转的最小的能与自身重合的度数是360度,错误;⑥平行四边形旋转的最小的能与自身重合的度数是180度,错误.故选A.【分析】根据旋转对称图形的旋转角的概念作答.2.答案:C解析:【解答】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C【分析】分清基本图形,判断旋转中心,旋转次数,旋转一周为360°.3.答案:C解析:【解答】①旋转120°后,图形可以与原来的位置重合,故正确;②旋转120°后,图形可以与原来的位置重合,故正确;③五角星中心角是72°,120不是72的倍数,图形无法与原来的位置重合,故错误;④旋转90°后,图形无法与原来的位置重合,故错误.故选C.【分析】根据旋转的性质,对题中图形进行分析,判定正确选项.4.答案:B解析:【解答】因为菱形是中心对称图形也是旋转对称图形,要使它与原来的菱形重合,那么旋转的角度至少是180°.故选B.【分析】根据中心对称图形、旋转对称图形的性质.5.答案:B解析:【解答】圆被平分成八部分,旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故选B【分析】根据圆周角的度数.6.答案:D解析:【解答】A、B、C不是旋转对称图形;D、是旋转对称图形.故选D.【分析】根据旋转的定义.7.答案:C解析:【解答】旋转对称图形的有①、②、③.故选C【分析】图形①可抽象出正六边形,图形②可抽象出正五边形,图形③可抽象出正六边形,而④中为等腰三角形,然后根据旋转对称图形的定义进行判断.二、填空题8.答案:圆(答案不唯一)解析:【解答】根据旋转对称图形和轴对称图形的定义:旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(0度<旋转角<360度).如果一个图形沿着一条直线对折后两部分完全重合,叫轴对称图形.可以得出圆、正方形等都符合答案.【分析】根据旋转对称图形和轴对称图形的定义找出符合图形,得出答案.9.答案:120°解析:【解答】该图形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,那么它至少要旋转120°.故答案为:120.【分析】正三角形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,因而旋转120度的整数倍,就可以与自身重合.10.答案:是.解析:【解答】因为五角星的五个顶点到其中心的距离相等,将圆周角5等分,故五角星是旋转对称图形.【分析】五角星的五个顶点到其中心的距离相等,将周角平分为5份,可判断是旋转图形.11.答案:①②③④解析:【解答】①线段,旋转中心为线段中点,旋转角为180°,是旋转对称图形;②平行四边形,旋转中心为对角线的交点,旋转角为180°,是旋转对称图形;③圆,旋转中心为圆心,旋转角任意,是旋转对称图形;④矩形,旋转中心为对角线交点,旋转角为180°,是旋转对称图形;⑤等腰梯形,是轴对称图形,不能旋转对称.故旋转对称图形有①②③④.【分析】根据每个图形的特点,寻找旋转中心,旋转角,逐一判断.三、解答题12.答案:5cm2解析:【解答】每个叶片的面积为5c m2,因而图形的面积是15cm2,图形中阴影部分的面积是图形的面积的三分之一,因而图中阴影部分的面积之和为5cm2.【分析】根据旋转的性质和图形的特点解答.13.答案:见解答过程.解析:【解答】(1)证明:在△AE B与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.【分析】(1)要证明∠B=∠C,可以证明它们所在的三角形全等,即证明△ABE≌△ACD;已知两边和它们的夹角对应相等,由SAS即可判定两三角形全等.(2)因为△ADC≌△AED,公共点A,对应线段CD与BE相交,所以要通过旋转,翻折两次完成.14.答案:60度.解析:【解答】已知△ABC和△BED是等边三角形,∠ABC=∠EBD=60°⇒∠EBC=60°,又因为AB=BC,EB=BD,∠ABE=∠CBD=120°,所以△ABE≌△CBD.故△ABE绕B点旋转60度能够与△CBD重合.【分析】根据旋转对称图形的定义以及全等三角形的判定作答.15.答案:见解答过程.解析:【解答】(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠C=∠F,∠BAC=∠EAF,∴∠BAC-∠PAF=∠EAF-∠PAF,∴∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.【分析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.。
2图形的旋转第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为()A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=()A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是()A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.14.(2019·河南)如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)错误!第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.5.(教材P78做一做变式)如图,△ABC 绕点O 旋转后,顶点A 的对应点为A′,试确定旋转后的三角形.易错点 旋转方向不确定导致漏解6.在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 旋转90°到OA′,则点A′的坐标是 .7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG 可以看成是将平行四边形ABCD 以A 为中心( )A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到8.如图,已知Rt △ABC 和三角形外一点P ,按要求完成图形. (1)将△ABC 绕顶点C 顺时针方向旋转90°,得△A ′B ′C ′; (2ABC 绕点P 逆时针方向旋转60°,得△A ″B ″C ″.ABC·P9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.参考答案:第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为90°.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点A;(2)点B,D的对应点分别是点C,E;(3)线段AB,BD,DA的对应线段分别是线段AC,CE,EA;(4)∠B的对应角是∠ACE;(5)旋转的角度为60°.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD=AB=5cm,DE=BC=8cm,∠EAC=∠BAD=30°,∠DAC=100°.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为(A)A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=(D)A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是(D)A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为(C)A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为(B)A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为(A)A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是(B)A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于(D)A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC =65°,∠ACB =28°,求∠FGC 的度数.解:(1)证明:∵∠CAF =∠BAE , ∴∠BAC =∠EAF.∵线段AC 绕A 点旋转到AF 的位置,∴AC =AF.在△ABC 和△AEF 中,⎩⎨⎧AB =AE ,∠BAC =∠EAF ,AC =AF ,∴△ABC ≌△AEF (SAS ). ∴EF =BC.(2)∵AB =AE ,∠ABC =65°, ∴∠BAE =180°-65°×2=50°. ∴∠FAG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°. ∴∠FGC =∠FAG +∠F =50°+28°=78°.14.(2019·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为(D )A .(10,3)B .(-3,10)C .(10,-3)D .(3,-10)错误!模型展示条件:OA绕原点O逆时针旋转90°至OA′.结论:△AOB≌△A′OB′.条件:AB绕点A顺时针旋转90°至AB′.结论:△ABD≌△B′AC.第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是(C)2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是点B.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转90度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.解:如图所示.5.(教材P78做一做变式)如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.解:如图所示.易错点旋转方向不确定导致漏解6.在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O旋转90°到OA′,则点A′的坐标是(-4,3)或(4,-3).02中档题7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG可以看成是将平行四边形ABCD以A为中心(D)A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到8.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.解:(1)△A′B′C′如图所示.(2)△A″B″C″如图所示.9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.解:(1)如图,△A′B′C′即为所求.(2)如图,△AB′C′即为所求.。
3.2.2图形的旋转
课后作业
1.已知如图1所示的四张牌,若将其中一张牌旋转180º
后得到图2,则旋转的牌是( )
2. 已知点A 的坐标为(a ,b ),O 为坐标原点,连结OA ,将线段O A 绕点O 按逆时针方向旋转90°得OA ₁,则点A ₁的坐标为( ).
A .()a b -,
B .()a b -,
C .()b a -,
D .()b a -,
3. 如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度.
4. 如图,将△ABC 绕点A 顺时针旋转60°得到△A ED ,若线段AB=5,求出BE 的长是多少?
参考答案
1.A,
2.C,
3. 4,72
4.解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,
∴△BAE是等边三角形,
∴BE=5.。
3.2 图形的旋转
第2课时 旋转作图
1、画△ABC 绕点O 顺时针旋转60度的图形.
2 、画出线段AB 绕点O 按逆时针旋转900
后的图形.
3、如图所示的方格纸中,将△ABC 向右平移8格,再以O 为旋转中心逆时针旋转
900,画出旋转后的三角形.
4、如图,正方形ABCD绕点O旋转后,顶点A对应点A′,试确定B,C,D对就点的位置,以及旋转后的
正方形.
5、(1)如图,画出△ABC绕点A按逆时针方向旋转900后的对应三角形;
⑵如果点D是AC的中点,那么经过上述旋转后,点D旋转到什么位置?请在图中将点D的对应点D′表示出.
(3).如果AD=1cm,那么点D旋转过的路径是多少?
6、如图,ΔDEF是由△ABC绕某一中心旋转一定的角度得到,请你找出这旋转中心.
7、如图,将点阵中的图形绕点O按逆时针方向旋转900,画出旋转后的图形. A
B D
E
F
8、在等腰直角△ABC中,∠C=900,BC=2cm,如果以AC的中点O为旋转中心,将这个三角形旋转
1800,点B落在点B′处,求BB′的长度
B
A。