《三角形的中位线》教学设计(精美教学设计)
- 格式:doc
- 大小:467.00 KB
- 文档页数:8
三角形中位线定理教学设计(通用5篇)三角形中位线定理教学设计(通用5篇)作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
教学设计要怎么写呢?以下是小编整理的三角形中位线定理教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
三角形中位线定理教学设计篇1【教案背景】1、面向学生:初二2、课时:3、学科:数学4、学生准备:提前预习本节课的内容,尺规和练习本。
【教材分析】1、教材的地位和作用:本节课是初二数学下册第十八章18.1.2平行四边形判定中的第三课时三角形中位线的内容。
三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习梯形、任意四边形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。
在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。
2、教学目标:知识目标:(1)理解三角形中位线的概念(2)会证明三角形的中位线定理(3)能应用三角形中位线定理解决相关的问题;过程与方法目标:进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。
体会合情推理与演绎推理在获得结论的过程中发挥的作用。
情感目标画一个任意三角形的中位线,用猜测和度量判断中位线与第三边的位置和数量关系,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。
3、教学重难点:重点:理解并应用三角形中位线定理。
难点:三角形中位线定理的证明和运用。
【教学方法】学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学。
【教学过程】(一)回顾三角形中位线:三角形一个顶点和对边中点连结的线段情感分析:让学生首先通过原有知识三角形中线【端点特征】来引入三角形中位线更加好理解。
三角形的中位线教学设计三角形的中位线教学设计(通用5篇)作为一名教职工,时常要开展教学设计的准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。
怎样写教学设计才更能起到其作用呢?以下是小编精心整理的三角形的中位线教学设计(通用5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
三角形的中位线教学设计1一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.二、重点、难点1.重点:掌握和运用三角形中位线的性质.2.难点:三角形中位线性质的证明(辅助线的添加方法).3.难点的突破方法:(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.(2)强调三角形的中位线与中线的区别:中位线:中点与中点的连线。
中线:顶点与对边中点的连线.(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系。
条件(题设):连接两边中点得到中位线。
结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论)。
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.(4)可通过题组练习,让学生掌握其性质.三、课堂引入1.平行四边形的性质。
三角形的中位线教案第一章:三角形的中位线概念1.1 教学目标让学生了解三角形的中位线的定义和性质。
培养学生通过图形直观判断和证明三角形中位线的性质。
培养学生运用三角形中位线解决实际问题的能力。
1.2 教学内容三角形中位线的定义三角形中位线与三角形边长的关系三角形中位线的性质定理1.3 教学方法采用图形演示、学生自主探究、小组讨论、教师讲解相结合的方法。
1.4 教学步骤1.4.1 导入通过展示实际问题,引发学生对三角形中位线的思考。
1.4.2 新课导入介绍三角形中位线的定义,引导学生通过图形直观理解中位线。
1.4.3 性质探究引导学生通过画图和观察,发现三角形中位线与三角形边长的关系。
1.4.4 例题讲解通过典型例题,讲解如何运用三角形中位线定理解决问题。
1.4.5 练习巩固布置相关练习题,让学生巩固所学内容。
第二章:三角形中位线的应用2.1 教学目标让学生掌握三角形中位线的应用方法。
培养学生运用三角形中位线解决实际问题的能力。
2.2 教学内容三角形中位线在几何图形中的应用三角形中位线在实际问题中的运用2.3 教学方法采用案例分析、学生自主探究、小组讨论、教师讲解相结合的方法。
2.4 教学步骤2.4.1 导入通过展示实际问题,引导学生运用三角形中位线解决。
2.4.2 性质应用讲解三角形中位线在几何图形中的应用,如构造平行线、证明线段相等等。
2.4.3 案例分析分析实际问题,引导学生运用三角形中位线定理解决问题。
2.4.4 练习巩固布置相关练习题,让学生巩固所学内容。
第三章:三角形中位线的证明3.1 教学目标让学生掌握三角形中位线证明的方法。
培养学生运用证明方法解决几何问题的能力。
3.2 教学内容三角形中位线的证明定理及方法3.3 教学方法采用图形演示、学生自主探究、小组讨论、教师讲解相结合的方法。
3.4 教学步骤3.4.1 导入通过展示实际问题,引导学生对三角形中位线证明的思考。
3.4.2 性质证明引导学生运用图形演示和证明方法,证明三角形中位线的性质。
三角形中位线教学设计三角形中位线教学设计1 一、教学任务、目标1、认知目标(1)知道三角形中位线的概念,明确三角形中位线与中线的不同。
(2)理解三角形中位线定理,并能运用它进行有关的论证和计算。
(3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力。
2、能力目标引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生观察问题、分析问题和解决问题的能力。
3、德育目标对学生进行事物之间相互转化的辩证的观点的教育。
4、情感目标利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。
5、教学重难点重点:三角形中位线定理难点:难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用。
二、教学过程第一环节:创设情景,导入课题1、怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?操作:(1)剪一个三角形,记为△ABC(2)分别取AB,AC中点D,E,连接DE(3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD、2、思考:四边形ABCD是平行四边形吗?3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢?第二环节:教师讲授,传授新知内容:引入三角形中位线的定义和性质1、定义三角形的中位线,强调它与三角形的中线的区别。
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半第三环节:师生共析,证明定理第四环节:灵活运用,自我检测练一练:1、A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了A,B间的距离:在AB外选一点C,连结AC和BC,并分别找出AC 和BC的中点M、N,如果测得MN=20m,那么A、B两点的距离是多少?为什么?2、已知:三角形的.各边分别为6cm,8cm,10cm,则连结各边中点所成三角形的周长为 cm,面积为 cm2,为原三角形面积的。
三角形中位线定理的教学设计10篇三角形中位线定理的教学设计10篇三角形中位线定理的教学设计(1)三角形中位线定理2、教学目标(一)知识目标(1)理解三角形中位线的概念(2)会证明三角形的中位线定理(3)能应用三角形中位线定理解决相关的问题;(二)过程与方法目标进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。
体会合情推理与演绎推理在获得结论的过程中发挥的作用。
(三)情感目标通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。
3、重点与难点重点:理解并应用三角形中位线定理。
难点:三角形中位线定理的证明和运用。
【教学方法】启发式教学,在课堂教学,我始终贯彻“教师为主导,学生为主体,探究为主线”【教学过程】(一)设景激趣,导入新课为了测量广场上的小假山外围圆形的宽(不能直接测量) 在平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出宽BC。
你知道这是为什么吗?设计意图:问题是一切学习探究的先父,教材中创设的问题情境难度较大,学生不容易突破。
这里创设了一个现实情景,在这里教师不急予让学生找出答案,而是让学生带着问题去学习。
为了让学生主动的获得新知,先让学生动手做以下一个环节的动手操作活动。
2、三角形中位线的定义:连接三角形两边中点的线段,叫做三角形的中位线如图,DE、EF、DF是三角形的3条中位线。
跟踪训练:①如果D、E分别为AB、AC的中点,那么DE为△ABC的;②如果DE为△ABC的中位线,那么 D、E分别为AB、AC的。
设计意图:学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。
(三)拼图活动、探索定理(用时大概5分钟)整个的拼图游戏我设计了以下两个问题:问题一:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?问题二:猜想得出平行四边形后,简述证明过程。
北师大版数学八年级下册《6.3 三角形的中位线》教学设计2.“FAST”中国天眼口径是多少米?你是怎么知道的?学生预设回答1:500米,通过查资料,看电视新闻等学生预设回答2:不知道(给出答案)3.你有什么方法去测量中国天眼口径?学生预设回答1:直接测量(展示PPT4)学生预设回答2:通过测量圆的周长学生预设回答3:不知道(引入课题)第二环节:教师讲授,传授新知内容:引入三角形中位线的定义和性质1.三角形的中位线定义;强调它与三角形的中线的区别.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线.2、提出问题:猜想三角形的中位线跟第三边存在什么样的关系呢?学生预设回答1:中位线等于第三边的一半学生预设回答2:中位线平行于第三边学生预设回答3:不知道(观看微课1)问:你从微课1里发现了三角形的中位线跟第三边存在什么样的关系呢?生答:发现了中位线等于第三边的一半。
师补充:这是发现的数量关系。
问:除了具有数量关系,中位线与第三边还具有位置关系吗? (观看微课2)问:你从微课2里发现了三角形的中位线跟第三边存在什么样的位置关系呢?生答:发现中位线与第三边存在平行关系第三环节:师生共析,证明定理内容:已知:如图6-20(1),DE 是△ABC 的中位线.求证:DE ∥BC,DE=21BC证明:如图6-20(2),延长DE 到F,使DE=EF,连接CF. (略)结论:三角形的中位线定理:三角形的中位线平行于第三边,并且等于它的一半.第四环节:灵活运用,自我检测1、中国天眼是世界上最大的射电望远镜,它的建立,让中国在天文观测这个领域,站在了世界的前列,这对于中国来说具有很大的意义,这句话的说法是否正确?2、在△ABC中,D,E分别是AB,AC边上的中点,若BC=8cm,则DE=_______.3、已知三角形ABC各边长分别为3cm,4cm,5cm,则连接各边中点的三角形的周长是________.4、如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是________.5、如图在△ABC中,M是BC中点,AP是∠A平分线,BP⊥AP 于P,AB=12,AC=22,则MP长为________.第五环节:回顾小结,共同提升这节课学习了哪些具体内容:1.三角形的中位线的定义..。
教案:三角形的中位线教学设计一、教学目标1. 让学生理解三角形中位线的概念,掌握三角形中位线的性质。
2. 培养学生运用三角形中位线性质解决实际问题的能力。
3. 培养学生合作学习、积极探究的精神。
二、教学内容1. 三角形中位线的定义2. 三角形中位线的性质3. 三角形中位线在几何中的应用三、教学重点与难点1. 重点:三角形中位线的概念及性质。
2. 难点:三角形中位线性质的应用。
四、教学方法1. 采用问题驱动法,引导学生探究三角形中位线的性质。
2. 运用几何画板软件,直观展示三角形中位线的性质。
3. 组织小组讨论,培养学生合作学习的能力。
4. 结合实际例子,让学生运用三角形中位线性质解决问题。
五、教学过程1. 导入:通过复习三角形的相关知识,引入三角形中位线的话题。
2. 新课:讲解三角形中位线的定义,引导学生动手画出三角形的中位线。
3. 探究:让学生运用几何画板软件,观察三角形中位线的性质。
引导学生发现三角形中位线的平行且等于底边一半的性质。
4. 证明:讲解三角形中位线的性质证明过程,让学生理解并掌握证明方法。
5. 应用:结合实际例子,让学生运用三角形中位线性质解决问题,巩固所学知识。
6. 总结:对本节课的内容进行总结,强调三角形中位线的性质及应用。
7. 作业:布置相关练习题,让学生巩固三角形中位线的相关知识。
六、教学评价1. 通过课堂提问、作业批改等方式,了解学生对三角形中位线概念和性质的掌握情况。
2. 观察学生在小组讨论中的表现,评估学生的合作学习和探究能力。
3. 分析学生运用三角形中位线性质解决实际问题的能力,评价学生的学习效果。
七、教学反思1. 反思教学过程中的优点和不足,如教学方法、教学内容、教学组织等。
2. 根据学生的反馈,调整教学策略,提高教学效果。
3. 关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分的锻炼。
八、教学拓展1. 引导学生进一步研究三角形的中位线与其他几何元素的关系。
(北师大版)义务教育课程标准实验教材九年级(上)《三角形的中位线》教学设计
成都石室天府中学数学组(初中)
蒲老师
联系电话:13880 email地址:****************
三角形的中位线教案设计
一、教材分析
《三角形的中位线》是义务教育课程标准实验教科书北师大版九年级(上)第三章《证明三》的第三节,平行四边形的第3课时的教学内容。
教材安排一个学时完成。
此节内容是平面几何知识的综合应用,实用性很高,也是近几年中考的难点。
八年级在教学过程中,学生对中位线的有关知识有了初步了解。
现在主要是以“三角形相似”,“比例的性质”,“四边形”,“解直角三角形”等知识综合应用为主,既复习了前面的重要知识点又提高学生的思维能力。
二、教学目标
●知识与技能
(1)进一步使学生掌握三角形相似的有关知识。
(2)能够利用三角形的中位线的知识解决三角形相似的问题。
(3)掌握三角形的中位线的性质和应用。
●过程与方法
(1)进一步使学生掌握三角形相似的有关知识。
(2)训练学生利用三角形的中位线的知识解决三角形相似的问题。
(3)把“三角形的中位线”这一知识提升为解决图形比例关系的一个“基本相似形”,形成三角形的中位线是相似问题的一种快速算法。
●情感、态度与价值观
(1)经历从认识发现三角形的中位线到推理的三角形的中位线的性质的过程,体会探索发现的乐趣,增强学习数学的自信心一步使学生掌握三角形相似的有关知识。
(2)通过观察、讨论、比较,研究三角形的中位线的图象和性质,培养学生收集提取性息的意识和推理能力,使学生会将复杂问题转化为简单问题。
(3)培养学生的数形结合的思想。
三、教学重点、难点
教学重点:三角形中位线的性质和应用
教学难点:正确的理解题意,发现“中点+中点->中位线”的条件,把复杂图形转化为基本图形,使学生的数形结合的思想。
本节课紧扣教学目标,设计“创设情境—看图发现—总结归纳—形成“模板”—知识运用”等环节来达到突破重难
....的目的。
四、教学方法
●学生学习现状分析
学生已经具备了用三角形相似的一些基本知识和基本思想方法,已经掌握了求线段的比例的基本知识。
但学得较早,大部分学生已经忘了,尤其对求线段的比例的问题在教学中的设计和安排是比较少的,而要用的“中位线”的知识解答问题就见到的更少,普遍反映知识结构模糊,不知道从哪儿下手,缺乏整合知识的能力。
●教法分析
设计思想:对于中位线的应用问题,关键是由实际问题向数学问题的转化过程。
所以在教学过程中注重分析问题的方法,让学生学会用数学结构的思想和转化的思想来解决问题。
例题的选取也是从基本图形出发,让学生初步体会到化繁为简,复杂图形和基本图形的密切关系,并体会数学学习中由易到难的思维过程,激发学生对数学的学习兴趣,使学生体会数学学习的螺旋上升过程。
●学法指导
本节课采用“自主发现,合作交流”的学习方法.使学生积极参与教学过程,通过会看图->会画图->会用图的“易方达”学习模式,激发学生的学习兴趣,领悟数形结合的思想,体验探索和推理的快乐,使学生的主体地位得到充分的发挥,充分体现《新课标》的要求。
五、教具准备:
教师计算机多媒体辅助教学、实物投影、三角尺
学生三角尺、彩纸、剪刀。
六、教学流程
七、教学过程
教学环节教师活动学生活动设计意图
创设情境
提出问题教师通过多媒体展示现实生活中的三角
形中位线形象。
1.三角形有中位线型图标;
2.三角形有中位线型建筑;
3.金字塔;
4.鱼的图片;
(最后让学生抽象出三角形的中位线的
形象)
学生观察得出:三角形的中
位线的形象。
积极动脑思考,小组合作,
利用准备好的手工纸,动
手、试验、探索。
让学生初步认识三角形
的中位线,建立与实际问
题的联系。
提高学生的学
习兴趣。
教
学
流
程
图
创设情境,提出问题
合作交流,探究新知
巩固练习,深化拓展
归纳小结,反思提高
布置作业,巩固提高
巩固练习
深化拓展(课件投影)
课堂巩固练习:
1.如图,D是AB边上的中点,将ABC
∆
沿过D的直线折叠,使点A落在
BC上F处,若50
B
∠=︒,则
BDF
∠=__________度。
2.(2008南京修改)如图,电灯P在横
杆AB的正上方,AB在灯光下的影子为,
2m
AB=,
AB是
ABC
∆的中
位线,则
CD= 。
3.如图3-4-17,A1、B1、C1分别为ΔABC
的三边中点,若ΔABC的周长为a,则Δ
A1B1C1的周;A2、B2、C2
分别为ΔA1B1C1的各边中点,A3、B3、C3
分别为ΔA2B2C2的各边中点,…,A n、B n、
C n分别为ΔA n-1B n-1C n-1的各边中点,则
A n
B n
C n的周长
为.
课堂深化拓展练习:
1.(2008梅州中考)如图,要测量A、B
两点间距离,在O点打桩,取OA的中
点C,OB的中点D,测得CD=30米,
则AB=______米。
学生在图象上利用刚学的
性质解决。
学生独立完成以后,让他们
发表自己的看法。
学生小组完成以后,让他们
发表自己的看法。
通过一组简单的练习题,
及时巩固拓展所学知识。
培养学生数形结合的思
想。
1.主要考察位置关系-平
行。
2.主要考察数量关系。
3.主要考察位置和数量
综合关系。
课堂深化拓展练习,将比
较难的问题、中考考题、
实际生活背景题,放在适
当的时候处理,使学生易
于接受,提高思维。
学生曾经用度量的方法
解决过,属于老题新作。
F
E
D
C
B
A
A B
P
C D
巩固练习
深化拓展2.如图所示,有一张一个角为60°的直
角三角形纸片,沿其一条中位线剪开后,
不能拼成的四边形是( )
A.邻边不等的矩形
B.等腰梯形
C.有一个角是锐角的菱形
D.正方形
3.(08河南试验区)某花木场有一块如
等腰梯形ABCD的空地(如图),各边的中
点分别是E、F、G、H,用篱笆围成的四
边形EFGH场地的周长为40cm,则对角线
AC= cm
4.两个全等的直角三角形ABC和DEF重
叠在一起,其中∠A=60°,AC=1. 固定
△ABC不动,将△DEF进行如下操作:
(1) 如图11(1),△DEF沿线段AB向
右平移(即D点在线段AB内移动),连结
DC、CF、FB,四边形CDBF的形状在不
断的变化,但它的面积不变化,请求出其
面积.
(2)如图11(2),当D点移到AB的中点时,
请你猜想四边形CDBF的形状,并说明理
由.
积极动脑思考,小组合作,
利用准备好的手工纸,动
手、试验、探索、归纳、解
答。
加深对三角形中位线定
理的理解,巩固所学知
识。
加深对三角形中位线定
理的理解,把所学知识进
行迁移变化。
指导学生利用中位线的
性质解决问题,提高对综
合型题目的解决能力。
(第2题)
60°
A
B E
F
C
D 图(1)
A
B E
F
C
D
图(2)
温馨提示:由平移性
质可得CF∥AD,
CF=AD
八、板书设计
九、教学反思
1.对于这一节内容可以有两种不同的处理方式:一是直接利用课件演示图形供学生研究,不需要学生的画图探寻过程,但这样的处理不利于学生数学思维的培养;二是让学生自己动手经历“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法的思维过程。
本节课选用了后者。
这样的处理方式有利于促进学生良好数学素养的养成,以及培养学生动手操作和数形结合的数学思想。
2.本节课在学生已有知识和经验的基础上,通过自己动手、自主探索、合作交流比较系统的得出三角形的中位线的位置和数量关系的性质以及其相互的关系并将所学知识加以应用,在学习过程中充分体现教师引导,学生自主学习的教学理念。
3.根据学生的实际情况,在教学中注意了加强个别指导。
在练习中突出几何直观和数形结合的思想方法,帮助学生更优化的解决习题。
4. 如何解题呢?我以为它包含了四句话,文中提出数,数量标上图,已知什么求什么,做到心中有数。
几何就是边和角,代数难点是字母,多列方程来思考,实在不行想函数,用多重思维。
5.在教学中,学生动手操作和画图速度较慢,可以通过提前布置家庭作业让学生复习步骤后自己预习来解决。