概率论第九讲
- 格式:ppt
- 大小:329.50 KB
- 文档页数:40
第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
考研数学备考:概率论各章节知识点梳理1500字概率论作为考研数学中的一部分,是考生备考的重点之一。
下面将对概率论的各章节知识点进行梳理,帮助考生进行复习备考。
1. 随机事件与概率概率论的基本概念是随机事件和概率。
随机事件是随机现象的结果,概率是事件发生的可能性大小。
在这一章节中,主要涉及到随机事件的定义、事件的性质、事件间的关系等内容。
2. 随机变量及其分布随机变量是随机现象的数值描述,它分为离散随机变量和连续随机变量。
这一章节主要涉及随机变量的定义、分布函数、概率密度函数等内容。
同时还包括常见的离散随机变量和连续随机变量的概率分布,如二项分布、泊松分布、正态分布等。
3. 随机事件的数学描述随机事件可以用随机变量的取值区间来表示,也可以用事件的概率来描述。
这一章节主要包括随机事件的和、差、积等概念,以及离散随机变量和连续随机变量的概率函数之间的关系。
4. 多维随机变量及其分布多维随机变量是指由多个随机变量组成的向量。
这一章节主要包括多维随机变量的定义、联合分布、边缘分布等内容。
同时还包括多维随机变量的独立性、相关性等概念。
5. 随机变量的数字特征随机变量的数字特征包括数学期望、方差、协方差等。
这一章节主要涉及到随机变量的数学期望、方差和协方差的定义、性质以及计算方法。
6. 大数定律和中心极限定理大数定律是指随着试验次数的增加,随机事件的频率趋向于事件的概率。
中心极限定理是指当随机事件的样本量足够大时,其均值的分布接近于正态分布。
这一章节主要涉及到大数定律和中心极限定理的数学表达和推导。
7. 参数估计与假设检验参数估计是根据样本数据对总体参数进行估计,假设检验是根据样本数据对总体参数是否符合某个假设进行检验。
这一章节主要包括点估计、区间估计和假设检验的概念、方法和步骤。
8. 有序与无序排列的计数问题有序排列是指考虑元素的排列顺序,无序排列是指不考虑元素的排列顺序。
这一章节主要涉及到有序与无序排列的计数问题,如排列、组合、多重集合等。
概率论必备知识点概率论是一门研究随机现象数量规律的数学分支,它在各个领域都有着广泛的应用,从物理学、生物学、经济学到计算机科学等。
以下是一些概率论中的必备知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
概率则是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
计算概率的方法有多种。
对于等可能事件,概率等于事件所包含的基本结果数除以总的基本结果数。
例如,掷一个骰子,出现点数为 3的概率就是 1/6,因为骰子共有 6 个面,每个面出现的可能性相等,而点数为 3 的只有 1 种情况。
二、古典概型古典概型是一种最简单的概率模型。
在古典概型中,试验的结果是有限的,并且每个结果出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率,这就是一个古典概型问题。
计算古典概型的概率,可以使用公式:P(A) = n(A) /n(Ω),其中P(A)表示事件 A 发生的概率,n(A)表示事件 A 包含的基本结果数,n(Ω)表示总的基本结果数。
三、几何概型几何概型是古典概型的推广,当试验的结果是无限的,且每个结果出现的可能性相等时,就可以使用几何概型来计算概率。
例如,在一个时间段内等待公交车,求等待时间不超过 5 分钟的概率。
在几何概型中,概率等于事件对应的区域长度(面积或体积)除以总的区域长度(面积或体积)。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
例如,已知今天下雨,明天晴天的概率就是一个条件概率。
条件概率的计算公式为:P(B|A) = P(AB) / P(A),其中 P(B|A)表示在事件 A 发生的条件下事件 B 发生的概率,P(AB)表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率。
第九讲统计与概率趣题引路】1991年1月美国人塞望(M.Savan)女士在《检阅》杂志上刊登了一则趣题,当时曾引来了从小学生到大学教授上万封来信讨论.题目是:主持人指着三扇关闭的门,说:“其中两扇门是空的,有一扇门里有1辆车,请你选一扇门,如果选中了有车的那一扇,就可开走这辆车.”同时问约翰:“你是否愿意重选另一扇未被打开的门?”请你帮助约翰出个主意.解折由概率理论应该换,若不换的话得到车的概率是12;若换的话得到车的概率是23.知识延伸】自从出现了人类社会,就不可避免地产生社会性的生产活动、经济活动、教育活动和军事活动,这些活动中处处都有数据存在,于是也就出现了各种统计工作,如人口统计、资源统计、经济统计等等.统计学是一门与数据密切相关的学问,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律.众数、中位数、平均数都是从不同的侧面反映了一组数据的集中趋势;方差则是反映一组数据波动大小的量;频率分布表和频率分布直方图则是从数和形的角度反映了落在某一范围内数据的多少.在日常生活中概率也是应用最广的运算.如早晨去上学,要不要带雨具,就要根据“降水概率”的大小来决定;又如每个家庭除了日常生活开支之外,都要有点积蓄,因为对于一个有学前儿童的家庭来说,儿童从六岁起要进行九年义务教育,需要各种开支,这是必然事件;家庭成员在某种情况下可能会生病,这是随机事件.不管你是自觉的,还是不自觉的,概率都在我们的头脑中起作用.事件A的概率(Probab i l i ty)用P(A)来表示,有0≤P(A)≤1.若A是必然事件,则它的概率是1,即P(A)=1;若A是不可能事件,则它的概率是0,即P(A)=0.一般地,在大量重复进行同一试验时,如果事件A发生的频率总是接近于某个常数,这个常数就叫做事件A的概率,记为P(A).例1】在桌面上掷若干枚硬币,回答下列问题:(1)3枚硬币,第1枚出现正面,第2枚出现反面,第3枚出现正面的概率是多少?(2)3枚硬币,其中2枚出现正面,1枚出现反面的概率是多少?(3)3枚硬币,第1枚出现正面,第2枚出现反面,问第3枚出现正面的概率是多少?解析(1)设“依次掷3枚硬币,第1枚出现正面,第2枚出现反面,第3枚出现正面”这一事件为A,“第1枚出现正面”这一事件为A1,“第2枚出现反面”这一事件为A2,“第3枚出现正面”这一事件为A3,则事件A的发生过程包含三步:先发生事件A1,再发生事件A2,最后发生事件A3,P(A1)、P(A₂)、P(A3)都是12,所以P(A)=P(A1)×P(A₂)×P(A3)=1111=2228⨯⨯.(2) 因为掷3枚硬币从其正反面的情况来看共有8种可能:(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反).其中“2正1反”的情况共有3种,所以3枚硬币其中2枚出现正面,1枚出现反面的概率是3 8(3)因为第3枚出现正面还是反面与前两枚的结果无关,所以第3枚出现正面的概率仍为12. 点评】(1)中首先要求事件A 1出现,在这个条件下有事件A 2出现,然后再有事件A 3的出现,这三个事件全部先后发生才意味着事件A 出现,所以是相乘关系.(2)(3)两题.虽然3枚硬币的最终情况都是“2正1反”,但题(3)中,由于“第1枚出现正面第2枚出现反面”的前提已经存在,因此只要考虑“第3枚出现正面”的概率.例2】已知一组数x 1出现f 1次,x 2出现f 2次,…x k 出现f k 次,且I 2k f f f n +++=,求()()()1121k k f x x f x x f x x ++-++-的值.(x 是这n 个数的平均数).解析 ∵1122112212k k k kk f x f x f x f x f x f x x f f f n++++++==+++∴1122k k f x f x f x nx +++=∴()()()1122k k f x x f x x f x x -+-++-=()()112212k k k f x f x f x f f f x +++-+++=0nx nx -=点评】这是应用加权平均数公式,在推导过程注意灵活运用公式和法则.好题妙解】佳题新题品味例1】(1)五个数3,1,6,3,x 的平均数是4,求x ;(2)一组数据x 1,x 2,…,x n 的方差是a ,则x 1-2,x ₂-2,…,x n -2的方差是多少?(3)某射手在一次射击中,射中10环、9环、8环的概率分别是0.24,0.28,0.19,求这个射手在这次射击中:①射中10环或9环的概率;②不够8环的概率.解析(1)由题意知1(1336)45x ++++=,解得x =7;(2)设12,,,n x x x 的平均数为x ,则()()()222121n a x x x x x x n ⎡⎤=-+-++-⎣⎦.数122,2,,2n x x x ---的平均数为()()()()12121122222n n x x x x x x x n n ⎡⎤-+-+⋯+-=+++-=-⎣⎦,∴122,2,,2n x x x ---的方差=()()(){}2221212(2)]2(2)2(2)n x x x x x x n ⎡⎤---+---++---⎡⎡⎤⎣⎣⎦⎣⎦=()()()222121n x x x x x x a n ⎡⎤-+-++-=⎣⎦(3)①射中10环或9环的概率=0.24+028=0.52,②不够8环的概率=1-(Q .24+0.28+0.19)=0.29. 点评】弄清平均数,方差、概率的概念是解题的关键.例2】已知样本容量为30,样本频率分布直方图如图9-1,各小长方形的高之比为AE :BF :CG :DH =2:4:3:1.求:(1)第二组的频率; (2)第二小组的频数.图91数据解析(1)∵小长方形的面积表示相应范围的数据的频率如设AE =2x ,BF =4x ,CG =3x ,DH =x .小方形的底长为a ,故有从左到右四个范围内的数据频率之比为2xa :4xa :3xa :xa =2:4:3:1 ∴第二组的频率为40.41234=+++,第二组的频数为0.4×30=12.点评】(1)在频率分布直方图中小长方形的面积为频率.因而这样的小长方形面积之和为1;小长方形的高之比为频率之比.(2)要在给出数据和具体要求下会画频率分布直方图.例3】对某工厂生产的大批同类产品进行合格率检查,分别抽取5件、10件、60件、150件、600件、900件、1200件、1800件,检查结果如下表所示:求该厂产品的合格率 解析 从上表的数据可看到,当抽取件数(即重复试验次数)n 越大,“一件产品合格”事件发生的频率mn越接近n 常数0.9,所以“一件产品合格”的概率约为0.9,我们通常说该厂产品的合格率为90%. 点评】事件A 发生的频率接近某个常数这个常数就是事件A 的概率,反映了事件A 发生的可能性的大小.中考真题赏析例1】(福州市中考题)甲,乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:(1)请你填上表中乙同学的相关数据;(2)所学的统计学知识,利用上述某些数据评价甲、乙两人的射击水平.解析(1)均数是7,众数是7,方差是1.2;(2)根据甲、乙两学生的射击环数、平均数、众数、方差,用一种数据或多种数据进行合理评价. 点评】本题综合运用统计学知识来解决实际问题,因未说明从何种角度来考虑,所以这是一道开放性试题..例2】(江苏省徐州市中考题)为了了解高中学生的体能情况,对100名学生进行了引体向上次数测试,将所得的数据整理后,画出频率分布直方图如图9-2,图中从左到右依次为第1,2,3,4,5组. (1)第1组的频率为多少?频数为多少?(2)若次数在5次(含5次)以上为达标,求达标率; (3)这100个数据的众数和中位数一定落在第3组吗?图92解析(1):对于第一小组而言,频率组距=0.05,而组距为2, ∴频率=0.05×2=0.1, 又∵频数数据总数=0.1∴频数=0.1×100=10(人);(2)次数在5次或5次以上的频率为(0.175+0.125+0.05)×2=0.65,达标率为65%;(3)显然,次数出现最多的数不能确定在哪一组.故众数不一定在第三组.又因为引体向上次数由小到大排列,第一组有10个数据,第二组有25个数据,第三小组有35个数据,前三组共计有70个数据,.可以断定,中位数一定在第三组内点评】要真正弄清频率与频数的关系,再弄清频率分布直方图的意义和其中小长方形的意义.竞赛样题展示例1】(2001年河北省初中数学创新与知识应用竞赛题)已知数据x 1,x ₂,x 3的平均数为a ;y 1、y 2、y 3的平均数为b ,则数据2x 1+3y 1,2x 2+3y 2,2x 3+3y 3的平均数为.解析∵x 1,x ₂,x 3的平均数为a ,∴3a =x 1,x ₂,x 3, ∵y 1、y 2、y 3的平均数为b , ∴3b =y 1、y 2、y 3∴2x 1+3y 1,2x 2+3y 2,2x 3+3y 3的平均数()()()1122332323233x y x y x y x +++++==()()12312323233333x x x y y y a b+++++⨯+⨯===2a +3b .点评】弄清研究的对象,了解平均数的概念是关键例2】(第16届江苏省竞赛题)编号为1到25的25个弹珠被分放在两个篮子A 和B 中,15号弹珠在篮子A 中,把这个弹珠从篮子A 移至篮子B 中,这时篮子A 中的弹珠号码数的平均数等于原平均数加14,篮子B 中弹珠号码数的平均数也等于原平均数加14,问原来在篮子A 中有多少个弹珠? 解析设原来篮子A 中有弹珠x 个,则篮子B 中有弹珠(25-x )个,又设原来A 中弹珠号码数的平均数为a ,B 中弹珠号码数的平均数为b ,由题意,得 (25)122532515114(25)151264ax x b ax a x b x b x ⎧⎪+-=+++=⎪-⎪-=⎨-⎪-+⎪-=⎪-⎩①②③ 由②得,+59=4x a ④,由③得344x b +=⑤ 将④⑤代入①得1125(59)(34)(34)=325444x x x x x +-+++解得x =9.即原来篮子A 中有9个弹珠.点评】用字母分别表示篮子A 、B 弹珠数及相应的平均数,运用方程、方程组来求解.过关检测】A 级1.为了检查库存的500箱袜子的质量,从每箱的100双袜子中抽取2%进行检查,在这个问题中总体、个体、样本、样本容量分别是什么?2.数据a 、4、2、5、3的平均数是b ,且a 、b 是方程x ²-4x +3=0的两根,求a ,b 的值3.已知样本方差22221210116010S x x x ⎡⎤=+++-⎣⎦,则这个样本的平均数x =.4.下列事件中哪些是随机事件?哪些是必然事件? (1)在标准大气压下水在0℃时开始结成冰;(2)计划中“神舟8号”太空飞行器能进入预定轨道;(3)把10g 白糖放入1kg 纯净水中能够全部溶化.5.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品的概率约为多少?B 级1.已知样本甲为a 1,a 2,a 3方差为21S ;样本乙为b 1,b 2,b 3,方差为22S .若a 1-b 1=a 2-b 2=a 3-b 3,则21S 和22S 的大小关系是.2.为了从甲、乙、丙三名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验,三人在相同的条件下各射靶10次,命中环数如下:甲 7 8 6 8 6 5 9 10 7 4, 乙 9 5 7 8 6 8 7 6 7 7, 丙 7 5 7 7 5 6 5 5 7 6. 问:应派谁去参加比赛?3.某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8和第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他们前9次射击所得的平均环数高于前5次射击所得的平均环数,如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中至少要得多少环?(每次射击所得的环数都精确到 0.1环).4.一次抽奖活动中印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是多少?5.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为多少?6.小丽拟将1,2,3…,n这n个数输入电脑求其平均值,当她认为输完时,电脑上只显示输入(n-1)个数,且平均值为5357,假设这(n-1)个数输入无误,则漏输入的一个数是多少?。