2021年高二9月月考 数学(理)试题 含答案
- 格式:doc
- 大小:104.50 KB
- 文档页数:6
河北省张家口市张家洼第二中学2021年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=A.58 B.88 C.143 D.176参考答案:B略2. 已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为(1,-1),则的方程为 ( )A. B.C. D.参考答案:A3. 经过点且与双曲线有共同渐近线的双曲线方程为()A.B.C.D.参考答案:D4. 下列命题错误的是()A.命题“若m>0则方程x2+x﹣m=0有实根”的逆否命题为:“若方程x2+x﹣m=0无实根则m≤0”B.对于命题p:“?x∈R使得x2+x+1<0”,则?p:“?∈R,均有x2+x+1≥0”C.若p∧q为假命题,则p,q均为假命题D.“x=1”是“x2﹣3x+2=0”的充分不必要条件参考答案:C【考点】复合命题的真假;四种命题间的逆否关系;命题的否定.【分析】根据逆否命题的定义判断A是否正确;根据特称命题的否定来判断B是否正确;利用复合命题真值表判断C是否正确;根据充分不必要条件的定义判断D的正确性.【解答】解:根据命题的条件、结论及逆否命题的定义,写出命题的逆否命题,判断A正确;根据特称命题的否定是全称命题,判断B正确;根据复合命题的真值表,p∧q为假命题,P、q至少有一个是假命题,∴C不正确;∵x=1?x2﹣3x+2=0;而x2﹣3x+2=0则x=1是假命题,∴D正确.故选C5. 命题“若α=,则tanα=1”的逆否命题是A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠ D.若tanα≠1,则α=参考答案:C略6. 已知函数f(x)=﹣x3+2ax2﹣x﹣3在R上是单调函数,则实数a的取值范围是()A.(﹣∞,﹣]∪[,+∞) B.[﹣,]C.(﹣∞,﹣]∪(,+∞) D.(﹣,)参考答案:B【考点】利用导数研究函数的单调性.【分析】先求函数的导数,因为函数f(x)在(﹣∞,+∞)上是单调函数,所以在(﹣∞,+∞)上f′(x)≤0恒成立,再利用一元二次不等式的解得到a的取值范围即可.【解答】解:f(x)=﹣x3+2ax2﹣x﹣3的导数为f′(x)=﹣3x2+4ax﹣1,∵函数f(x)在(﹣∞,+∞)上是单调函数,∴在(﹣∞,+∞)上f′(x)≤0恒成立,即﹣3x2+4ax﹣1≤0恒成立,∴△=16a2﹣12≤0,解得﹣≤a≤∴实数a的取值范围是得[﹣,],故选:B.7. 已知命题p:“?x0∈R,x03>x0”,则命题¬p为()A.?x∈R,x3>x B.?x∈R,x3<x C.?x∈R,x3≤x D.?x0∈R,x03≤x0参考答案:C【考点】命题的否定.【分析】根据特称命题的否定为全称命题,即可得到所求命题的否定.【解答】解:由特称命题的否定为全称命题,可得命题p:“?x0∈R,x03>x0”,则命题¬p为”?x∈R,x3≤x”.故选:C.8. 定义在上的函数满足,,则不等式的解集为()A.(e,+∞) B.(1,+∞) C.D.(1, e)参考答案:A9. 若椭圆的方程为,且焦点在x轴上,焦距为4,则实数a等于A. 2 B.4 C.6 D.8参考答案:B10. 已知结论:“在三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则”若把该结论推广到空间,则有结论:在棱长都相等的四面体ABCD中,若的中心为M,四面体内部一点O到四面体各面的距离都相等,则等于()A.1 B.2 C.3 D.4参考答案:C在棱长都相等的四面体ABCD中,且的中心为M,则面,;因为四面体内部一点O到四面体各面的距离都相等,所以点O为内切球的球心,OM是内切球的半径,则,则,则.二、填空题:本大题共7小题,每小题4分,共28分11. 已知命题“”是假命题,则实数a的取值范围是参考答案:12. 等比数列{a n}中,S n表示前n顶和,a3=2S2+1,a4=2S3+1,则公比q为.参考答案:3【考点】等比关系的确定.【专题】计算题.【分析】把已知条件a3=2S2+1,a4=2S3+1相减整理可得,a4=3a3,利用等比数列的通项公式可求得答案.【解答】解:∵a3=2S2+1,a4=2S3+1两式相减可得,a4﹣a3=2(S3﹣S2)=2a3整理可得,a4=3a3利用等比数列的通项公式可得,a1q3=3a1q2,a1≠0,q≠0所以,q=3故答案为:3【点评】利用基本量a1,q表示等比数列的项或和是等比数列问题的最基本的考查,解得时一般都会采用整体处理属于基础试题.13. 方程x2+y2+x+2my+m=0表示一个圆,圆m的取值范围是.参考答案:【考点】圆的一般方程.【分析】由二元二次方程表示圆的条件得到m的不等式,解不等式即可得到结果.【解答】解:方程x2+y2+x+2my+m=0表示一个圆,则1+4m2﹣4m>0,∴.故答案为:14. 观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第个等式为.参考答案:15. 如果双曲线的一个焦点到渐近线的距离为3,且离心率为2则此双曲线的方程.参考答案:【考点】双曲线的简单性质.【分析】利用双曲线的焦点到渐近线的距离,求出b,离心率求出c,然后求解b,即可得到双曲线方程.【解答】解:双曲线的一个焦点(c,0)到渐近线bx+ay=0的距离为3,可得:3==b,b=3,离心率为2,可得:,解得:a=,所求双曲线方程为:.故答案为:.16. 如图,在正方体ABCD-A1B1C1D1中,直线A1B和平面A1B1CD所成的角是_________.参考答案:30o;略17. 已知集合N={1,2,3,4,…,n},A为非空集合,且A?N,定义A的“交替和”如下:将集合A 中的元素按由大到小排列,然后从最大的数开始,交替地减、加后续的数,直到最后一个数,并规定单元素集合的交替和为该元素.例如集合{1,2,5,7,8}的交替和为8﹣7+5﹣2+1=5,集合{4}的交替和为4,当n=2时,集合N={1,2}的非空子集为{1},{2},{1,2},记三个集合的交替和的总和为S2=1+2+(2﹣1)=4,则n=3时,集合N={1,2,3}的所有非空子集的交替和的总和S3= ;集合N={1,2,3,4,…,n}的所有非空子集的交替和的总和S n= .参考答案:12; n?2n﹣1.【考点】进行简单的合情推理;元素与集合关系的判断.【分析】根据“交替和”的定义:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数可求出“交替和”的总和S3,再根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和S n即可.【解答】解:法(1):由题意,S1=1=1×20,S2=4=2×21,当n=3时,S3=1+2+3+(2﹣1)+(3﹣1)+(3﹣2)+(3﹣2+1)=12=3×22,当n=4时,S4=1+2+3+4+(2﹣1)+(3﹣1)+(4﹣1)+(3﹣2)+(4﹣2)+(4﹣3+2)+(3﹣2+1)+(4﹣3+2+1)=32=4×23,∴根据前4项猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和S n=n?2n﹣1法(2):同法(1)可得S3=1+2+3+(2﹣1)+(3﹣1)+(3﹣2)+(3﹣2+1)=12,对于集合N={1,2,3,4,…,n},分析可得其共有2n个子集,将其子集分为两类:第一类包含元素n,第二类不包含元素n,其余的元素相同;这两类子集可建立一一对应关系,如{1,n}和{1},{n}和空集,…共有2(n﹣1)对这样的子集,对于每一对这样的子集,如A和B,∵n大于B中任意元素,∴如果子集B的交替和为b,则子集A的交替和为n﹣b这样,A与B的交替和之和为n,则S n=n?2n﹣1故答案为:12,n?2n﹣1三、解答题:本大题共5小题,共72分。
2021年高二下学期第二次月考(期中)数学(理科)试题 含答案一、选择题1. 的展开式中项的系数是( )A .B .C .D .2.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( )A .0.85 B .0.819 2 C .0.8 D .0.75 3某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有 A 12种 B 24种 C 36种 D 72种4在二项式的展开式中恰好第5项的二项式系数最大,则展开式中含项的系数是( ).A .-56 B .-35 C .35 D .565. 有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试, 直到2件不稳定的产品全部找出后测试结束,则恰好3次 就结束测试的方法种数是( )A. 48B. 32C. 24D. 166.已知随机变量X 的取值为0,1,2,若,,则( ) A . B . C . D .7. 用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是( ) A 12 B 24 C 30 D 368.若9922109)1(...)1()1()2(+++++++=++x a x a x a a m x ,且9293128203)...()...(=+++-+++a a a a a a 则实数m 的值为( )A. 1或-3B. -1或3C. 1D. -39. 形如34021这样的数称为“波浪数”,即十位上的数字、千位上的数字均比与它们各自相邻的数字大,现从由0, 1, 2, 3, 4, 5组成的数字不重复的五位数中任取一个,则该数是“波浪数”的概率为()(A) (B) (C) (D)10. 八人分乘三辆小车,每辆小车至少载人最多载人,不同坐法共有()A.种B.种C.种D.种11.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数的期望为()A.B.C.D.12. 定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.如:,,,依此类推可得:1111111111111126123042567290110132156m n=++++++++++++,其中,.设,则的最小值为()A.B.C.D.二、填空题:本大题共5小题, 每小题5分, 共25分. 请将答案填写在答题卷中的横线上. 13.展开式中,项的系数为。
江苏省常州市第一职业高级中学2020-2021学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. “方程表示一个圆”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:C【分析】根据条件得到方程表示圆则,反之也是正确的,从而得到答案.【详解】方程表示一个圆,则需要满足,反之,则满足方程是一个圆,故选择充要条件.故答案为:C.【点睛】判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.2. 已知A是B的充分不必要条件,B是C的充要条件,则C是A的( ).A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件参考答案:B略3. 如果一个几何体的三视图如图所示(长度单位: cm), 则此几何体的表面积是()A. B.C. D.参考答案:A4. 复数(i是虚数单位)的共轭复数在复平面内对应的点是()A.(2,﹣2)B.(2,2)C.(﹣2,﹣2)D.(﹣2,2)参考答案:B【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解: ==2﹣2i(i是虚数单位)的共轭复数2+2i在复平面内对应的点(2,2).故选:B.5. 设,则()A.0.16 B.0.32 C.0.84 D.0.64参考答案:A6. 若多项式x5+x10=a0+a1(x+1)+a2(x+1)2+……+a9(x+1)9+a10(x+1)10,则a4=( )A.205B.210C.-205D.-210参考答案:A7. 已知椭圆的离心率为,则b等于().A.3B.C.D.参考答案:B8. 阅读下图左边的流程图,若输入,则输出的结果是()A.2 B. 4 C.5 D. 6参考答案:A9. 已知,,且,则的最大值是()A. B. C. D.参考答案:B略10. 已知点P的极坐标为,则点P的直角坐标为()(1,)(1,﹣)C (,1)D(,﹣1)A解答:解:x=ρcosθ=2×cos=1,y=ρsinθ=2×sin=∴将极坐标(2,)化为直角坐标是(1,).故选A.11. 若为实数,则“”是“或”的 ________条件.参考答案:充分而不必要条件略12. 若对任意x>0,≤a恒成立,则a的取值范围是.参考答案:a≥考点:基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:根据x+≥2代入中求得的最大值为进而a的范围可得.解答:解:∵x>0,∴x+≥2(当且仅当x=1时取等号),∴=≤=,即的最大值为,故答案为:a≥点评:本题主要考查了基本不等式在最值问题中的应用.属基础题.13. 对于曲线∶=1,给出下面四个命题:(1)曲线不可能表示椭圆;(2)若曲线表示焦点在x轴上的椭圆,则1<<;(3)若曲线表示双曲线,则<1或>4;(4)当1<<4时曲线表示椭圆,其中正确的是()A .(2)(3) B. (1)(3) C. (2)(4) D.(3)(4)]参考答案:A14. 已知=2, =3, =4,…若=6,(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t= .参考答案:41【考点】F3:类比推理.【分析】观察所给的等式,等号右边是,,…第n 个应该是,左边的式子,写出结果.【解答】解:观察下列等式=2, =3, =4,…照此规律,第5个等式中:a=6,t=a2﹣1=35a+t=41.故答案为:41.【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.15. 已知,,则线段AB的中点坐标为________;_________.参考答案:( -1, -1, -1),;16. 已知集合,,则集合.参考答案:略17. △ABC的三边长分别为3、4、5,P为面ABC外一点,它到△ABC三边的距离都等于2,则P到面ABC的距离是________.参考答案:三、解答题:本大题共5小题,共72分。
2020-2021学年辽宁省联合校高二上学期9月月考数学试题★祝考试顺利★(含答案)考试时间:120分钟 试卷满分:150分一、选择题(每题5分,满分60分)1.已知向量()2,3,1a =-,()1,2,4b =-,则a b +=( )A. (-1,1,5)B. (-3,5,-3)C. (3,-5,3)D. (1,-1,-5)2.点()3223M -,,到原点的距离为( ) A. 1 B. 3 C. 5 D. 93.已如向量()1,1,0a =,()1,0,1b =-且ka b +与a 互相垂直,则k =A. 13B. 12C. 13-D. 12- 4.若向量(1,,1),(2,1,2)a b λ=--,且a 与b 的夹角余弦为26,则λ等于( ) A. 2- B. 2 C. 2-或2D. 2 5.如图,长方体ABCD - A 1B 1C 1D 1中,145DAD ∠=,130CDC ∠=,那么异面直线1AD 与1DC 所成角的余弦值是( )A. 24 2 3 D. 386.已知正四棱柱ABCD - A 1B 1C 1D 1,设直线AB 1与平面11ACC A 所成的角为α,直线CD 1与直线A 1C 1所成的角为β,则( )A. 2βα=B. 2αβ=C. αβ=D. 2παβ+= 7.如图,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OB 、AC 的中点,点G 在线段MN 上,2MG GN =,现用基向量,,OA OB OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( )A. 111333x y z ===,,B. 111336x y z ===,,C. 111363x y z ===,,D. 111633x y z ===,, 8.如图,60°的二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,则CD 的长为A. 17B. 7C. 217D. 99.在正方体ABCD ﹣A 1B 1C 1D 1中,E 是BB 1的中点,若6AB =,则点B 到平面ACE 的距离等于( )56 C. 362 D. 310.如图,在三棱柱ABC - A 1B 1C 1中,M 为A 1C 1的中点,若1,,AB a AA c BC b ===,则下列向量。
2021年上海德州中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 给出两个命题:p:平面内直线与抛物线有且只有一个交点,则直线与该抛物线相切;命题q:过双曲线右焦点的最短弦长是8.则( )A.q为真命题 B.“p 或q”为假命题C.“p且q”为真命题 D.“p 或q”为真命题参考答案:B2. 直线过点且与圆相切,则的斜率是()A.;B.;C. ;D. .参考答案:D3. 在平面直角坐标系中,若不等式组表示的平面区域为面积为16,那么的最大值与最小值的差为()A.8 B.10 C.12 D.16参考答案:C略4. < 6 表示的平面区域内的一个点是A.(0,0)B.(1,1)C.(0,2)D. (2,0)参考答案:D略5. 将函数的图象F按向量(,3)平移得到图象F′,若图象F′的一条对称轴是直线x=,则θ的一个可能取值是 ( )A. B. C. D.-参考答案:A6. 已知双曲线的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q两点,且PQ⊥PF1,若,则双曲线离心率e为()A.B.C.D.参考答案:D【考点】双曲线的简单性质.【分析】由PQ⊥PF1,|PQ|与|PF1|的关系,可得|QF1|于|PF1|的关系,由双曲线的定义可得2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,解得|PF1|,然后利用直角三角形,推出a,c的关系,可得双曲线的离心率.【解答】解:可设P,Q为双曲线右支上一点,由PQ⊥PF1,|PQ|=|PF1|,在直角三角形PF1Q中,|QF1|==|PF1|,由双曲线的定义可得:2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,由|PQ|=|PF1|,即有|PF2|+|QF2|=|PF1|,即为|PF1|﹣2a+|PF1|﹣2a=|PF1|,∴(1﹣+)|PF1|=4a,解得|PF1|=.|PF2|=|PF1|﹣2a=,由勾股定理可得:2c=|F1F2|==,可得e=.故选:D.7. 平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m1和n1,给出下列四个命题:①m1⊥n1?m⊥n;②m⊥n?m1⊥n1③m1与n1相交?m与n相交或重合④m1与n1平行?m与n平行或重合其中不正确的命题个数是()A.1 B.2 C.3 D.4参考答案:D【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系.【分析】本题考查的知识点判断命题的真假,根据空间中特定的线线关系,分析它们在平面中射影的位置关系,或是由射影的位置关系,分析原直线的位置关系,根据直线的放置特点,逐一进行判断,可以得到正确结论.【解答】解:因为一个锐角在一个平面上的投影可以为直角,反之在平面内的射影垂直的两条直线所成的角可以是锐角,故①不正确.两条垂直的直线在一个平面内的射影可以是两条平行直线,也可以是一条直线和一个点等其他情况,故②不正确.两条异面直线在同一平面上的射影可以相交,所以射影相交的两条直线可以是异面直线,故③不正确.两条异面直线在同一平面内的射影也可以平行,所以两直线的射影平行不一定有两直线平行或重合.故④不正确.故选D.8. 直线(t为参数)的倾斜角是()A. B. C. D.参考答案:C9. 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A. 144B. 120C. 72D. 24参考答案:D试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有种考点:排列、组合及简单计数问题10. 抛物线的焦点坐标为()A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数f(x)=+1,则f(lg 2)+f(lg )=.参考答案:212. 已知点P(m,n)是直线2x+y+5=0上的任意一点,则的最小值为.参考答案:【考点】7F:基本不等式.【分析】变形利用二次函数的单调性即可得出.【解答】解:∵点P(m,n)是直线2x+y+5=0上的任意一点,∴2m+n+5=0.则==≥,当且仅当m=2时取等号.∴的最小值为.故答案为:.13. 已知某程序框图如图所示,若输入的x的值分别为0,1,2,执行该程序框图后,输出的y的值分别为a,b,c,则a+b+c= .参考答案:614. 已知某几何体的三视图如图所示,则该几何体的体积为.参考答案:【考点】由三视图求面积、体积.【专题】计算题.【分析】由已知中的三视图,我们可以判断出几何体的形状,进而求出几何体的底面面积和高后,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可得几何体是一个三棱锥且棱锥的底面是一个以(2+1)=3为底,以1为高的三角形棱锥的高为3 故棱锥的体积V=(2+1)13=故答案为:【点评】本题考查的知识点是由三视图求体积,其中根据已知判断出几何体的形状是解答本题的关键.15. 如图所示,设抛物线的焦点为,且其准线与轴交于,以,为焦点,离心率的椭圆与抛物线在轴上方的一个交点为P.(1)当时,求椭圆的方程;(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.参考答案:(1)设椭圆方程为,当时,,又,故椭圆方程为5分(2),由得,即7分,,10分若的三条边的边长是连续的自然数,则,即略16. 已知椭圆的左、右焦点分别为F1,F2,若椭圆上存在一点P使|PF1|=e|PF2|,则该椭圆的离心率e 的取值范围是.参考答案:[,1)【考点】椭圆的简单性质;椭圆的定义.【分析】由椭圆的定义可得 e (x+)=e?e (﹣x ),解得x=,由题意可得﹣a≤≤a,解不等式求得离心率e 的取值范围.【解答】解:设点P 的横坐标为x ,∵|PF 1|=e|PF 2|,则由椭圆的定义可得 e (x+)=e?e (﹣x),∴x=,由题意可得﹣a≤≤a,∴﹣1≤≤1,∴,∴﹣1≤e<1,则该椭圆的离心率e的取值范围是[,1),故答案为:[,1).17. 若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是 .参考答案:三、解答题:本大题共5小题,共72分。
黑龙江省哈尔滨市延寿县第二中学2020-2021学年高二数学9月月考试题一、选择题(本题共12小题,每小题5分,共60分)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一个问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.图示程序的功能是()错误!A.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n3.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.144.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6当x =-4时的值时,v2的值为()A.-4 B.1C.17 D.225.(2018·全国卷Ⅱ)为计算S=1-错误!+错误!-错误!+…+错误!-错误!,设计了下面的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2C.i=i+3 D.i=i+46.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民,对其该天的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本7.2012年6月16日“神舟”九号载人飞船顺利发射升空,某校开展了“观‘神九’飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”九号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多()A.5 B.4C.3 D.28.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,…,800,利用随机数表法抽取样本,从第7行第1个数8开始,依次向右,再到下一行,继续从左到右.请问选出的第七袋牛奶的标号是()(为了便于说明,下面摘取了随机数表的第6行至第10行)1622779439495443548217379323788735209643 84263491648442175331572455068877047447672176335025 8392120676630163783916955567199810507175128673580744395238793321123429786456078252420744381551001342 99660279545760863244094727965449174609629052847727 0802734328A.425 B.506C.704 D.7449。
2020-2021学年安徽省阜阳市老集中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在空间直角坐标系中,A(1,2,3),B(2,2,0),则=()A.(1,0,﹣3)B.(﹣1,0,3)C.(3,4,3)D.(1,0,3)参考答案:A【考点】空间向量运算的坐标表示.【专题】对应思想;定义法;空间向量及应用.【分析】根据空间向量的坐标表示,求出即可.【解答】解:空间直角坐标系中,A(1,2,3),B(2,2,0),∴=(2﹣1,2﹣2,0﹣3)=(1,0,﹣3).故选:A.【点评】本题考查了空间向量的坐标表示与应用问题,是基础题.2. 函数的零点所在区间是A. B. C. D.(1,2)参考答案:C略3. 为了从甲乙两人中选一人参加数学竞赛,老师将两人最近的6次数学测试的分数进行统计,甲乙两人的得分情况如茎叶图所示,若甲乙两人的平均成绩分别是,,则下列说法正确的是( )A.,乙比甲成绩稳定,应该选乙参加比赛B.,甲比乙成绩稳定,应该选甲参加比赛C.,甲比乙成绩稳定,应该选甲参加比赛D.,乙比甲成绩稳定,应该选乙参加比赛参考答案:D略4. 已知,则的最小值等于A. B. C. D. 2参考答案:D5. 实数lg4+2lg5的值为()A.2 B.5 C.10 D.20参考答案:A【考点】对数的运算性质.【分析】根据对数的运算性质进行计算即可.【解答】解:lg4+2lg5=2lg2+2lg5=2(lg2+lg5)=2lg(2×5)=2lg10=2.故选:A.【点评】本题考查了对数运算性质的应用问题,解题时应灵活应用性质与公式进行运算,是基础题.6. 过点且倾斜角为60°的直线方程为()A. B. C. D.参考答案:A7. 已知x,y取值如下表:A.1.30 B.1.45 C.1.65 D.1.80参考答案:B8. 已知双曲线的左右焦点是F1,F2,设P是双曲线右支上一点,在上的投影的大小恰好为||,且它们的夹角为,则双曲线的离心率e为( )A. B. C. D.参考答案:C9. 设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.参考答案:A【考点】6D:利用导数研究函数的极值;3O:函数的图象.【分析】由题设条件知:当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.由此观察四个选项能够得到正确结果.【解答】解:∵函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,∴当x>﹣2时,f′(x)>0;当x=﹣2时,f′(x)=0;当x<﹣2时,f′(x)<0.∴当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.故选A.【点评】本题考查利用导数研究函数的极值的应用,解题时要认真审题,注意导数性质和函数极值的性质的合理运用.10. 已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a=f(log47),b=f(log3),c=f(0.20.6),则a,b,c的大小关系是 ()A.c<b<a B.b<c<a C .b <a <c D .a<b<c参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 若数列{a n}是等差数列,则数列也是等差数列;类比上述性质,相应地,{b n}是正项等比数列,则也是等比数列.参考答案:12. 曲线在点(-1,-3)处的切线方程是________.参考答案:y=x-213. 某工厂去年产值为a,计划在今后5年内每年比上年产值增加10%,则从今年起到第5 年,这个厂的总产值为________.参考答案:14. 已知,则________.参考答案:1令x=1,得到=0,令x=0得到两式子做差得到.故答案为:1.15. 在平面直角坐标系中,从六个点:中任取三个,这三点能构成三角形的概率是__________.(结果用分数表示)参考答案:16. 已知函数f (x )的定义域是R ,f (x )=(a 为小于0的常数)设x 1<x 2且f′(x 1)=f′(x 2),若x 2﹣x 1 的最小值大于5,则a 的范围是 .参考答案:(﹣∞,﹣4)【考点】3H :函数的最值及其几何意义.【分析】求出原函数的导函数,作出图象,再求出与直线y=﹣2x+a 平行的直线与函数y=的切点的坐标,则答案可求.【解答】解:由f (x )=,得.作出导函数的图象如图:设与直线y=﹣2x+a 平行的直线与函数y=的切点为P ()(x 0>0),由y=,得y′=,则=﹣2,解得x 0=1,则,∴x 2=1,在直线y=﹣2x+a 中,取y=4,得.由x 2﹣x 1=1﹣>5,得a <﹣4.∴a 的范围是(﹣∞,﹣4).故答案为:(﹣∞,﹣4). 17. 已知向量,若,则x= ;若则x= .参考答案:,﹣6.【考点】向量语言表述线线的垂直、平行关系.【分析】两个向量垂直时,他们的数量积等于0,当两个向量共线时,他们的坐标对应成比列,解方程求出参数的值.【解答】解:若,则 ?=.若,则==,∴x=﹣6, 故答案为,﹣6.【点评】本题考查两个向量垂直的性质以及两个向量平行的性质,待定系数法求参数的值.三、解答题:本大题共5小题,共72分。
2021年高二9月月考数学含答案一、选择题:(本大题共12小题,每小题5分,共60分)1、已知数列{a n}满足a1=2,a n+1-a n+1=0,(n∈N+),则此数列的通项a n等于( ) A.n2+1 B.n+1 C.1-n D.3-n2、设是等差数列,且则这个数列的前5项和S5=( )A.10 B.15 C.20 D.253、已知、、为△的三边,且,则等于()A.B.C.D.4、在△ABC中,若a = 2 ,, , 则B等于()A. B.或 C. D.或5、已知中,a=5, b = 3 , C = 1200 ,则sinA的值为()A、 B、 C、 D、6、若是等差数列,首项,则使前n项和成立的最大自然数n是()A.4005 B.4006 C.4007 D.40087、数列中,,且数列是等差数列,则等于()A.B.C.D.58、某人要制作一个三角形,要求它的三条高的长度分别为,则此人()A.不能作出这样的三角形B.能作出一个锐角三角形C.能作出一个直角三角形D.能作出一个钝角三角形9、夏季高山上气温从山脚起每升高100 m降低0.7 ℃,已知山顶的气温是14.1 ℃,山脚的气温是26 ℃.那么,此山相对于山脚的高度是( )A.1500 m B.1600 m C.1700 m D.1800 m10、在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且=()A. B.C.D.211、在一幢10米高的楼顶测得对面一塔吊顶的仰角为,塔基的俯角为,那么这座塔吊的高是()A. B.C.D.12、在一个数列中,若每一项与它的后一项的乘积都同为一个常数(有限数列最后一项除外),则称该数列为等积数列,其中常数称公积.若数列是等积数列,且,公积为6,则的值是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.某货轮在处看灯塔在北偏东方向,它向正北方向航行24海里到达处,看灯塔在北偏东方向.则此时货轮到灯塔的距离为___________海里.14.已知为等差数列,为其前项和.若,,则________;=________.15.在中,角的对边分别为,若成等差数列,,的面积为,则16、设为有穷数列,为的前项和,定义数列的期望和为,若数列的期望和,则数列的期望和_____.三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.已知等差数列中,,,求:(I)首项和公差;(II)该数列的前8项的和的值.18.设的内角,,所对的边长分别为,,,且,.(Ⅰ)当时,求的值;(Ⅱ)当的面积为时,求的值.19、如图,港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?20.已知函数.(1)求函数的最小值和最小正周期;(2)已知内角的对边分别为,且,若向量与共线,求的值.21.已知正数列的前n项和(I)求的通项公式;(II)令,问数列的前多少项的和最大?22. 已知数列的前n项为和S n,点在直线上.数列满足,且b3=11,前9项和为153.(I)求数列的通项公式;(II)设,问是否存在m∈N*,使得成立?若存在,求出m的值;若不存在,请说明理由.高二月考试题参考答案一、选择题: DDBBA BBDCC BD二、填空题:13、;14. 1, 15、 16、992三、解答题:17、解 (Ⅰ) 由等差数列的通项公式:=,得解得 =3,=2.(Ⅱ) 由等差数列的前项和公式:,得 .18.解:(Ⅰ)因为,所以由正弦定理,可得所以(Ⅱ)因为的面积,,所以,由余弦定理,得,即所以,,所以,19、【答案】在△BDC中,由余弦定理知cos∠CDB=BD2+CD2-BC22BD·CD=-17,sin∠CDB=437.∴sin∠ACD=sin⎝⎛⎭⎪⎫∠CDB-π3=sin∠CDB cosπ3-cos∠CDB sinπ3=5314,∴轮船距港口A还有15海里.20、,2b,sinsinAaBba==得由正弦定理:①又c=3,由余弦定理,得②解方程组①②,得。
2021-2022学年四川省南充市高二下学期第一次月考数学(理)试题一、单选题1.抛物线的准线方程是( )22y x =A .B .C .D .12x =12y =12x =-12y =-【答案】C【分析】利用抛物线的准线方程为即可得出.22y px =2px =-【详解】由抛物线,可得准线方程,即.22y x =24x =-12x =-故选:C .2.在长方体中,,,点为的中点,则异面直线与1111ABCD A B C D -4AB =12AD AA ==P 1CC AP 所成角的正切值为11C DA B C D .14【答案】A【分析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,求出与D DA x DC y 1DD zAP的坐标,利用空间向量夹角余弦公式求出夹角余弦,再利用同角三角函数的关系可求所成角的11C D 正切值.【详解】以为原点,为轴,为轴,为轴,建立空间直角坐标系,D DA x DC y 1DD z 则,()()()()112,0,0,0,4,1,0,4,2,0,0,2A P C D,()()112,4,1,0,4,0AP C D =-=-设异面直线与所成角为,AP 11C Dθ则1111cos AP C D AP C D θ⋅===⋅sin θ==,sin tan cos θθθ==异面直线与A.∴AP 11C D 【点睛】本题主要考查异面直线所成的角,属于基础题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.3.双曲线(7<λ<9)的焦点坐标为22197x y λλ+=--A.(±4,0)B .(0)C.(0,±4)D .(0,)【答案】B【详解】试题分析:∵双曲线(7<λ<9)22197x y λλ+=--∴9-λ>0且7-λ<0,方程化为22197x y λλ-=--由此可得:双曲线焦点在x轴,且c===∴双曲线的焦点坐标为(故选B【解析】双曲线的标准方程.4.如图,南北方向的公路,地在公路正东处,地在北偏东方向处,河流L A 2 km B A 60︒km 沿岸曲线上任意一点到公路和到地距离相等.现要在曲线上某处建一座码头,向,PQ L A PQ A 两地运货物,经测算,从到,修建公路的费用都为万元,那么,修建这两条公路的B M A B a /km总费用最低是()A .万元B .万元C .万元D .万元(2a+1)a 5a 6a 【答案】C【分析】依题意知曲线是以A 为焦点、为准线的抛物线,利用抛物线的定义求的PQ L MA MB+最小值,即可求解.【详解】根据抛物线的定义知:欲求从到A ,修建公路的费用最低,即求的最小值,设点 到直线的距离为,M B MA MB+M L d 且,即求的最小值,即为点到直线的距离.d MA=d MB+B L 因地在A地东偏北300方向处,B ∴到点A 的水平距离为3(km ),B ∴到直线距离为:3+2=5(km ),B l 那么修建这两条公路的总费用最低为:(万元).5a 故选:C .5.圆锥曲线的离心率,则实数的值为( )22189x y m +=+2e =m A .B .C .D .5-35-1911-【答案】B【分析】首先根据离心率判断曲线为双曲线,根据双曲线的离心率列方程,解方程求得的值.m 【详解】由于曲线的离心率为,所以曲线为双曲线.故,方程化为2e =80m +<22189x y m +=+,所以,解得.22198y x m -=--2e ===35m =-故选B.【点睛】本小题主要考查根据圆锥曲线的离心率求参数,考查椭圆、双曲线离心率的特征,属于基础题.6.已知椭圆与双曲线)22132x y -=A .B .2212025x y +=2212520x y +=C .D .221255x y +=221525x y +=【答案】B【分析】设椭圆的方程为,求出即得解.22221x y a b +=(0)a b >>,a b 【详解】由题得双曲线的焦点为,所以椭圆的焦点为,设椭圆的方程为,22221x y a b +=(0)a b >>所以.225,5,a b a b ⎧=+∴===所以椭圆的标准方程为.2212520x y +=故选:B7.过点与抛物线只有一个公共点的直线有 ( )(0,2)28y x =A .1条B .2条C .3条D .无数条【答案】C【详解】因为点在抛物线外面,与抛物线只有一个交点的直线有2条切线,1条和对称轴平行,(0,2)故3条.8.已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于22x a 25y ABC .D .3243【答案】C【详解】由题意知c =3,故a 2+5=9,解得a =2,故该双曲线的离心率e ==.ca 329.已知直线与双曲线交于A 、B 两点,以AB 为直径的圆恰好()0y kx k =≠22221 (0,0y a b b x a -=>>)经过双曲线的右焦点F ,若的面积为4a 2,则双曲线的离心率为( )ABF △A B C .2D 【答案】D【解析】设双曲线的左焦点为,则可得四边形为矩形,由双曲线的定义和勾股定理结合三1F 1AF BF 角形面积可得,即可求出离心率.222(2)(2)16a c a =-【详解】设双曲线的左焦点为,根据双曲线和圆的对称性,圆过双曲线的左右焦点,如图,连接1F ,则四边形为矩形,11,AF BF 1AF BF则可得,,1||2AF AF a-=()222211||2AF AF F F c +==所以,()222211111||2||||2||AFAF AF AF AF AF F F AF AF -=-+=-又因为,1211||42ABF AF F S S AF AF a ==⋅=所以,得,222(2)(2)16a c a =-c =所以ce a =故选:D.【点睛】关键点睛:本题考查双曲线离心率的求解,解题的关键是正确利用焦点三角形的性质列出关于的齐次方程式,即可求出离心率.,a c 222(2)(2)16a c a =-10.椭圆上一点到左焦点的距离是2,是的中点,是坐标原点,则221259x y +=M 1F N 1MF O 的值为ONA .4B .8C .3D .2【答案】A【详解】 根据椭圆的定义得,28MF =由于中,是的中点,11MF F ∆,N O 112,MF F F 根据中位线定理得,故选A .4ON =11.已知分别为双曲线的左、右焦点,若在双曲线右支上存在点,12,F F ()222210,0x y a b a b -=>>P 使得点到直线的距离为,则该双曲线的离心率的取值范围是( )2F 1PF a A .B .C .D .⎛⎝⎫+∞⎪⎪⎭()+∞【答案】B【分析】根据已知条件可知点到过且平行于渐近线的直线的距离大于,由此可构造不等式求2F 1F a 得的范围,根据可求得结果.ba e =【详解】由双曲线方程可知:双曲线的一条渐近线为,焦点,,by xa =()1,0F c -()2,0F c 过点作该渐近线的平行线,则该直线方程为:,即;1F ()by x c a =+0bx ay bc -+=若双曲线右支上存在点,使得点到直线的距离为,则只需点到直线的P 2F 1PF a 2F 0bx ay bc -+=距离大于,d a即,,22bcd b a c ===>12b a ∴>双曲线离心率.∴e =>=⎫+∞⎪⎪⎭故选:B.12.设双曲线=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线2222x y a b -的离心率为A .B .5CD54【答案】D【详解】双曲线=1的一条渐近线设为y =x ,由方程组消去y ,得2222x y ab -ba 2{1b y x a y x ==+x 2-x +1=0,由题意知该方程有唯一解,所以Δ=-4=0,所以e =b a 2()b a ca二、填空题13.若椭圆 的焦点在轴上,则的取值范围为_______.22112x y k k +=-+x k 【答案】12,2⎛⎫-- ⎪⎝⎭【分析】根据题意,列出不等式,即可求解.120k k ->+>【详解】由题意,椭圆的焦点在轴上,22112x y k k +=-+x 可得,解得,120k k ->+>122k -<<-所以的取值范围为.k 12,2⎛⎫-- ⎪⎝⎭故答案为:.12,2⎛⎫-- ⎪⎝⎭14.双曲线的一条渐近线为,则_____221x y m -=20x y -=m =【答案】4【分析】利用双曲线渐近线方程即可.【详解】由题知,且双曲线的焦点在轴上,0m >x 所以,2,1a m b ==因为双曲线的一条渐近线为,221x y m -=1202b x y y x xa -=⇔==所以,24a m =⇒=故答案为:4.15.过抛物线焦点且斜率为1的直线与此抛物线相交于两点,则_______.24y x =l ,A B ||AB =【答案】8【分析】先根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去,根据韦达定理求得的值,进而根据抛物线的定义可知,求y 12x x +12||22p p AB x x =+++得答案.【详解】抛物线的焦点为,且斜率为1,则直线的方程为,()1,01y x =-代入抛物线方程得,设24y x =2610x x -+=()()1122,,,A x y B x y ,126x x ∴+=根据抛物线的定义可知.1212||62822p pAB x x x x p =+++=++=+=故答案为:8.16.如图,过抛物线的焦点的直线交抛物线于点,交其准线于点,若22(0)y px p =>F l ,A B C ,且,则为_______.4BC BF=6AF =p 【答案】92【分析】分别过A 、B 作准线的垂线,利用抛物线定义将A 、B 到焦点的距离转化为到准线的距离,结合已知比例关系,即可得p 值.【详解】设A ,B 在准线上的射影分别为A ′,B ′,则|BC |=4|BB ′|,且'6AF AA ==由于|BC |=4|BB ′|,故|AC |=4|AA ′|=24,从而即31CF AF =34CF AC =故,即p = ,3'4p AA =92故答案为.92【点睛】本题考查抛物线的定义及其应用,抛物线的几何性质,过焦点的弦的弦长关系,转化化归的思想方法,属中档题.三、解答题17.(1)求焦点在x 轴上,长轴长为6,焦距为4的椭圆标准方程;(2)求与双曲线有公共焦点,且过点的双曲线标准方程.2212x y -=【答案】椭圆的标准方程为;双曲线的标准方程为:.()122195x y +=()22212y x -=【分析】设出椭圆的标准方程,根据2a ,2c 所表示的几何意义求得a ,c 的值,再根据椭圆()1 ,求得b 2的值,进而可得到椭圆的标准方程;222a b c =+先求得双曲线的焦点,可设所求双曲线的方程为,将点代入双曲线()222221(,0)x y a b a b -=>方程,结合双曲线,解方程可得a ,b ,进而可得双曲线的方程.222c a b =+【详解】设椭圆标准方程为,则()122221(0)x y a b a b +=>>焦距为4,长轴长为6,,,,椭圆标准方程为;3a ∴=2c =25b ∴=∴22195x y +=双曲线双曲线的焦点为,()22212x y -=()设双曲线的方程为,22221(,0)x y a b a b -=>可得,223a b +=将点代入双曲线方程可得,,22221a b -=解得,,1a =b =即有所求双曲线的方程为:.2212y x -=【点睛】本题考查了椭圆的简单性质与椭圆标准方程的求法,考查了双曲线的方程的求法,考查了运算能力;求椭圆或双曲线的标准方程的一般步骤:先设出标准方程,再根据已知条件代入方程求解.18.已知双曲线中,,虚轴长为.()222210,0x y a b a b -=>>:c a =4(1)求双曲线的标准方程;(2)过点,倾斜角为的直线与双曲线交于、两点,为坐标原点,求的面积.()0,145 l A B O AOB △【答案】(1)2214x y -=(2)43【分析】(1)由已知条件可得出关于、、的方程组,解出这三个量的值,可求得双曲线的标a b c 准方程;(2)将直线的方程与双曲线的方程联立,求出点、的横坐标,即可求得的面积.l A B AOB △【详解】(1)解:由已知条件可得,解得2222=4=+c b c a b ⎧⎪⎨⎪⎩=1=2a b c ⎧⎪⎨⎪⎩因此,双曲线的标准方程为.2214x y -=(2)解:由题意可知,直线的方程为,设点、,l =+1y x ()11,A x y ()22,B x y 联立,可得,解得,,22=+14=4y x x y -⎧⎨⎩23250x x --=11x =-253x =因此,.1214123AOB S x x =⨯⨯-=△19.如图,四棱锥中,底面是正方形,,,且,E 为P ABCD -ABCD PB BC ⊥PD CD ⊥PA AB =中点.PD (1)求证:平面;PA ⊥ABCD (2)求二面角的正弦值.A BE C --【答案】(1)证明见解析;(2【分析】(1)由,,即:,又因为,,即:PB BC ⊥BC AB ⊥BC PA ⊥PD CD ⊥CD AD ⊥,所以平面.CD AD ⊥PA ⊥ABCD (2)通过建立空间直角坐标系,运用向量法即可求出二面角的正弦值.A BE C --【详解】解:(1)∵底面是正方形,ABCD ,又,,平面,.BC AB ∴⊥BC PB ⊥AB PB B ⋂=BC ∴⊥PAB BC PA ∴⊥同理可得,又,平面.CD PA ⊥BC CD C ⋂=PA ∴⊥ABCD (2)建立如图所示的空间直角坐标系,不妨设底面正方形的边长为2,则,,,.()0,0,0A ()2,2,0C ()0,1,1E ()2,0,0B 设是平面的法向量,则(),,m x y z = ABE 0,0,m AE m AB ⎧⋅=⎨⋅=⎩ 又,,令,则,()0,1,1AE = ()2,0,0AB = 1y =-1z =得.()0,1,1m =- 设是平面的法向量,则(),,n x y z = BCE 0,0,n CE n BC ⎧⋅=⎨⋅=⎩ 又,,令,()2,1,1CE =-- ()0,2,0BC = =1x -2z =是平面的一个法向量,()1,0,2n = BCE 则,cos ,m m m n n n ⋅==sin ,m n ∴= ∴二面角A BE C --【点睛】本题主要考查线面垂直及二面角的知识,属于中档题目.20.如图,斜率为k 的直线l 与抛物线y 2=4x 交于A 、B 两点,直线PM 垂直平分弦AB ,且分别交AB 、x 轴于M 、P ,已知P (4,0).(1)求M 点的横坐标;(2) 求面积的最大值.PAB ∆【答案】(1);(2)28【分析】(1)设,,,,,,运用点差法和直线的斜率公式和中点坐标公1(A x 1)y 2(B x 2)y 0(M x 0)y 式,解方程可得所求坐标;(2)设直线即,与抛物线联立,运用韦达定理和弦长0:()2AB x m y y =-+0:2AB x my my =-+24y x =公式,以及点到直线的距离公式,化简整理,运用导数判断单调性,可得最大值.【详解】解:(1)设,,,,,,1(A x 1)y 2(B x 2)y 0(M x 0)y 则,,,121200,22x x y y x y ++==2114y x =2224y x =,∴121212042y y k x x y y y -===-+而,004MP y k x =-由得,即;1MP k k =- 042x -=-02x =(2)设直线即,0:()2AB x m y y =-+0:2AB x my my =-+与抛物线联立得,24y x =204480y my my -+-=则,,124y y m +=12048y y my =-所以,12|||AB y y =-而到直线的距离为P AB d =所以01||2|22PAB S d AB my ∆==+又由于,012y m k==所以,222(24(PAB S m m ∆=+=+,则且,t =0t >222m t =-所以,234(3)124PAB S t t t t ∆=-=-令,3()124(0)g t t t t =->则,2()121212(1)(1)g t t t t '=-=-+当,,当时,,01t <<()0g t '>1t >()0g t '<故,()3()12418g t t t g =-= 即面积的最大值为8.PAB ∆【点睛】本题考查抛物线的方程和性质,直线和抛物线方程联立,运用韦达定理和弦长公式,考查化简整理的运算能力,属于中档题.21.如图,已知梯形ABCD 中,AD ∥BC ,∠DAB =90°,AB =BC =2AD =4,四边形EDCF 为矩形,DE =2,平面EDCF ⊥平面ABCD .(1)求证:DF ∥平面ABE ;(2)求平面ABE 与平面BEF 所成二面角的正弦值;(3)若点P 在线段EF 上,且直线AP 与平面BEF AP 的长.【答案】(1)证明见解析;;(3)6.【分析】(1)由DE ⊥CD ,及面面垂直的性质定理得线面垂直,取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立如图所求的空间直角坐标系,得出各点坐标,求出平面的一个法向量,ABE 由法向量与的方向向量垂直,再由不在平面内可证线面平行;DF DF ABE (2)求出平面ABE 与平面BEF 的法向量,由法向量的夹角正弦值得二面角正弦值;(3)点P 在线段EF 上,由,用表示出点坐标,由与平面BEF 方向向量的夹角EP EF λ= λP AP,求出,从而可得线段长.λ【详解】(1)证明:∵四边形EDCF 为矩形,∴DE ⊥CD ,又平面EDCF ⊥平面ABCD ,平面EDCF ∩平面ABCD =CD ,∴ED ⊥平面ABCD .取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系,如图,则A (2,0,0),B (2,4,0),C (﹣2,4,0),E (0,0,2),F (﹣2,4,2),设平面ABE 的法向量=(x ,y ,z ),m ∵=(﹣2,﹣4,2),=(0,4,0),BE AB 由,取z =1,得=(1,0,1),242040BE m x y z AB m y ⎧⋅=--+=⎨⋅==⎩ m 又=(﹣2,4,2),∴=﹣2+0+2=0,DF DF m ⋅ 则⊥,又∵DF ⊄平面ABE ,∴DF ∥平面ABE .DF m (2)解:设平面BEF 的法向量=(a ,b ,c ),n ∵=(﹣2,﹣4,2),=(﹣2,4,0)BE EF 由,取b =1,可得=(2,1,4),2420240BE n a b c EF n a b ⎧⋅=--+=⎨⋅=-+=⎩ n ∴cos <>=,,m n||||||m n m n ⋅== ∴sin <,,m n=即平面ABE 与平面BEF .(3)解:∵平面BEF 的法向量=(2,1,4),n 点P 在线段EF 上,设P (m ,n ,t ),,则(m ,n ,t ﹣2)=(﹣2λ,4λ,0),EP EF λ= 解得P (﹣2λ,4λ,2),∴=(﹣2λ﹣2,4λ,2),AP∵直线AP 与平面BEF∴||||||AP n AP n ⋅= 解得λ=1,∴线段AP |.6=【点睛】本题考查用空间向量法证明线面平行,求二面角,直线与平面所成的角,从而求得空间线段长,解题关键是建立空间直角坐标系.考查了空间想象能力与运算求解能力.22.已知椭圆C :+=1(a >b >0)的左、右顶点分别为A ,B ,离心率为,点P 为椭圆22x a 22y b 1231,2⎛⎫ ⎪⎝⎭上一点.(1)求椭圆C 的标准方程;(2)如图,过点C (0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.【答案】(1)+=1;(2).24x 23y 32【分析】(1)由椭圆的离心率,和点P 在椭圆上求出椭圆的标准方程;31,2⎛⎫ ⎪⎝⎭(2) 由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1, 设M (x 1,y 1),N (x 2,y 2), 联立方程组消去y ,再将k 1=2k 2用坐标表示,利用点在椭圆上和韦达定理求出直线l 的斜率.【详解】(1)因为椭圆的离心率为,所以a =2c .12又因为a 2=b 2+c 2,所以b .所以椭圆的标准方程为+=1.224x c 223y c 又因为点P 为椭圆上一点,所以+=1,解得c =1.31,2⎛⎫ ⎪⎝⎭214c 2943c 所以椭圆的标准方程为+=1.24x 23y (2) 由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1.设M (x 1,y 1),N (x 2,y 2).联立方程组消去y 可得(3+4k 2)x 2+8kx -8=0.所以由根与系数关系可知x 1+x 2=-,x 1x 2=-.2834k k +2834k +因为k 1=,k 2=,且k 1=2k 2,所以=.112y x +222y x -112y x +2222y x -即=. ①()21212y x +()222242y x -又因为M (x 1,y 1),N (x 2,y 2)在椭圆上,所以= (4-),= (4-). ②21y 3421x 22y 3422x 将②代入①可得:=,即3x 1x 2+10(x 1+x 2)+12=0.1122x x -+()22422x x +-所以3+10+12=0,即12k 2-20k +3=0.2834k ⎛⎫- ⎪+⎝⎭2834k k ⎛⎫- ⎪+⎝⎭解得k =或k =,又因为k >1,所以k =.163232【点睛】本题考查直线与椭圆的位置关系,考查椭圆的标准方程和椭圆的几何性质,考查学生分析解决问题的能力,属于中档题.。
绝密★启用前
2021年高二9月月考 数学(理)试题 含答案
A .不能作出这样的三角形
B .能作出一个锐角三角形
C .能作出一个直角三角形
D .能作出一个钝角三角形
4. 设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16= ( ) A .-72 B .72 C.36 D.-36
5. 在等差数列中则的最大值等于( )
A. 3
B. 6
C.9
D. 36
6. 等差数列中,已知,,,则为 ( ) A . B . C . D .
7. 已知数列—1,a 1,a 2,—4成等差数列,—1,b 1,b 2,b 3,—4成等比数列,则的值为( ) A 、 B 、— C 、或— D 、 8. 数列满足,设,则( )
A .
B .
C .
D .
9. 已知数列满足:,,(),若,,且数列是单调递增数列,则实数的取值范围为( ) A. B. C. D.
10. 已知数列为等差数列,若且它们的前项和有最大值,则使得的的最大值为( ) A.11 B.19 C.20 D.21
第II 卷(非选择题)
请修改第II 卷的文字说明
二、填空题
11. 已知方程的四个根组成一个首项为的等差数列,则____________. 12. 设等差数列的前项和为,若,则的最大值为__________。
13. 等差数列的公差,且
()
1sin sin sin cos cos cos sin 726
23262323232=+-+-a a a a a a a a ,仅当时,数列的前项和取得最大值,则首项的取值范围是
14. 等差数列的前项和为,若,则的值是
三、解答题
15. 已知是等差数列,其中
(1)求的通项;
(2)数列从哪一项开始小于0;
(3)求值。
16. 设等比数列的前n项和为S n,已知
(1)求数列的通项公式;
(2)在a n与a n+1,之间插入n个数,使这n+2个数组成公差为d n的等差数列,求数列的前n项和T n.
17. 已知公差不为0的等差数列的首项,设数列的前项和为,且成等比数列.
(1)求数列的通项公式及;
(2)求.
18. 在中,角,,所对的边分别为,,,,.
(Ⅰ)求及的值;
(Ⅱ)若,求的面积.
19. 设同时满足条件:①;② (,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足:(为常数,且,).
(Ⅰ)求的通项公式;
(Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.
参考答案
一、单项选择 1.【答案】C 【解析】 2.【答案】B
【解析】根据等差数列通项及性质,可得选B 。
3.【答案】D 【解析】 4.【答案】A 【解析】
由等差数列通项公式,前n 项和公式可得
5.【答案】C 因为等差数列中
12101101105656
0,a 30,5(a )30
a a 62a >+++=∴+=∴+=+=≥且n a a a a a a a
利用均值不等式可知最大值为9,选C.
【解析】
6.【答案】C 【解析】
7.【答案】A
【解析】忽略b 2为等比数列的第三项,b 2符号与—1、—4同号 8.【答案】C
【解析】 (都有项) )()(201320132421231a a a a a a +++++++=-
)()]12(31[20122212013a a a ++++-+++=
=(=(⇒,所以选C . 9.【答案】C 【解析】
10.【答案】B 【解析】 根据,由它们的前n 项和S n 有最大可得数列的d <0,∴a 10>0,a 11+a 10<0,a 11<0,∴a 1+a 19=2a 10
>0,a1+a20=a11+a10<0,使得S n>0的n的最大值n=19,故选B
二、填空题
11.【答案】
【解析】
12.【答案】4
【解析】
13.【答案】
【解析】
14.【答案】
【解析】
三、解答题
15.【答案】(1)
(2)∴数列从第10项开始小于0
(3)是首项为25,公差为的等差数列,共有10项
其和
【解析】
16.【答案】
【解析】
17.【答案】解:(1) 由且成等比数列得
所以数列的通项公式.
()
1231211231111121211211211...1...323233343121131n n n S n n A S S S S n n n ⎛⎫=- ⎪+⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫
∴=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=- ⎪+⎝⎭
【解析】
18.【答案】
【解析】(Ⅰ)因为, 所以. 因为, 所以.
由题意可知,. 所以. 因为. 所以 .
(Ⅱ)因为,, 所以. 所以. 所以.
19.【答案】(I )因为所以,
当时,,,即以为a 首项,a 为公比的等比数列, ∴.
(II)由(I )知,,
若为等比数列,则有,而。
故,解得,再将代入得:,其为等比数列,所以成立。
由于①。
(或做差更简单:因为03
2
3135121121212>=-=-++++++n n n n n n b b b ,所以也成立)
②,故存在;
所以符合①②,故为“嘉文”数列。
【解析】i38406 9606 阆30285 764D 癍33941 8495 蒕<36089 8CF9 賹•39299 9983 馃38322 95B2 閲A]23756 5CCC 峌29392 72D0 狐<。