第八章 第4节 直线、平面平行的判定及其性质
- 格式:doc
- 大小:725.00 KB
- 文档页数:22
专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。
第4节 直线、平面平行关系的判定与性质一、直线与平面平行1.已知直线a,b,平面α,则以下三个命题: ①若a ∥b,b ⊂α,则a ∥α; ②若a ∥b,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b. 其中真命题的个数是( A ) (A)0 (B)1 (C)2 (D)3解析:对于命题①,若a ∥b,b ⊂α, 则应有a ∥α或a ⊂α,所以①不正确;对于命题②,若a ∥b,a ∥α,则应有b ∥α或b ⊂α,因此②也不正确;对于命题③,若a ∥α,b ∥α,则应有a ∥b 或a 与b 相交或a 与b 异面,因此③是错误的.综上,在空间中,以上三个命题都是错误的.故选A.2.如果一条直线和平面内的一条直线平行,那么这条直线和平面平行吗? (不一定,可能平行可能在平面内)3.如果一条直线和一个平面平行,那么这条直线和这个平面的任意一条直线都平行吗? (不一定,平行或异面) 二、平面与平面平行(2)能否由线面垂直推证面面平行?提示:(1)可以,只需一平面内两相交直线分别平行于另一平面内的两相交直线,则两平面平行.(2)可以,只需两平面垂直于同一直线,即得面面平行.质疑探究2:如果一个平面内有无数条直线都平行于另一个平面,那么两个平面一定平行吗?提示:不一定.如果这无数条直线都平行,则这两个平面就不一定平行,可能相交,此时无数条直线都平行于交线.练习1.平面α∥平面β的一个充分条件是( D)(A)存在一条直线a,a∥α,a∥β(B)存在一条直线a,a⊂α,a∥β(C)存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α(D)存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:对于选项A,当α、β两平面相交,直线a平行于交线时,满足要求,故A不对;对于B,两平面α、β相交,当a在平面α内且a平行于交线时,满足要求,但α与β不平行,故B错;对于C,同样在α与β相交,且a、b分别在α、β内且与交线都平行时满足要求,故C错;故只有D正确,因为a、b异面,a∥β,故在β内一定有一条直线a'与a平行且与b相交,∴a'∥α,又∵b∥α,a'与b相交,∴α∥β.故选D.2.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:①若m∥α,n∥α,m∥β,n∥β,则α∥β;②若m、n是相交直线,且m∥α,m∥β,n∥α,n∥β,则α∥β;③若m∥α,α∥β,m∥n,则n∥β;④若n∥α,n∥β,α∩β=m,那么m∥n.其中正确命题的序号是.解析:命题①中,直线m,n不一定相交,即命题①不正确;由两相交直线m,n可确定一平面且同时平行于α、β,得α∥β,故②正确.③命题存在n⊂β情况.即命题③不正确;由线面关系可知命题④正确.则正确命题的序号为②④.答案:②④3.如果两个平面平行,那么其中一个平面内的直线与另一个平面平行吗?(平行)一.借助几何模型判断与平行相关命题【例1】已知m,n是两条不同直线,α,β, γ是三个不同平面,下列命题中正确的是( )(A)若m∥α,n∥α,则m∥n(B)若m∥n,n⊂α,则m∥α(C)若m∥α,m∥β,则α∥β(D)若α∥β,α∥γ,则β∥γ解析:m,n平行于α,m,n可以相交也可以异面,如图中正方体的棱A1B1,B1C1都与底面ABCD平行,但这两条棱相交,故选项A不正确;在正方体中AB∥A1B1,A1B1⊂平面A1B1BA,而AB不平行于平面A1B1BA,故B错;正方体的棱B1C1既平行于平面ADD1A1,又平行于平面ABCD,但这两个平面是相交平面,故选项C不正确;由平面与平面平行的传递性,得D正确.故选D.变式训练11:已知直线a、b和平面α、β、γ,且a⊂α,b⊂β,则平面α∥平面β的一个必要不充分条件是( )(A)a∥β,b∥α(B)a∥b(C)a∥γ,b∥γ (D)a⊥γ,b⊥γ解析:用正方体模型分析可得四个答案均不能推出α∥β,而α∥β一定有a∥β,b∥α,故选A.二.直线与平面平行的判定【例2】如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG 为△SAB上的高,D、E、F分别是AC、BC、SC的中点,证明:SG∥平面DEF.证明:法一连接CG交DE于点H,连接FH,如图所示.∵D为AC中点,E为BC中点,∴DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG.∴H为CG的中点.又F为SC中点,∴FH是△SCG的中位线,∴FH∥SG.又SG⊄平面DEF,FH⊂平面DEF,∴SG∥平面DEF.法二∵E为BC中点,F为SC中点,∴EF 为△SBC 的中位线, ∴EF ∥SB.∵EF ⊄平面SAB,SB ⊂平面SAB, ∴EF ∥平面SAB.同理可证,DF ∥平面SAB,又EF ∩DF=F, ∴平面SAB ∥平面DEF, 又SG ⊂平面SAB, ∴SG ∥平面DEF.变式训练21:如图,在正方体ABCD A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM=DN.求证:MN ∥平面AA 1B 1B.证明:如图,作ME ∥BC,交BB 1于E. 作NF ∥AD,交AB 于F,连接EF, 则EF ⊂平面AA 1B 1B. ∵BD=B 1C,DN=CM, ∴B 1M=BN. 又BC ME =C B M B 11,AD NF =BDBN, ∴BC ME =BD BN =AD NF. ∴ME=NF.又ME ∥BC ∥AD ∥NF,∴四边形MEFN 为平行四边形. ∴MN ∥EF.∴MN ∥平面AA 1B 1B.三.平面与平面平行的判定【例3】 在正方体ABCD A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证:平面PMN ∥平面A 1BD.证明:法一 如图,连接B 1D 1、B 1C. ∵P 、N 分别是D 1C 1、B 1C 1的中点, ∴PN ∥B 1D 1. 又B 1D 1∥BD, ∴PN ∥BD.又PN ⊄平面A 1BD,BD ⊂平面A 1BD, ∴PN ∥平面A 1BD. 同理MN ∥平面A 1BD, 又PN ∩MN=N,∴平面PMN ∥平面A 1BD. 法二 如图,连接AC 1、AC. ∵ABCD A1B 1C 1D 1为正方体, ∴AC ⊥BD.又CC 1⊥平面ABCD,∴AC1⊥BD.同理可证AC1⊥A1B,∴AC1⊥平面A1BD.同理可证AC1⊥平面PMN,∴平面PMN∥平面A1BD.变式训练31:如图所示,三棱柱ABC A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点, 连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点, ∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,A1D1∥AD.又∵A1D1∩BD1=D1,∴平面A1BD1∥平面AC1D.四.直线与平面平行、平面与平面平行的性质【例4】如图所示,平面α∥平面β,点A∈α、C∈α,点B∈β,D∈β,点E,F分别在线段AB、CD上,且AE∶EB=CF∶FD.(1)求证:EF∥β;(2)若E,F分别是AB、CD的中点,AC=4,BD=6,且AC、BD所成的角为60°,求EF 的长. (1)证明:①当AB,CD在同一平面内时,∵AE∶EB=CF∶FD,∴EF∥BD,又EF⊄β,BD⊂β,∴EF∥β.②当AB与CD异面时,设平面ACD∩β=DH,连接AH,BH,取DH=AC,∵α∥β,α∩平面ACDH=AC,∴AC∥DH,∴四边形ACDH是平行四边形.在AH上取一点G,使AG∶GH=CF∶FD,连接GE、GF,又∵AE∶EB=CF∶FD,∴GF∥HD,EG∥BH,∴GF∥β,EG∥β,又EG∩GF=G,∴平面EFG∥平面β,而EF⊂平面EFG,∴EF∥β.综上,EF∥β.(2)解:如图所示,连接AD,取AD 的中点M,连接ME,MF, ∵E,F 分别为AB,CD 的中点, ∴ME ∥BD,MF ∥AC,且ME=21BD=3,MF=21AC=2,∴∠EMF 为AC 与BD 所成的角(或其补角), ∴∠EMF=60°或120°, ∴在△EFM 中, EF=EMFMF ME MF ME ∠⋅⋅-+cos 222=212322322⨯⨯⨯±+ =613±,即EF=7或EF=19.变式训练41:如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,E 、F 、P 、Q 分别是BC 、C 1D 1、AD 1、BD 的中点. (1)求证:PQ ∥平面DCC 1D 1; (2)求证:EF ∥平面BB 1D 1D.证明:法一 (1)连接AC 、CD 1,AC ∩BD=Q. ∵P 、Q 分别为AD 1、AC 的中点, ∴PQ ∥CD 1.又CD 1⊂平面DCC 1D 1, PQ ⊄平面DCC 1D 1, ∴PQ ∥平面DCC 1D 1. (2)取B 1D 1的中点Q 1, 连接BQ 1、FQ 1,则有FQ 121B 1C 1,又BE 21B 1C 1,∴BE FQ 1.∴四边形BEFQ 1是平行四边形. ∴EF ∥BQ 1.又EF ⊄平面BB 1D 1D, BQ 1⊂平面BB 1D 1D. ∴EF ∥平面BB 1D 1D.【例】 四棱锥A BCDE 的侧面ABC 是等边三角形,EB ⊥平面ABC,DC ⊥平面ABC,BE=1,BC=CD=2,F 是棱AD 的中点. (1)求证:EF ∥平面ABC; (2)求四棱锥A BCDE 的体积.(1)证明:取AC 中点M,连接FM,BM.因为F 是AD 中点, 所以FM ∥DC,且FM=21DC=1,因为EB ⊥平面ABC,DC ⊥平面ABC, 所以EB ∥DC, 所以FM ∥EB, 又因为EB=1, 所以FM=EB,所以四边形BEFM 是平行四边形, 所以EF ∥BM.因为EF ⊄平面ABC,BM ⊂平面ABC, 所以EF ∥平面ABC.(2)解:取BC 中点N,连接AN. 因为AB=AC, 所以AN ⊥BC,因为EB ⊥平面ABC, 所以AN ⊥EB,因为BC 与EB 是底面BCDE 内的相交直线, 所以AN ⊥底面BCDE,由(1)得,底面BCDE 为直角梯形, 故S 梯形BCDE =()2BCDC EB⋅+=3,在等边△ABC 中,BC=2, 所以AN=3,所以ABCDE V 棱锥-=31S 梯形BCDE ·AN=3.练习1.若直线a ∥直线b ,且a ∥平面α,则b 与α的位置关系是( )A .一定平行B .不平行C .平行或相交D .平行或在平面内 解析 直线在平面内的情况不能遗漏,所以正确选项为D.2.设m 、n 表示不同直线,α、β表示不同平面,则下列结论中正确的是( ). A .若m ∥α,m ∥n ,则n ∥αB .若m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥βC .若α∥β,m ∥α,m ∥n ,则n ∥βD .若α∥β,m ∥α,n ∥m ,n ⊄β,则n ∥β解析 A 选项不正确,n 还有可能在平面α内,B 选项不正确,平面α还有可能与平面β相交,C 选项不正确,n 也有可能在平面β内,选项D 正确. 3. a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎬⎫α∥c β∥c ⇒α∥β ②⎭⎬⎫α∥γβ∥γ⇒α∥β③⎭⎬⎫α∥c a ∥c ⇒a ∥α ④⎭⎬⎫a ∥γα∥γ⇒α∥a其中正确的命题是( ) A .①②③ B .①④ C .②D .①③④解析 ②正确.①错在α与β可能相交.③④错在a 可能在α内.答案 C 4.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ).A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2解析 对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由n ∥l 2可转化为n ∥β,同选项C ,故不符合题意,综上选B.5.已知a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题: ①⎭⎬⎫a ∥cb ∥c ⇒a ∥b ;② ⎭⎬⎫a ∥γb ∥γ⇒a ∥b ;③⎭⎬⎫α∥c β∥c ⇒α∥β; ④⎭⎬⎫α∥c a ∥c ⇒a ∥α;⑤⎭⎬⎫α∥γβ∥γ⇒α∥β;⑥⎭⎬⎫α∥γa ∥γ⇒a ∥α.其中正确的命题是________(将正确命题的序号都填上).解析 ②中a 、b 的位置可能相交、平行、异面;③中α、β的位置可能相交. 答案 ①④⑤⑥6.如图所示,两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB 且AM =FN ,求证:MN ∥平面BCE .证明 过M 作MG ∥BC ,交AB 于点G ,如图所示,连接NG . ∵MG ∥BC ,BC ⊂平面BCE ,MG ⊄平面BCE , ∴MG ∥平面BCE .又BG GA =CM MA =BNNF,∴GN ∥AF ∥BE ,同样可证明GN ∥平面BCE . 又MG ∩NG =G , ∴平面MNG ∥平面BCE .又MN ⊂平面MNG ,∴MN ∥平面BCE .7.如图所示,正方体ABCD-A 1B 1C 1D 1中,直线l 是平面AB 1D 1与下底面ABCD 所在平面的交线.求证:l ∥平面A 1BD .证明 ∵平面A 1B 1C 1D 1∥平面ABCD ,且平面A 1B 1C 1D 1∩平面AB 1D 1=B 1D 1,平面ABCD ∩平面AB 1D 1=l ,∴l ∥B 1D 1.又B 1D 1∥BD , ∴l ∥BD .又l ⊄平面A 1BD ,BD ⊂平面A 1BD , ∴l ∥平面A 1BD .。
第4节 直线、平面平行的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知 识 梳 理1.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. (3)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.( ) (2)若直线a ∥平面α,P ∈α,则过点P 且平行于直线a 的直线有无数条.( ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( ) 解析 (1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a ∥α,P ∈α,则过点P 且平行于a 的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.答案(1)×(2)×(3)×(4)√2.(必修2P61A1(2)改编)下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.答案 D3.(必修2P61A1(1)改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析根据线面平行的判定与性质定理知,选D.答案 D4.(2018·长沙模拟)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.m∥α,n∥α,则m∥nB.m∥n,m∥α,则n∥αC.m⊥α,m⊥β,则α∥βD.α⊥γ,β⊥γ,则α∥β解析A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交,D错.答案 C5.(2019·成都月考)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.答案 A6.(2019·衡水开学考试)如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.答案平行四边形考点一与线、面平行相关命题的判定【例1】(1)(2019·开封模拟)在空间中,a,b,c是三条不同的直线,α,β是两个不同的平面,则下列命题中的真命题是()A.若a⊥c,b⊥c,则a∥bB.若a⊂α,b⊂β,α⊥β,则a⊥bC.若a∥α,b∥β,α∥β,则a∥bD.若α∥β,a⊂α,则a∥β(2)(2018·聊城模拟)下列四个正方体中,A,B,C为所在棱的中点,则能得出平面ABC∥平面DEF的是()解析(1)对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,则a∥β,故D是真命题.(2)在B中,如图,连接MN,PN,∵A,B,C为正方体所在棱的中点,∴AB∥MN,AC∥PN,∵MN∥DE,PN∥EF,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB,AC⊂平面ABC,DE,EF⊂平面DEF,∴平面ABC∥平面DEF.答案(1)D(2)B规律方法 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项. 2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确. 【训练1】 (1)下列命题正确的是( )A.若两条直线和同一个平面平行,则这两条直线平行B.若一条直线与两个平面所成的角相等,则这两个平面平行C.若一条直线与两个相交平面都平行,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行(2)(2018·安庆模拟)在正方体ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱D 1C 1,A 1D 1,BC 的中点,点P 在BD 1上且BP =23BD 1,则下面说法正确的是________(填序号). ①MN ∥平面APC ;②C 1Q ∥平面APC ;③A ,P ,M 三点共线;④平面MNQ ∥平面APC .解析 (1)A 选项中两条直线可能平行也可能异面或相交;对于B 选项,如图,在正方体ABCD -A 1B 1C 1D 1中,平面ABB 1A 1和平面BCC 1B 1与B 1D 1所成的角相等,但这两个平面垂直;D 选项中两平面也可能相交.C 正确.(2)如图,对于①,连接MN ,AC ,则MN ∥AC ,连接AM ,CN ,易得AM,CN交于点P,即MN⊂平面APC,所以MN∥平面APC是错误的.对于②,由①知M,N在平面APC内,由题易知AN∥C1Q,且AN⊂平面APC,C1Q⊄平面APC.所以C1Q∥平面APC是正确的.对于③,由①知,A,P,M三点共线是正确的.对于④,由①知MN⊂平面APC,又MN⊂平面MNQ,所以平面MNQ∥平面APC 是错误的.答案(1)C(2)②③考点二直线与平面平行的判定与性质多维探究角度1直线与平面平行的判定【例2-1】(2019·东北三省四市模拟)在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F分别是线段AD,PB的中点,P A=AB=1.(1)证明:EF∥平面PDC;(2)求点F到平面PDC的距离.(1)证明取PC的中点M,连接DM,MF,∵M,F分别是PC,PB的中点,∴MF∥CB,MF=12CB,∵E为DA的中点,四边形ABCD为正方形,∴DE∥CB,DE=12CB,∴MF∥DE,MF=DE,∴四边形DEFM为平行四边形,∴EF∥DM,∵EF⊄平面PDC,DM⊂平面PDC,∴EF∥平面PDC.(2)解∵EF∥平面PDC,∴点F到平面PDC的距离等于点E到平面PDC的距离.∵P A⊥平面ABCD,∴P A⊥DA,在Rt△P AD中,P A=AD=1,∴DP= 2.∵P A⊥平面ABCD,∴P A⊥CB,∵CB⊥AB,P A∩AB=A,∴CB⊥平面P AB,∴CB⊥PB,则PC=3,∴PD2+DC2=PC2,∴△PDC为直角三角形,∴S△PDC =12×1×2=22.连接EP,EC,易知V E-PDC =V C-PDE,设E到平面PDC的距离为h,∵CD⊥AD,CD⊥P A,AD∩P A=A,∴CD⊥平面P AD,则13×h×22=13×1×12×12×1,∴h=24,∴点F到平面PDC的距离为2 4.角度2直线与平面平行性质定理的应用【例2-2】(2018·上饶模拟)如图所示,在正方体ABCD-A1B1C1D1中,棱长为2,E,F分别是棱DD1,C1D1的中点.(1)求三棱锥B1-A1BE的体积;(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F平行的直线,并说明理由.解(1)如图所示,V B1-A1BE =V E-A1B1B=13S△A1B1B·DA=13×12×2×2×2=43.(2)B1F∥平面A1BE.延长A1E交AD延长线于点H,连BH交CD于点G,则BG 就是所求直线.证明如下:因为BA1∥平面CDD1C1,平面A1BH∩平面CDD1C1=GE,所以A1B∥GE.又A1B∥CD1,所以GE∥CD1.又E为DD1的中点,则G为CD的中点.故BG∥B1F,BG就是所求直线.规律方法 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【训练2】(2017·江苏卷)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,AB⊥AD,EF⊥AD,则AB∥EF.∵AB⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.(2)∵BC⊥BD,平面ABD∩平面BCD=BD,平面ABD⊥平面BCD,BC⊂平面BCD,∴BC⊥平面ABD.∵AD⊂平面ABD,∴BC⊥AD.又AB⊥AD,BC,AB⊂平面ABC,BC∩AB=B,∴AD⊥平面ABC,又因为AC⊂平面ABC,∴AD⊥AC.考点三面面平行的判定与性质典例迁移【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【迁移探究1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1,又由三棱柱的性质知,D1C1綉BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又DC1∩DM=D,DC1,DM⊂平面AC1D,因此平面A1BD1∥平面AC1D.【迁移探究2】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解连接A1B交AB1于O,连接OD1.由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,所以BC1∥D1O,则A1D1D1C1=A1OOB=1.又由题设A1D1D1C1=DC AD,∴DCAD=1,即ADDC=1.规律方法 1.判定面面平行的主要方法(1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行).2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.【训练3】(2019·南昌二模)如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2CD=2AD=4,侧面P AB是等腰直角三角形,P A=PB,平面P AB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面P AD.(1)确定点E,F的位置,并说明理由;(2)求三棱锥F-DCE的体积.解(1)因为平面CEF∥平面P AD,平面CEF∩平面ABCD=CE,平面P AD∩平面ABCD=AD,所以CE∥AD,又AB∥DC,所以四边形AECD是平行四边形,所以DC=AE=12AB,即点E是AB的中点.因为平面CEF∥平面P AD,平面CEF∩平面P AB=EF,平面P AD∩平面P AB=P A,所以EF∥P A,又点E是AB的中点,所以点F是PB的中点.综上,E,F分别是AB,PB的中点.(2)连接PE,由题意及(1)知P A=PB,AE=EB,所以PE⊥AB,又平面P AB⊥平面ABCD,平面P AB∩平面ABCD=AB,所以PE⊥平面ABCD.又AB∥CD,AB⊥AD,所以V F-DEC =12V P-DEC=16S△DEC×PE=16×12×2×2×2=23.[思维升华]1.转化思想:三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[易错防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.基础巩固题组(建议用时:40分钟)一、选择题1.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α与直线l至少有两个公共点D.α内的直线与l都相交解析因为l⊄α,直线l不平行于平面α,所以直线l只能与平面α相交,于是直线l与平面α只有一个公共点,所以平面α内不存在与l平行的直线.答案 B2.(2019·大连双基测试)已知直线l,m,平面α,β,γ,则下列条件能推出l∥m的是()A.l⊂α,m⊂β,α∥βB.α∥β,α∩γ=l,β∩γ=mC.l∥α,m⊂αD.l⊂α,α∩β=m解析选项A中,直线l,m也可能异面;选项B中,根据面面平行的性质定理,可推出l∥m,B正确;选项C中,直线l,m也可能异面;选项D中,直线l,m 也可能相交.故选B.答案 B3.(2018·长郡中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB. 答案 B4.(2018·重庆六校联考)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案 D5.(2019·合肥模拟)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A.0条B.1条C.2条D.1条或2条解析如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.答案 C二、填空题6.(2018·杭州模拟)如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.答案 27.如图,平面α∥平面β,△ABC,△A′B′C′分别在α,β内,线段AA′,BB′,CC′共点于O,O在α,β之间,若AB=2,AC=1,∠BAC=60°,OA∶OA′=3∶2,则△A′B′C′的面积为________.解析相交直线AA′,BB′所在平面和两平行平面α,β相交于AB,A′B′,所以AB∥A′B′.同理BC∥B′C′,CA∥C′A′.所以△ABC与△A′B′C′的三内角相等,所以△ABC∽△A′B′C′,A′B′AB=OA′OA=23.S△ABC=12×2×1×32=32,所以S△A′B′C′=32×⎝⎛⎭⎪⎫232=32×49=239.答案23 98.(2019·郑州调研)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若m∥α,n∥β,m∥n,则α∥β.其中是真命题的是________(填上正确命题的序号).解析①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α与β相交,故④错误.答案②三、解答题9.(2019·武汉模拟)已知四棱锥P-ABCD的底面ABCD是平行四边形,侧面P AB⊥平面ABCD,E是棱P A的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点.又E 是P A 的中点,连接EO ,则EO 是△P AC 的中位线,所以PC ∥EO , 又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC ∥平面EBD .(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V , 则三棱锥E -ABD 的体积V 1=13×S △ABD ×h ,因为E 是P A 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1, 所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)连接AE ,则AE 必过DF 与GN 的交点O , 连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN ,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.能力提升题组(建议用时:20分钟)11.(2019·石家庄模拟)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A.4条B.6条C.8条D.12条解析如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.答案 B12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案 D13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面P AO.解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥P A.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面P AO,QB⊄平面P AO,PO⊂平面P AO,P A⊂平面P AO,所以D1B∥平面P AO,QB∥平面P AO,又D1B∩QB=B,所以平面D1BQ∥平面P AO.故Q为CC1的中点时,有平面D1BQ∥平面P AO.答案Q为CC1的中点14.(2018·河南六市三模)已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.解(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△ABC是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH⊥平面ABC,∴NG⊥平面ABC,易知DH=3,∴NG=3 2,又S△ABC =12·BC·AH=12×2×32-12=22,∴V E-ABC =13·S△ABC·NG=63.。