环境风险评价
- 格式:pdf
- 大小:1.11 MB
- 文档页数:26
环境风险评价方法与实例
环境风险评价是指对特定环境项目、活动或政策可能产生的环境影响进行系统评估和分析的过程。
环境风险评价方法的选择和实施对于保护环境和人类健康至关重要。
下面我们将介绍一些常见的环境风险评价方法,并结合实例进行说明。
1. 环境影响评价(EIA),EIA是对新项目、计划或政策可能产生的环境影响进行系统评估的过程。
它包括对项目可能产生的各种环境影响进行预测、评估和管理,以便在项目实施前就能够采取必要的措施来减少负面影响。
例如,某公司计划在一个湿地地区建设一个工厂,EIA将评估工厂建设可能对湿地生态系统、水资源和空气质量等方面造成的影响,并提出相应的环境保护措施。
2. 风险矩阵法,风险矩阵法是一种常用的风险评价方法,通过将风险的可能性和影响程度进行矩阵化,以确定风险的严重程度。
例如,对于一个化工厂可能泄漏有害化学品的风险,可以通过风险矩阵法将泄漏的可能性和对周围环境和居民健康的影响程度进行评估,确定出高风险区域,从而采取相应的风险管理措施。
3. 生态风险评估,生态风险评估是评估化学物质对生态系统的
潜在影响的过程。
这种方法通常包括对生态系统的敏感性、暴露程
度和化学物质毒性的评估。
例如,对于一个新的农药产品,生态风
险评估将评估其对土壤、水体和野生动植物的潜在影响,以确定其
对环境的风险程度。
综上所述,环境风险评价方法的选择应根据具体情况进行,并
结合科学数据和实地调查,以确保评价的准确性和可靠性。
只有通
过科学的环境风险评价,我们才能更好地保护环境,减少负面影响,实现可持续发展的目标。
环境风险评价工作基本程序
环境风险评价是为了评估特定项目或活动对环境造成的潜在风险和影响。
下面是环境风险评价工作的基本程序:
1. 确定评价范围:首先确定评价的对象,例如一个工业项目或者特定的活动。
2. 收集环境信息:收集与评价对象相关的环境信息,包括土壤、水体、大气、生物多样性等方面的数据。
这些数据可以通过现场调查、文献研究、实验室分析等方式获取。
3. 识别潜在风险和影响:基于收集到的环境信息,评估项目或活动可能对环境造成的潜在风险和影响。
这包括污染物排放、生态系统破坏、资源消耗等方面的风险和影响。
4. 评估风险程度:根据识别出的潜在风险和影响,评估其对环境的实际影响程度。
通常会采用定量或定性方法进行评估,例如风险矩阵、生态敏感度评估等。
5. 制定控制措施:针对评估出的环境风险,制定相应的控制措施和管理计划。
这包括减少污染物排放、改善环境监测与管理、采取环境保护措施等。
6. 编制评价报告:根据评估结果和制定的控制措施,编制环境风险评价报告。
报告应包括评估方法、数据来源、评估结果、控制措施建议等内容。
7. 审查和监督:评价报告需要进行内部审查和外部监督,确保评价的准确性和可靠性。
相关部门或专家可以参与评价结果
的审查和监督。
8. 报告使用和更新:评价报告的结果可以用于决策制定、环境许可审批、环境影响评价等方面。
评价结果应及时更新,并根据实际情况进行调整和改进。
以上是环境风险评价工作的基本程序,不同项目和活动可能会有所差异,具体操作需要根据实际情况进行调整和执行。
环境风险评估方法环境风险评估是指对潜在或现有环境风险进行系统分析和评估的过程。
通过评估环境中的各种因素,可以预测可能出现的环境问题,并采取相应的措施进行管理和控制。
本文将介绍一些常用的环境风险评估方法,以帮助读者更好地理解和应用这些方法。
一、环境风险评估方法之概率分析法概率分析法是一种常用的环境风险评估方法,它通过对环境因子的概率进行分析,预测可能出现的风险趋势和概率。
在评估环境风险时,可以采集现场数据,运用统计学方法进行分析,计算各种可能风险的概率和程度。
这种方法可以帮助评估人员了解环境风险的发展趋势,为采取措施提供依据。
二、环境风险评估方法之生态风险评估法生态风险评估法是一种基于生态学原理和方法的环境风险评估方法。
它主要通过对生态系统的结构和功能进行评估,分析环境风险对生物多样性和生态平衡的影响。
生态风险评估法可以用于评估不同区域环境的健康状况,并制定相应的保护策略。
例如,通过评估某个湖泊的生态风险,我们可以了解到湖泊的水质状况以及可能存在的污染风险,从而采取相应的治理和保护措施。
三、环境风险评估方法之威胁路径分析法威胁路径分析法是一种从环境事件发生到环境影响的过程进行评估的方法。
它将环境风险看作是一个连续发展的过程,通过分析环境事件的发生路径和传播途径,评估环境风险对人群健康和环境质量的潜在威胁。
威胁路径分析法可以用于评估各种环境事件的风险,例如土壤污染、空气污染等,为决策者提供科学依据。
四、环境风险评估方法之风险矩阵法风险矩阵法是一种将环境风险评估结果以矩阵形式展示的方法。
它将环境风险的可能性和影响程度分别划分为几个等级,并将其表示在一个二维矩阵中。
通过对风险矩阵的分析,可以清晰地了解各个环境风险的级别,为优先处理和管理提供指导。
风险矩阵法适用于对多种环境风险进行综合评估的情况,例如对某个区域的环境问题进行整体评估和规划。
总结:环境风险评估是预防和控制环境问题的重要手段,通过评估和分析环境风险,可以为决策者提供科学依据,制定相应的管理和控制措施。
环境风险评价工作等级划分的依据概述环境风险评价是指对某一特定区域进行评价,确定该区域内污染物及其他环境因素对生态环境和人类健康可能造成的风险程度。
环境风险评价的工作等级划分是对评价工作的重要标准之一,它有助于指导评价人员的工作安排、资源分配等方面。
本文将介绍环境风险评价工作等级划分的依据。
1.国家政策与法律法规环境风险评价工作等级的划分主要依据国家政策与法律法规,如《中华人民共和国环境保护法》、《环境风险评价技术导则》等文件。
根据国家政策与法律法规的要求,对不同性质、规模和风险程度的项目进行分类,确定不同等级的评价工作。
2.评价对象的特征环境风险评价工作等级划分的依据还包括评价对象的特征。
评价对象包括评价区域、污染源、环境介质等。
评价区域涉及到区域规模、生态环境敏感性等因素;污染源涉及到污染物类型、排放量、接触途径等因素;环境介质涉及到土壤、水体、大气等不同介质的受体敏感性、承载能力等因素。
评价对象的特征对划分等级起到重要影响。
3.目标受体的敏感性环境风险评价工作等级划分还需考虑目标受体的敏感性。
目标受体包括人类和生态环境,其敏感性决定了评价工作的紧迫性和重要性。
例如,市中心区域及周边居民、饮用水源地等敏感目标受体需要优先考虑。
4.研究范围和数据可获得性环境风险评价工作等级划分还需考虑研究范围和数据可获得性。
评价工作等级可以根据研究范围的大小和数据可获得性的程度来划分,以确定评价工作的复杂程度和工作量。
狭小范围、数据多样且易获得的评价对象可以划分为低等级,而广泛范围、数据缺乏且难以获得的评价对象则可以划分为高等级。
5.当地社会关注度和风险意识环境风险评价工作等级划分还需考虑当地社会关注度和风险意识。
当地社会对环境风险评价的关注程度和风险意识越高,评价工作等级越高。
这是因为社会关注度和风险意识的提高会带来更多的关注和压力,对评价工作提出更高的要求。
结论环境风险评价工作等级划分的依据主要包括国家政策与法律法规、评价对象的特征、目标受体的敏感性、研究范围和数据可获得性、当地社会关注度和风险意识等因素。
环境风险评价的内容环境风险评价是指对某一环境系统中可能存在的风险进行评估和预测的过程,旨在揭示环境中存在的潜在危害,为环境保护和风险管理提供依据。
环境风险评价的内容十分广泛,涉及到环境污染、自然灾害、生物多样性等方面的风险评估。
环境污染是环境风险评价的重要内容之一。
随着工业化和城市化的快速发展,各种污染物的排放不可避免地对环境产生了不良影响。
环境风险评价需要对各类污染物的来源、排放途径、迁移转化规律以及对环境和人体健康的影响进行全面评估,以便制定合理的环境保护措施。
自然灾害也是环境风险评价的重要内容之一。
地震、洪水、台风等自然灾害对环境和人类社会都会造成严重的影响。
通过对历史灾害数据的分析和灾害风险模型的建立,可以评估某一地区发生自然灾害的概率和可能带来的损失,为灾害防治和应对提供科学依据。
生物多样性的评估也是环境风险评价的重要内容之一。
生物多样性是维持生态系统稳定和人类福祉的重要基础,但由于人类活动的干扰,许多物种正面临灭绝的危险。
通过调查和监测物种多样性的变化,评估人类活动对生物多样性的影响,可以为保护生物多样性提供科学依据。
环境风险评价还包括对环境噪声、土壤污染、水资源利用等方面的评估。
环境噪声对人类的身心健康产生负面影响,通过对噪声源的调查和监测,评估噪声对人的影响程度,可以制定相应的噪声控制措施。
土壤污染是一种潜在的环境风险,通过对土壤中重金属、有机物等污染物的调查和分析,可以评估土壤污染的程度和对农作物安全的影响。
水资源利用是一个全球性的环境问题,通过评估水资源的供需状况、水质状况以及水资源利用效率,可以为水资源管理和保护提供科学依据。
环境风险评价的内容非常广泛,涉及到环境污染、自然灾害、生物多样性等多个方面。
通过对这些风险的评估,可以为环境保护和风险管理提供科学依据,以实现可持续发展和人类福祉的目标。
环境风险评价报告环境风险评价报告是一份描述环境风险和给出相关建议的文档。
环境风险评价是指对一个特定的工程、进程、活动、开发或其它环境事件进行系统分析,评估其可能造成的环境风险和潜在影响,并提出相应的措施来减少风险和环境影响。
在这个过程中,因素诸如环境、社会、健康、安全、经济、文化、政治、法律等都会得到考虑。
环境风险评价报告通常包括以下内容:1. 研究计划: 首先需要明确研究的目的、范围、方法、时间表和人员。
2. 事件描述: 对研究的事件描述其影响的性质、范围、可能的影响和持续时间等。
这可以包括描述工程或进程、技术和现有环境状况。
3. 风险识别: 对事件和可能的影响进行系统的评估,包括风险识别和潜在影响的评估。
此步骤需要确定可能对环境、健康和社区的影响,并确定哪些受影响的人可能受到影响。
4. 风险评估: 风险评估估量成功的可能性和可能的影响。
这需要对被评估对象的特征和现实环境进行分析。
对环境、社会和结构的评估包括,但不限于,生物学、物理、化学等方面的数据。
5. 环境基准: 要估算实现环境风险识别所需的数据,需要制定环境基准,基准可以是技术标准或者法律法规。
6. 风险评估决策: 对有风险的因素进行分析,确定最佳决策方案的安全措施和风险管理工具。
建议以减少风险为目标, 总结风险管理的方法。
7. 监控和确认: 评估报告应包括监测和确认风险管理计划的执行情况,并建议监测和评估的方法和策略。
环境风险评估报告的重要性不言而喻。
无论国家、企业或单个人,我们都必须关注环境的保护和可持续发展。
环境保护不仅是一种社会责任,同时也可能涉及到政策、法律、经济、社会、健康和安全等方面。
因此,要通过环境评估报告,了解和保护自己的环境,减少可能的水、土壤或空气污染,并对环境安全进行风险管理和保护。
同时,环境风险评估报告也可以被用作决策和政策制定工具。
例如:当政府希望开展一个新计划或项目时,如大型水库建设或城市开发,环境风险评估报告可以为政府及社会公众提供环境影响和社区影响的基本信息。
环境风险评价等级与评价范围环境风险评价是针对特定区域或项目的环境影响进行综合评估、辨别与分析,旨在预测和评估潜在的环境风险,为环境管理和决策提供科学依据。
环境风险评价等级与评价范围是对评价结果进行分类和划定范围的体系,用于表征和界定环境风险的严重程度和影响范围。
环境风险评价等级通常分为几个不同级别,如高、中、低等。
每个等级对应着不同程度的环境风险,用于指示问题的重要程度和紧迫性。
高风险等级表示潜在的重大环境风险,并需要立即采取行动以减轻潜在影响。
中等风险等级表示可能存在一些环境风险,但不及高风险等级的严重。
低风险等级表示环境风险较小,对环境影响较低。
评价范围则是指评价所覆盖的区域或项目范围。
它包括了对环境风险评价的边界定义和范围限制。
评价范围可以基于地理位置、生态系统类型、环境介质、时间等因素进行划分。
在一些情况下,评价范围可能涵盖整个地区或国家,以全面评估环境风险。
在其他情况下,评价范围可能仅限于特定的区域、场地或项目,以针对性地评估局部的环境风险。
环境风险评价等级与评价范围的确定需要综合考虑多个因素,包括评价目的、评价对象、评价指标以及相关政策和法律法规的要求。
评价等级和范围的划定应该符合科学性、公正性和可操作性的原则,以确保评价结果的准确性和有效性。
此外,评价结果应该及时、全面地报告给相关利益相关方,为决策者提供科学依据,推动环境保护和可持续发展。
环境风险评价等级与评价范围的确定对于环境管理和决策具有重要意义。
它能够帮助决策者了解环境问题的严重程度、紧迫性和影响范围,进而采取相应的措施进行环境保护和风险治理。
首先,环境风险评价等级的划定是基于对环境风险的评估和分析。
评价指标包括环境因子的类型和程度、对人类健康的影响、生态系统的稳定性等。
通过对这些指标进行科学量化和评估,可以确定不同等级的环境风险。
这样一来,决策者可以根据等级分类的结果,针对高风险等级采取紧急的修复措施,对中等风险等级进行风险管控,而对低风险等级进行常规监测和管理。
环境影响评价中的环境风险识别与评估在环境影响评价(Environmental Impact Assessment,简称EIA)的过程中,环境风险识别与评估是一个关键的环节。
它的主要目标是识别和评估项目可能对环境产生的不利影响,以便采取相应的管理和控制措施。
本文将探讨环境影响评价中环境风险识别与评估的重要性和方法。
一、环境风险识别环境风险识别是指对项目可能造成的环境风险进行全面的识别和描述。
在环境影响评价的过程中,环境风险识别是第一步,也是建立后续评估工作的基础。
通过环境风险识别,可以确定可能产生的环境问题和潜在的风险源,为后续的评估和管理提供准确的数据支持。
环境风险识别通常包括以下几个方面的内容:1. 项目概况:对项目的规模、性质、地理位置等基本情况进行描述,了解项目可能对环境产生的影响。
2. 环境敏感性评估:评估项目所处的环境是否对污染物或其他不利因素具有较高的敏感度,例如周围是否有水源保护区、生态保护区等。
3. 风险源识别:识别项目可能带来的主要风险源,包括噪声、废水、废气、废弃物等。
4. 环境风险评估:对可能产生的环境风险进行评估,包括对风险的概率、严重程度和持续时间进行分析和评估。
二、环境风险评估环境风险评估是在环境风险识别的基础上,对识别出的环境风险进行定量或定性地评估。
通过环境风险评估,可以对风险进行综合分析,确定其可能对环境和人类健康产生的影响程度,为采取相应的控制措施提供依据。
环境风险评估应包括以下几个方面的内容:1. 风险分析:对环境风险进行定性或定量分析,确定其概率和严重程度。
可以使用专业软件模拟、模型分析等方法进行评估。
2. 影响评估:评估环境风险对生态系统、水体、大气、土壤等环境介质的影响程度,并对可能的生态效应和人体健康风险进行评估。
3. 风险管理建议:基于评估结果,提出相应的风险管理建议,包括采取的控制措施、监测方案、应急预案等,以减少环境风险对环境和人类健康的影响。
环境风险评价在当今社会,随着工业化和城市化进程的加速,环境问题日益凸显,环境风险评价成为了环境保护领域中一项至关重要的工作。
环境风险评价旨在识别、评估和管理那些可能对人类健康和生态环境造成不利影响的潜在风险。
它不仅有助于我们提前预防和应对可能出现的环境危机,还能为决策制定提供科学依据,以实现可持续发展的目标。
环境风险评价的概念并不复杂,简单来说,就是对某个活动、项目或政策可能带来的环境危害进行预测和评估。
这些危害可能包括化学物质泄漏、放射性污染、生态系统破坏、自然灾害引发的环境问题等等。
通过对这些潜在风险的分析,我们可以判断其发生的可能性以及可能造成的后果严重程度。
为了进行有效的环境风险评价,首先需要确定评价的对象和范围。
这可能是一个新建的工厂、一个废弃物处理设施,或者是一片计划开发的区域。
明确评价对象和范围是至关重要的第一步,因为它决定了后续工作的方向和重点。
在确定了评价对象和范围后,接下来就是收集相关的数据和信息。
这包括但不限于该地区的环境质量现状、气象条件、水文地质资料、生态系统特征,以及所涉及的污染物的性质、排放量和传播途径等。
这些数据和信息的准确性和完整性直接影响到环境风险评价的结果。
有了数据支持,就可以开始对潜在的环境风险进行识别。
这需要对评价对象的整个生命周期进行分析,从原材料的获取、生产过程、运输、使用到最终的废弃物处理。
在这个过程中,需要找出可能导致环境污染和生态破坏的环节,以及可能引发的环境事故类型。
风险评估是环境风险评价的核心环节。
这包括对风险发生的概率进行估算,以及对一旦风险发生所造成的后果进行预测。
概率估算通常需要借助历史数据、统计分析和模型模拟等手段。
而后果预测则要考虑到对人体健康、生态系统、经济和社会等多个方面的影响。
例如,如果是化学物质泄漏,需要评估其对周边居民健康的危害程度,对土壤、水体和大气等环境介质的污染范围和持续时间,以及对当地生态系统中动植物物种的生存和繁衍的影响。
环境风险评价的内容环境风险评价是指对某个特定环境系统中可能存在的潜在风险进行评估和分析的过程。
它旨在识别和评估环境风险,为环境保护决策提供科学依据,从而减少环境风险对人类健康和环境质量的潜在影响。
环境风险评价的内容涉及多个方面,其中包括以下几个重要方面。
环境风险评价需要对环境系统进行全面的调查和研究,包括环境背景、地质地貌、气候气象、生态环境、人口分布等方面的信息。
通过收集和分析这些基础数据,可以全面了解环境系统的特点和演变趋势,为后续的风险评估提供依据。
环境风险评价需要对可能存在的环境风险进行识别和评估。
这包括对可能的污染源、敏感环境和易受影响的人群进行分析,确定潜在的风险源和潜在影响,评估其可能的风险程度和潜在风险事件的可能性。
通过对可能的风险源和潜在影响的评估,可以为环境保护决策提供科学依据,指导环境管理和风险控制措施的制定和实施。
环境风险评价还需要进行风险评估和风险管理。
风险评估是指对环境风险进行定量或定性的评估,包括对风险的可能性、潜在影响、风险程度和风险趋势等方面进行评估。
风险管理是指通过制定和实施一系列的风险控制措施,减少或消除环境风险的可能性和潜在影响。
风险评估和风险管理是环境风险评价的重要环节,它们可以帮助决策者制定科学合理的环境保护措施,减少环境风险对人类健康和环境质量的潜在影响。
环境风险评价还需要进行风险沟通和风险监测。
风险沟通是指将评估结果和风险信息传达给决策者、公众和其他利益相关者的过程,通过有效的沟通和信息传递,可以增强风险评估的透明度和可信度,提高决策的科学性和可行性。
风险监测是指对环境风险的持续监测和评估,及时发现和预警可能存在的环境风险,为环境管理和风险控制提供科学依据。
环境风险评价是一项复杂而重要的工作,需要综合运用多学科的知识和方法,从全面的角度对环境风险进行评估和分析。
它对于保障人类健康和环境质量具有重要意义,可以为环境保护决策提供科学依据,促进可持续发展和生态文明建设。
Hazard Assessment of Western Baltic region1 IntroductionThe Baltic Sea is a semi-closed sea of about 415,000 Km2. As a matter of fact, the Baltic Sea has been characterized by the interaction of fresh and saltwater sources. However, some issues caused by toxicity due to the development of industries can not be avoided. The environmental situation has deteriorated since the industrial and agricultural waste including some toxic, which may can not be easily degraded. These toxics deposit and accumulate in the aquatic environment, then even deposit in biological bodies by bioaccumulation via food chain.. Some of these substances are highly toxic, while some are not that toxic but will also cause damage to ecological health in a long time. In the matter of this fact, organisms and even human’ s heal th are on the hazard. So the meaning of hazard risk assessment is important. A hazard assessment needs to consider the physical-chemical, toxicological and ecological properties of a chemical substance and the result of this assessment leads to Classificat ion with assignment of ‘R Phrases’; however, this does not reflect the risk of the materials to workers, consumers or the environment and to take the hazard data to the next stage of assessment, it is necessary to understand potential exposure.In our case, we focus on the historical exposure and effects associated with polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) ,dioxin-like polychlorinated biphenyls (DL-PCBs) and brominated flame retardants(PBDE-47,PBDE-99,PBDE-209). Generally these toxicity can cause problems in nervous system and blood circulation system, and also especially have serious effect on the function of livers and lungs. In addition, they can also inhibit the growth of fetuses.2Physical –Chemical properties of toxicities2.1 PCDD/FsPCDD PCDFIn general, PCDD/Fs are non-polar, hydrophobic, lipophilic and stable chemicals, although their properties vary with degree of chlorination. They are stable in the presence of strong acids and bases and are stable at very high temperatures. Solubility in water decreases over several orders of magnitude with increasing chlorination. Their octanol-water partition coefficients (log Kow) increase with chlorination andare among the highest measured for environmental organic contaminants. Changes in properties with chlorination/molecular mass, result in an increased tendency to partition into soils and sediments and to the particulate phase of air and water. Melting points and predicted boiling points of PCDD/Fs from B.Rordorf [1989] are given in Table 1.Estimated temperature dependencies are given in Table 2.Temperature dependencies of PCDD/Fs vapor pressure derived from these estimates are given in Table 3.Temperature dependencies of Henry law constant for PCDD/Fs are given in Table 4.2.2 DL-PCBsDL-PCBsPolychlorinated biphenyls or PCBs are a group of extremely stable aromatic chlorinated compounds which, like dioxins, are relatively resistant to biological degradation and hence persist and accumulate in the environment and in the food chain. There are 209 structurally possible PCB compounds (congeners), with one to ten chlorine atoms per molecule. They have excellent electrical and heat transfer properties, which led to their widespread use in a variety of industrial, commercial and domestic applications. Some poly-chlorinated biphenyls (PCBs) are called dioxin-like PCBs (DL-PCBs) because they have a structure very similar to that of dioxins and have dioxin-like effects.Some toxicologic parameters are in table 5.Basic chemical and physical data are in table 6.2.3 PBDEsPBDEsPBDEs are highly water insoluble, hydrophobic substances. Commercial penta BDE is a viscous liquid, but pure congeners and the other commercial products are solids at room temperature. PBDEs are semivolatile compounds with low vapour pressure and low water solubility. In the air, they exist in the gaseous phase and in the particulate phase. Due to the low vapour pressure they tend to be strongly attracted to air particles, but the amount actually associated with particles is dependent on temperature, particle size and of course, particle concentration. Generally, a greater amount exist in the gaseous phase during warm periods than during cold periods,because of the temperature dependence of the physical-chemical properties. In aquatic environments, PBDEs mainly become attracted by particles, because of the low water solubility.Physical-chemical properties of PBDE-47, PBDE-99, PBDE-209 are in table 7.3.Toxicity bioaccumulation and hazard risk assessment3.1 Toxicity bioaccumulation3.1.1Mobility, fate and transport of PCDD/Fs in the environmentMobility of PCDD/Fs is extremely low since it has a very low solubility in water and high adsorption capability. Therefore PCDD/Fs always accumulate in fatty tissue in biological body. The air-vegetation-livestock-human pathway is probably the most important route of human exposure.Accumulation of PCDD/Fs in the food chain is a consequence of their solubility in fats. Bioaccumulation is high in fish as well as in fat and in the liver of terrestrial organisms. However, accumulation in plants is moderate. The main route of PCDD/Fs to vegetation is via direct deposition from the atmosphere. PCDD/Fs is mainly the by-product of the industrial process, but it also widely exists in the nature in a normal low concentration because of some natural processes, such as volcanic eruptions and forest fires. PCDD/Fs are harmful by-productions from metallurgy, chlorine bleaching and pesticide manufacture industries. The most reprehensible problem harming environment is from waste incinerations, such as solid waste and medical waste incineration. The problem is mainly caused by insufficient combustion.Although the mobility of PCDD/Fs incorporated into sediment is thought to be minimal, there is evidence from laboratory studies that transformation of PCDD/Fs via reductive dechlorination can occur. The dechlorination process is expected to be much slower in the environment however. Soil, along with sediment, is the ultimate destination for PCDD/Fs. Once PCDD/Fs have been deposited to soil there is very little transformation or movement and estimated half-lives for PCDD/Fs in soil are decades. After PCDD/Fs entre the atmosphere, they will be transported by advective process. Most of PCDD/Fs may be deposited from the atmosphere to the ground, vegetated and water surfaces by three processes:1)Dry deposition of gases and particles, which means it directly interact between the atmosphere and the ground.2)Wet deposition. It comes down companying with falling hydrometeors.3)Occult deposition. It exists in fog droplets which do not fall under gravity because of their small size)3.1.2 Mobility, fate and transport of DL-PCBs in the environmentAccumulation in humus layer with little mobility; following sorption, mobility by way of vapor phase. There is very little degradation; the persistence increases with the degree of chlorination.Moreover, due to their chemical stability and persistence, PCBs could be globally distributed by the movement of water, atmosphere, and food cycle. Once in the environment, PCBs are highly resistant to chemical and biological degradation. PCBs, particularly the highly chlorinated ones, have been known to persist in water soils, sediment and biota for long periods of time.Although PCBs have low solubility in water, the immense amount of water in the oceans is still capable of holding a significant quantity of PCBs. In water, PCBs can be existed in the form of either truly dissolved or adsorbed suspended particles. Due to the presence of suspended particles with adsorbed PCBs, the amount of PCBs in water can sometimes exceed than what theoretically expected from the PCB's water solubility. Furthermore, the presence of human waste and dissolved organic carbon in water could also enhance the solubility of PCBs. The transport of PCBs in oceans is mainly due to the ocean current, and the ocean current between continents could easily transport PCBs from one country to another country.3.1.3 Mobility, fate and transport of PBDEs in the environmentThe environmental patterns of PBDEs in the air vary from the patterns in soil, sediment, and sludge. PBDEs strongly adsorb to these matrixes, and the congener patterns tend to reflect those in the commercial mixtures, except in sludge.Biodegradation is not an important pathway for the PBDEs, but photolysis possibly plays an important role in their transformation. When PBDEs existing in biological fat exposure in sunlight, more potentially toxic and more bioavailable with lower brominated will form. Due to the uncertainty in vapour pressure, the results obtained for BDE 209 possibly differ from the actual truth. Adopting a lower vapour pressure yields a higher amount partitioning to aerosols, which also increases the deposition of this chemical and thus the concentration in soil, urban film and sediment. Due to the large surface area of water, increased deposition also shifts the relativedistribution from soil to sediment, resulting in a higher percentage residing in sediment and a lower in soil.3.2 Toxicological hazard to organisms in the aquatic environment (ecological health)3.2.1 PCDD/FsAquatic environment, as the most important ecology environment, plays the key role in accumulation of PCDD/Fs. As presented in the fig.1, PCDD/Fs in the fresh water has a growing accumulated concentration before 1980 and then decreases. This situation may caused by the fact that the organisms such like zooplankton and fish in the water exposes in such aquatic environment and then deposit toxicities by eating. But fortunately, from the data we got from CoZMoMAN, we can figure that the highest concentration is only 1.99E-17 g/m3, which will only cause slight even no damage to organisms in the water. But the concentration in fish and zooplankton is much higher. From the figure4.1, we can know that the concentrations in organisms changes widely from 0 to 0.015 as different ages. The more mature organism accumulate more toxicity, absolutely supper more from the damage.3.2.2 DL-PCBsFish and other seafood are the main contributors to total TEQ intake from DL-PCBs. However, those individuals in some groups of organisms, which frequently consume high quantities of certain species , could significantly increase their DL-PCB intakes. Their environmental persistency, bioaccumulation and toxicological effects could be potentially similar to those of PCDD/Fs. We can know from fig.2, the concentration in fresh water and sediment both increase to the peak when 1975 and goes down afterwards. The sediment concentration increase as a result of the sedimentation of the toxicity.And the reduction may be contributed to ingestion and adsorption by organisms in the water. Although the peak number 2.66E-13 ng/g and 9.32E-13 ng/g are ignorable, we can also know from the data(fig4.2) that the peak of concentration in organisms in the water is relatively high, especially in 9-10 years herrings fat of 0.015ng/g. In this fact, fish and zooplankton are on hazard of PCBs, getting worse as the exposure time extents.3.2.3 PBDEsFrom the figure3, it can be obvious that the trend of concentrations on fresh water and sediment are mostly same. This phenomenon can due to the sedimentation and ingestion. Toxicities continuously settle into the bottom as small particle and those in the seawater are intaken by fish and zooplankton. Then toxicities concentrate and accumulate in fat in a much higher concentration.At the same time, by comparing with the data from CoZMoMAN, as figure(4.3-4.5), the accumulation in fish and zooplankton obviously concentrated and may cause significant effect on to different ages of organisms’ health . Effects of PBDEs have been reported in algae, invertebrates and in fish. In fish, fatty liver and reduced spawning are the main consequence.3.3 toxicological hazard to humans (human health)Comparing toxic accumulation concentration with LD50 of mouse. As the safety factor of human is 1000, LD50 (human)=LD50(mouse)/1000.3.3.1 PCDD/FsIn this case, TDLo of PCDD/Fs is 0.1 mg/kg. In the figure5.1, we can find that the concentration in humans is at most 0.035ng/g , which means that accumulation in human body is far below the damaging concentration. However, the effect of PCDD/Fs should not be ignore if humans are exposed in PCDD/Fs for a very longtime. Long time exposure may cause damage of the immune system, development of the nervous system, endocrine system and reproductive function. Chronic exposure to dioxins has lead to several types of cancer in animals. The growing fetus are the most sensitive group with PCDD/Fs. The growth of organ system can be effected, too. If humans shortly exposure to high levels of dioxins, they may have skin lesions, such as acne and skin discoloration. PCBB/Fs can also cause alteration of liver functions.3.3.2 DL-PCBsThe less serious concentration of long-evans rat is 1mg/kg, so the value for human is nearly 1ng/g . This value is also much higher than the peaks of graphs(fig 5.2) which presents DL- PCBs concentration in man and female human bodies. This fact may caused by their extremely stable chemical property and high sedimentation rate in the sea. Thus this kind of toxicity can be mostly tested in aquatic environment and fish fat. However, PCBs are generally regarded as having potential to cause adverse effects on health, with particular concern being expressed about the 12 so-calleddioxin-like PCBs. This group of non-ortho (PCB 77, 81, 126, 169) and mono-ortho (PCBs 105, 114, 118, 123, 156, 157, 167, 189) PCBs are assumed to have essentially the same toxicity potential as the dioxins and furans. It can be observed that human from 40-50 ages have much more concentrations than other age groups. People intake even low concentrations of DL-PCBs, also can be damaged because of its long life-time and low metabolism rate. Serious poisoning caused by PCB can bring out diarrhea, ataxia, inhibition of central nerves, etc, and even death. Toxic of PCB depends on animal species, sex, spread path, chemical structure of the PCB itself, and the different impurities. Human is probably one of the most sensitive species. PCBs can be easily intaken by humans via gastrointestinal tract, lungs, and skin. After entre human body, PCBs widely spread to the hole body, and mostly deposit in liver and fat. PCB in the matrix can transfer to the fetus via the placenta, and PCB in the fetal liver tend to be higher than the tissue of mothers. So damage to fetus are even more serious than adults. The contribution from dietary changes of young women, which may partly explain the more rapidly decreasing trend of DL-PCB concentrations in humans.3.3.3 PBDEsAccording to the data and figures(fig5.3-5.5) about the concentrations in human body, we can know that the concentration of PBDE-209 kept increasing by now, and there is no decreasing trend. Thus, we can infer that the PBDEs concentration can continue to increase and there is a possibility that it can exceed the less serious damaging concentration and cause damage to human health. Whereas, the concentration of PBDE-47 and PBDE-209 reach the peak in 2005 and then tend to decrease due to the high metabolism rate. Young people are under more risk of being damaged by toxicities. Very serious health effects are associated with exposure to PBDEs, but toxicity depends on the compound and the amount that one is exposed to. PBDEs are chemically similar to PCBs and, not surprisingly, they show similar health effects as well. They are biomagnified toxic compounds, meaning they accumulate within food chains. In contrast to penta-BDE, deca-BDE is poorly absorbed which may limit its potential toxicity. Toxicity testing indicates that PBDEs may cause liver, thyroid, and neuro developmental toxicity .There is also a study showing that exposure to very high doses of deca-BDE can cause tumors.4 ConclusionAccording to the risk assessment results, we can get conclusions blow:●In the bioaccumulation system, toxicity concentration in aquatic organisms are much higher than those in human bodies. Therefore hazard risk in aquatic environment is regarded under more risk.●Although most of the accumulation concentrations haven’t exceeded the damaging concentration, long time exposure will also have toxicological hazard to organisms in The aquatic environment and humans.●Damages caused by these organic toxicity mainly effect on nervous system, blood circulation system,development of organisms and functions of visceral organ.Table1. Melting and boiling points of PCDD/FsTable 2. Solubility of PCCD/Fs in water as a function of temperatureTable 3.Temperature dependence of vapor pressure of PCCD/FsTable 4.Temperature dependencies of Henry law constant for PCDD/FsTable 5. Parameters of PCBsTable 6. Basic chemical and physical dataTable 7.Physical-chemical properties of PBDE-47, PBDE-99, PBDE-209Figure 1. concentration of PCDD/Fs in ng/gPOCfresh water concentration of PCDD/Fs in ng/gPOC sediment concentration in PCDD/Fs ng/gPOCFigure 2 concentrations of DL-PCBsFreshwater con of DL-PCBs Sediment con of DL-PCBsFig 3. Concentration of PBDEsFresh water con of PBDE-47 Sediment con of PBDE-47Fresh water con of PBDE-99 Sediment con of PBDE-99Fresh water con of PBDE-209 Sediment con of PBDE-209Figure 4. 1PCDD/Fs of aquatic organisms (ng/g)Figure 4. 2 DL-PCBs of aquatic organisms (ng/g)Figure 4.3 PBDE-47 of aquatic organisms (ng/g)Figure 4.4 PBDE-99 of aquatic organisms (ng/g)Figure 4.5 PBDE-209 of aquatic organisms(ng/g)、Figure 5. 1 PCDD/Fs of humans (ng/g)Figure 5. 2 DL-PCBs of hunmans (ng/g)Figure 5.3 PBDE-47 of humans(ng/g)Figure 5.4 PBDE-99 of humans (ng/g)Figure 5.5 PBDE-209 of humans (ng/g)。