2019中考数学专题:二次函数的综合特训3
- 格式:doc
- 大小:184.50 KB
- 文档页数:5
二次函数综合题1.已知抛物线 C:y= ax2+ bx+c 与 x 轴交于 A、B( A 在 B 的左边)两点,与 y 轴交于点 D(0,3),且极点为 E(1,4).( Ⅰ) 求抛物线C的分析式;( Ⅱ) 将抛物线C 经过某种平移后获得抛物线′,极点变成′(1 ,k)(k<4) ,设平移后DC E的对应点为D′,且 OD′=2.①求抛物线C′的分析式;②点 Q在抛物线 C′的对称轴上,若AD′= AQ,求点 Q的坐标.解: ( Ⅰ) 设抛物线C的分析式为y= a( x-1)2+4,代入 D(0,3),得 a+4=3,解得 a=-1,∴抛物线 C的分析式为y=-( x-1)2+4,即 y=- x2+2x+3;( Ⅱ) ①∵E(1 , 4) ,E′(1 ,k)( k< 4) ,∴抛物线向下平移了(4 -k) 个单位长度,∴D′(0,3-4+ k),即 D′(0,k-1),∵OD′=2,∴| k-1| =2,解得k=3或k=-1,∴抛物线 C′的分析式为y=-( x-1)2+3或 y=-( x-1)2-1,即 y=- x2+2x+2或 y=- x2+2x-2;②∵ OD′=2,∴D′(0,2)或 D′(0,-2).令 y=0,则有- x2+2x+3=0,解得 x=-1或 x=3,∴点 A的坐标为(-1,0).设点 Q坐标为(1, m).∵AD′2=(0+1)2+(±2-0)2=5,2222AQ=(-1-1)+(0- m)= m+4,2∴m+4=5,解得 m=±1.∴Q点坐标为(1,1)或(1,-1).2.已知二次函数y= x2+ bx+ c 与 x 轴交于 A、 B两点.( Ⅰ) 若 A ( - 2, 0) ,B (3 , 0) ,求二次函数的分析式;2( Ⅱ) 若 b =- (3 m - 1) , c = 2m -2m ( 此中 m >- 1) .11①二次函数与 x 轴交于 A ( x 1,0) ,B ( x 2,0)( x 1<x 2) 两点,且- 1≤ 2x 1- 3x 2≤1,试求 m 的取值范围;②当 1≤ x ≤3时,二次函数的最小值是- 1,求 m 的值. 解:( Ⅰ) 把 ( - 2,0) , (3 ,0) 代入y =x 2+bx +c ,AB4- 2b + c = 0b =- 1得,解得c ,9+3 += 0=- 6b c∴二次函数的分析式为 y = x 2- x - 6;22( Ⅱ) ①令 y = 0,则 x -(3 m - 1) x + 2m - 2m = 0,2222,b -4ac = (3 m - 1) -4×(2 m - 2m ) = ( m +1) 3-1- ( +1)21mm= m - 1,∴x =23m - 1+ ( m + 1) 2 x 2= 2 = 2m ,11∵- 1≤ 2x 1 -3x 2≤1,m -1 2m∴-1≤2- 3 ≤1,整理得- 9≤ m ≤3,∵m >- 1,∴- 1< ≤3;m3 - 1②若对称轴 x =m≤1,当 x = 1 时,二次函数有最小值-1,此时- 1< m ≤1,2代入 (1 ,- 1) 得: 1- (3 -1) +2 2- 2 =- 1,m mm化简得 2 2-5 +3=0,mm3解得 m = 1 或 m = 2( 舍去 ) ;3 - 17m1,此时 m ≥3,若对称轴 x =2≥3,当 x =3 时,二次函数有最小值-代入 (3 ,- 1) 得: 9- 3(3 m -1) + 22m - 2m =- 1, 化简得 2 2- 11 + 13=0,mm11+ 1711- 17解得 m =4或 m =(舍去);4若对称轴 1<3m-1< 3,当x=3m-1时,二次函数有最小值-1,此时 1<<7,22m 33m- 1代入 (,-1),2( 3m- 1) 2 ( 3m-1) 22得-+ 2m- 2m=- 1,422化简得 m+2m-3=0,解得 m=1或 m=-3,(均舍去)综上所述,11+17的值为或 1.m43. 已知抛物线y=ax2+bx+c的对称轴为直线x=1,该抛物线与x 轴的两个交点分别为点A和 B,与 y 轴的交点为 C(0,-3),此中 A(-1,0).( Ⅰ) 求点B的坐标;( Ⅱ) 若抛物线上存在一点P,使得△ POC的面积是△ BOC的面积的2倍,求点 P 的坐标;( Ⅲ) 点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.解: ( Ⅰ) ∵抛物线y=ax2+bx+c的对称轴为直线x= 1,A( - 1, 0) ,∴点 B 的坐标为(3,0);( Ⅱ) 将点 A(-1, 0)、 B( 3,0)、 C( 0, -3 )代入抛物线y =ax2++c中,bxa -+=0a=1 b c得 9a+ 3b+c= 0,解得b=-2,c=-3c=-3∴抛物线的分析式为y= x2-2x-3,19∴△ BOC=×3×3=S22∴S△POC=2S△BOC=9.1设点 P 的横坐标为xP,则×3×|x p|=9,解得x P=± 6.2∴点 P 的坐标为(6,21)或(-6,45);( Ⅲ) ∵点B(3 , 0) ,C(0 ,- 3) ,∴直线 BC的分析式为 y= x-3.设点 M( a,a-3),则点 D( a,a2-2a-3).22329∴MD= a-3-( a- 2a-3) =-a+ 3a=- ( a-2)+4,39∴当=时,线段长的最大值为 .MD244. 抛物线 y = 1x 2+ bx +c ( b ,c 为常数 ) 与 y 轴订交于点 C ,经过点 C 作直线 CD ∥ x 轴,交抛2物线于点 D ,将直线 CD 向上平移 t 个单位长度,交抛物线于点A 、B ( A 在 B 的左边 ) ,直线AB 与抛物线的对称轴交于点E .( Ⅰ) 当 b =- 2, c =1 时,求抛物线极点 P 的坐标;(Ⅱ)若∠=90°,求t 的值;ACB( Ⅲ) 在( Ⅱ) 的条件下,当以点, , ,E 为极点的四边形为平行四边形时,求b 的值.A C D1212解: ( Ⅰ) 当 b =- 2, c = 1 时, y = 2x - 2x + 1= 2( x - 2) - 1,∴抛物线的极点 P 的坐标为 (2 ,- 1) ;( Ⅱ) 如解图,连结 AC , BC , CE ,∵∠ ACB =90°, AE = EB ,1∴CE = 2AB ,由1x 2+ bx + c = c + t ,解得 x =- b ± b 2+ 2t ,222∴A ( - b - b + 2t ,c + t ) , B ( - b + b + 2t , c + t ) ,∵E ( - b , c + t ) , C (0 , c ) ,∴CE = b 2+ t 2.∴ b 2+ t 2= b 2+ 2t .解得 t = 2 或 t = 0( 舍去 ) ,∴t = 2;第 4题解图( Ⅲ) 由题意得 CD = AE ,∵A ( - b - b 2+ 2t ,c + t ) , E ( - b , c +t ) ,且点 A 在点 E 的左边,∴AE = b 2 +2t .∵C (0 , c ) , D ( - 2b , c ) ,∴CD = | - 2b | ,∴ b 2+ 2t =| - 2b | ,∴3b 2= 2t ,∵t = 2,∴ 2 3b =±.35. 已知抛物线y = 2+ bx +(≠0) 经过点 (1 ,- 4 ) ,(4,5 ) .ax c aa a( Ⅰ) 证明:抛物线与 x 轴有两个不一样的交点;( Ⅱ) 设抛物线与 x 轴交于点 A ,B ,与 y 轴交于点 C ,若∠ ACB =90°,求 a 的值; ( Ⅲ) 若点 D 和点 E 的坐标分别为 (0 ,4) , (4 ,4) .抛物线与线段 DE 恰有一个公共点,求 a的取值范围.( Ⅰ) 证明:把点 (1 ,- 4a ) ,(4 , 5a ) 代入 y = ax 2+ bx + c ,得a +b +c =- 4ab =- 2a ,16a + 4b + c = 5a ,解得c =- 3a∴抛物线的分析式为y = ax 2- 2ax - 3a ,∵ b 2- 4ac = ( -2a )2 - 4a ·( - 3a ) = 4a 2+ 12a 2= 16a 2>0, ∴抛物线与 x 轴有两个不一样的交点;( Ⅱ) 解:令 ax 2- 2ax -3a = 0,解得 x 1=- 1, x 2= 3,∴设 A , B 两点的坐标分别为( -1,0),B (3 ,0),令 x = 0,则 y =- 3a ,∴点 C 的坐标为 (0 ,- 3a ) ,2 2 2∵∠ ACB =90°,∴ AC + BC = AB ,222222222- ( -1)] 2∵AC = ( - 1) +( - 3a ) =1+ 9 a , BC =3 + ( - 3a ) =9+ 9a , AB =[3 = 16,223∴1+ 9a + 9+9a = 16,解得 a =± 3 .∴a 的值为± 3 3 ;( Ⅲ) 解:∵由 ( Ⅱ) 知,抛物线与 x 轴的交点为 ( - 1, 0) , (3 , 0) , ∴抛物线对于直线 x = 1 对称,∵ a 的正负不确立,需分类议论;当 a > 0 时,如解图①,∵抛物线与线段DE恰有一个公共点,4∴- 3a< 4,解得a>-3,将 x=4代入抛物线分析式得y=5a,4∴5a≥4,解得 a≥,5∴a≥4,5当 a<0时,如解图②,将 x=0代入抛物线分析式得y=-3a,∵抛物线与线段DE恰有一个公共点,4∴- 3a> 4,解得a<-,将 x=4代入抛物线分析式得y=5a,4∴5a≤4,解得 a≤,4∴a<-3;当抛物线的极点在线段DE上时,则极点为(1 ,4) ,如解图③,将点 (1 , 4) 代入抛物线得4=a- 2a- 3a,解得 a=-1.44综上所述, a≥或 a<-或a=- 1.53第 5题解图6.已知抛物线 y= ax2+bx+ c 经过 A(0,2), B(2,-2)两点.( Ⅰ) 求a,b知足的关系式;1( Ⅱ) 当a=-2时,y值为正整数,求知足条件的x 值;( Ⅲ) 若a>0,线段AB下方的抛物线上有一点D,求△ DAB的面积最大时,D点的横坐标.解: ( Ⅰ) 将A(0 , 2) ,B(2 ,- 2) 代入抛物线y ax2 bx cc=2得,4a+ 2b+c=- 2∴4a+2b+2=-2,整理得 2a+b=- 2,即 a, b 知足的关系式为2a+b=- 2;( Ⅱ) 由( Ⅰ) 知,c= 2,b=- 2a- 2,1∵a=-2,∴ b=-1,12125,∴抛物线分析式为 y=-2x - x+2=-2( x+1)+2∵y 值为正数,125∴-2( x+ 1) +2> 0,∴(x+1)2-5<0,∴- 5 -1<x<5- 1,∵y 值为整数,15即-2( x+ 1)2 +2为整数,∴(x+1)2是奇数,综上所述,知足条件的x 值为-2或0;( Ⅲ) 由( Ⅰ) 知,c= 2,b=- 2a- 2,∴抛物线的分析式为y= ax2-(2 a+2) x+2,∵A(0,2), B(2,-2),∴直线 AB的分析式为y=-2x+2,∵点 D在线段 AB下方的抛物线上,2设点 D( m, am-(2 a+2) m+2),如解图,过点D作 y 轴的平行线DE交 AB于点 E,∴E( m,-2m+2),∴DE=-2m+2-[ am2-(2 a+2) m+2]=- a( m-1)2+ a,1∴S△ DAB=2DE·(xB- xA)=- a( m-1)2+ a,∵a>0,∴-a<0,∴当 m=1时,△ DAB的面积最大,此时D点的横坐标为 1.第6题解图7. 一次函数=3的图象与二次函数y =ax2- 4+c的图象交于、B两点 ( 此中点A在y4xax A点 B 的左边),与这个二次函数图象的对称轴交于点C.( Ⅰ) 求点C的坐标;(II)设二次函数图象的极点为D.①若点 D与点 C对于 x 轴对称,且△ ACD的面积等于3,求此二次函数的分析式;②若 CD= AC,且△ ACD的面积等于10,求此二次函数的分析式.解: ( Ⅰ) ∵y=ax2- 4ax+c=a( x- 2) 2- 4a+c,∴二次函数图象的对称轴为直线x=2.3 3当 x=2时, y=4x=2,3∴C(2,2);( Ⅱ) ①∵点D与点C对于x轴对称,3∴D(2,-2),∴ CD=3.31设 A( m,4m) ( m<2),由 S△ACD=3,得2×3×(2- m)=3,解得 m=0,∴ A(0,0).将 (0,0)、(2 ,-3) 代入y =ax2-4 +c中,A D2axc=03 ,解得a3得8 .- 4a+c=-2c0323∴此二次函数的分析式为y=8x -2x;3②设 A( m,4m)( m<2),如解图,过点A作 AE⊥ CD于E,第 7题解图则 AE = 2-m , CE =3- 3m ,2 4∴=2223 325+ =(2- ) +(-)=(2-),AC AECEm 2 4m4m5∵CD = AC ,∴ CD = 4(2 - m ).△ ACD1 52= 10,解得 m =- 2 或 m =6( 舍去 ) ,∴ m =- 2.由S =10 得 2× 4(2 - m ) 3∴A ( - 2,- ) , CD =5.27 若 a > 0,则点 D 在点 C 下方,∴ D (2 ,- ) ,2337) 得 12a + c =- 2 由 A ( -2,- ) 、D (2,- 2,2 7- 4a + c =- 21 解得a =8 ,c =- 321∴ y = 8x - 2x - 3.113若 a < 0,则点 D 在点 C 上方,∴ D (2 ,2 ) ,12a +c =- 33132由 A ( -2,-2) 、D (2, 2 ) 得13 ,- 4a + c =21a =- 2解得,9c = 2∴ y =- 1x 2+2x + 9.9综上,二次函数的分析式为y =12-1- 3 或y=-12+2 +9.8x2x2xx28. 已知二次函数22y= x+ (2 m- 2) x+m- 2m- 3( m是常数 ) 的图象与x轴交于A,B两点 ( 点A在点 B的左边).( Ⅰ) 假如二次函数的图象经过原点.①求 m的值;②若 m<0,点 C是一次函数y=- x+ b( b>0)图象上的一点,且∠ACB=90°,求 b 的取值范围;( Ⅱ) 当- 3≤x≤2时,函数的最大值为5,求m的值.解: ( Ⅰ) ①∵二次函数的图象经过原点,2∴m-2m-3=0,解得 m1=-1, m2=3.②∵ m<0,∴m=-1.把 m=-1代入 y= x2+(2 m-2) x+m2-2m-3中,得: y= x2-4x,当 y= x2-4x=0时,解得 x1=0, x2=4,∴AB=4.以 AB为直径作⊙ P,依据直径所对的圆周角为直角,可知:当一次函数y=- x+ b( b>0)的图象与圆订交时,可得∠ACB=90°.如解图,一次函数 y=- x+b( b>0)的图象与⊙ P 相切于点 C,与 y 轴交于点 E,与 x 轴交于点 F,连结 PC,易得∠ PCF=90°.第 8题解图当 x=0时, y=- x+ b= b,∴点 E(0,b).∴当 y=- x+ b=0时, x= b,∴点 F( b,0),∴AE= AF=b,又∵∠ PCF=90°,∴△ PCF为等腰直角三角形,∴PF=2PC= 2 2,∴b= AF=2+22,∴b 的取值范围为0<b≤2+ 2 2;22( Ⅱ) ∵y=x+(2 m- 2) x+m- 2m- 3=(x+m- 1) 2- 4,∴抛物线的对称轴为直线 x=1- m,①当 1-≤-3+2,即≥1.5 时,依据二次函数的对称性及增减性,当x= 2 时,函数最大m m2值为 5,∴(2 +m- 1) 2- 4= 5,解得: m=2或 m=-4(舍去);②当1->-3+2,即< 1.5时,依据二次函数的对称性及增减性,当x =- 3 时,函数最m2m大值为 5,∴(- 3+m- 1) 2- 4= 5,解得: m=1或 m=7(舍去).综上所述, m=2或 m=1.9.已知抛物线 y= a( x- h)2-2( a,h 是常数, a≠0),与 x 轴交于点 A,B,与 y 轴交于点 C,点 M为抛物线的极点.( Ⅰ) 若点A( - 1, 0) ,B(5 , 0) ,求抛物线的分析式;( Ⅱ) 若点A( - 1, 0) ,且△ABM是直角三角形,求抛物线的分析式;( Ⅲ) 若抛物线与直线y= x-6订交于 M、 D两点,当 CD∥x 轴时,求抛物线的分析式.解: ( Ⅰ) ∵抛物线与x 轴交于点 A(-1,0), B(5,0),∴5-h=h- ( - 1) ,∴h=2.把 A(-1,0)代入 y= a( x-2)2-2,有 a(-1-2)2-2=0,2解得 a=9,112 2∴抛物线的分析式为y = ( x -2) - 2;9( Ⅱ) ∵抛物线与 x 轴交于 A 、B 两点,极点 M 在直线 y =- 2 上,如解图①.∴a > 0.22由 a ( x - h ) -2= 0,得 x = h ± a .222∴|AB | = ( h +a ) - ( h - a ) = 2a .设对称轴 x = h 交 x 轴于点 H ,则 MH = 2.∵△ ABM 是等腰直角三角形,∴AB = 2MH ,21∴2a =4,解得 a = 2,把 A ( - 1,0) 代入 y = 1( x - h ) 2 -2,2 得1( - 1- h ) 2- 2= 0,2解得1=1, 2=- 3,hh1212∴抛物线的分析式为 y = 2( x -1) - 2 或 y = 2( x + 3) - 2;第 9 题解图①( Ⅲ) 如解图②,∵点 M ( h ,- 2) 在直线 y = x - 6 上,∴- 2= h -6,解得 h = 4.∴ y = a ( x -4) 2- 2= ax 2 -8ax + 16a - 2, ∴C (0 , 16a - 2) ,由 x - 6= ax 2- 8ax + 16a - 2,即 ax 2- (8 a + 1) x + 16a + 4= 0.解得 x = 8a +1+ 1 1 8a2a= 4+a , x =2a = 4,1 211把 x = 4+a 代入 y = x - 6,得 y =a - 2,1 1∴D (4a a2)∵CD ∥ x 轴∴点 C 与点 D 对于直线 xh 4 对称1∴ 16a 2 a 2∴ a ± 14 ∵当 a1 点 C 与点 D 重合4时不合题意 故 去1∴a412∴抛物线的分析式为 y4( x 4)2.第 9题解图10. 已知抛物线 y x 2 bx c 与直线 y kx m 交于 A (1 3) B (4 0) 两点 点 P 是抛物线上 AB 之间 ( 不与点 AB 重合 ) 的一个动点 过点 P 分别作 x 轴 y 轴的平行线与直线 AB交于点 CD .( ) 求抛物线与直线AB 的分析式( ) 当点 C 为线段 AB 的中点时 求 PC 的长() 设点 E 的坐标为 ( st ) 以点 P C D E 为极点的四边形为矩形时用含有t 的式子表示 s 并求出 s 的取值范围解( ) ∵点(13)(4 0) 在抛物线上AB∴1 b c 3b 416 4b c 0 解得c ∴抛物线的分析式为 yx 2 4x .∵点 A (1 3)B (4 0) 在直线 y kx m 上k+ m=3k=-1∴,解得,4k+m= 0m=4∴直线的分析式为y =-x+ 4;AB5323 ( Ⅱ) 依据题意,点C的坐标为(2,2),且 PC∥ x 轴,∴- x +4x=2,1010解得 x=2-2(舍去)或 x=2+2,10即点 P 的横坐标为 x=2+2,第 10 题解图10510-1∴PC=2+2-2=2;2( Ⅲ) 设点P的坐标为 ( x0,y0) ,则y0=-x0+ 4x0.依据题意,以点P,C, D, E 为极点的四边形为矩形.如解图,又∵ E( s, t ),∴ C( s, y0), D( x0, t ),∵点 C、 D在直线 y=- x+4上,∴y0=- s+4, t =- x0+4,即 x0=4- t ,∵点 P( x0, y0)在抛物线 y=- x2+4x 上,∴- s+4=-(4- t )2+4(4- t ),∴s= t 2-4t +4.又∵ P是抛物线上A、 B 之间的一个动点,∴1<x0<4,即 1<4-t <4,∴0<t <3,∵s= t 2-4t +4的对称轴为直线t =2.当 0<t <2 时,s随t的增大而减小,当2<t <3 时,s随t的增大而增大.又∵当 t =2时, s=0;当 t =0时, s=4,∴s 的取值范围是0≤s<4.。
2019年二次函数综合题专项训练一、面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.备用图2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.二、平行四边形类3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.三、周长类6.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.四、等腰三角形类7.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.五、综合类10.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.11.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.12.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.分析与解答1、分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2、分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为(32,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.3、分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.所以P点的横坐标是或.4、分析:(1)利用旋转的性质得出A′(﹣1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假设四边形PB′A′B的面积是△A′B′O面积的4倍,得出一元二次方程,得出P点坐标即可;(3)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可.解答:解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).方法一:设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.方法二:∵A′(﹣1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x﹣2)将B′(0,2)代入得出:2=a(0+1)(0﹣2),解得:a=﹣1,故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②P A′=B′B;③B′P∥A′B;④B′A′=PB.(10分)5、分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标.(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状.(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,即①AD PB、②AB PD,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标.解答:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即P A∥BD则构成平行四边形只能是P ADB或P ABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|P A=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.6、分析:(1)根据抛物线y=经过点B(0,4),以及顶点在直线x=上,得出b,c即可;(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可.(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可;(4)利用MN∥BD,得出△OMN∽△OBD,进而得出,得到ON=,进而表示出△PMN的面积,利用二次函数最值求出即可.解答:解:(1)∵抛物线y=经过点B(0,4)∴c=4,∵顶点在直线x=上,∴﹣=﹣=,∴b=﹣;∴所求函数关系式为;(2)在Rt△ABO中,OA=3,OB=4,∴AB=,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∴C、D两点的坐标分别是(5,4)、(2,0),当x=5时,y=,当x=2时,y=,∴点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,∴,当x=时,y=,∴P(),(4)∵MN∥BD,∴△OMN∽△OBD,∴即得ON=,设对称轴交x于点F,则(PF+OM)•OF=(+t)×,∵,S△PNF=×NF•PF=×(﹣t)×=,S=(﹣),=﹣(0<t<4),a=﹣<0∴抛物线开口向下,S存在最大值.由S△PMN=﹣t2+t=﹣(t﹣)2+,∴当t=时,S取最大值是,此时,点M的坐标为(0,).7、分析:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP 三种情况分类讨论,然后分辨是否存在符合条件的P点.解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),8、分析:(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)9、分析:(1)首先过点B作BD⊥x轴,垂足为D,易证得△BDC≌△COA,即可得BD=OC=1,CD=OA=2,则可求得点B的坐标;(2)利用待定系数法即可求得二次函数的解析式;(3)分别从①以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,去分析则可求得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假设存在点P,使得△ACP是等腰直角三角形,①若以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.10、分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD 为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).11、分析:(1)利用待定系数法求出直线解析式;(2)利用待定系数法求出抛物线的解析式;(3)关键是证明△CEQ与△CDO均为等腰直角三角形;(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值.解答:解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(0,1),D(1,0)代入得:,解得:b=1,k=﹣1,∴直线CD的解析式为:y=﹣x+1.(2)设抛物线的解析式为y=a(x﹣2)2+3,将C(0,1)代入得:1=a×(﹣2)2+3,解得a=.∴y=(x﹣2)2+3=x2+2x+1.(3)证明:由题意可知,∠ECD=45°,∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,∴点E的坐标为(4,1).如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,∴∠QEC=∠QCE=∠ODC=∠OCD=45°,∴△CEQ∽△CDO.(4)存在.如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;而F′C″+F′P′+P′C′是点C′,C″之间的折线段,由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,即△P′CF′的周长大于△PCE的周长.)如答图③所示,连接C′E,∵C,C′关于直线QE对称,△QCE为等腰直角三角形,∴△QC′E为等腰直角三角形,∴△CEC′为等腰直角三角形,∴点C′的坐标为(4,5);∵C,C″关于x轴对称,∴点C″的坐标为(0,﹣1).过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,在Rt△C′NC″中,由勾股定理得:C′C″===.综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.12、分析:(1)利用待定系数法即可求得函数的解析式;(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;(3)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解.解答:解:(1)设抛物线的解析式为y=ax2+bx+c由抛物线与y轴交于点C(0,3),可知c=3.即抛物线的解析式为y=ax2+bx+3.把点A(1,0)、点B(﹣3,0)代入,得解得a=﹣1,b=﹣2∴抛物线的解析式为y=﹣x2﹣2x+3.∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴顶点D的坐标为(﹣1,4);(2)△BCD是直角三角形.理由如下:解法一:过点D分别作x轴、y轴的垂线,垂足分别为E、F.∵在Rt△BOC中,OB=3,OC=3,∴BC2=OB2+OC2=18在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1,∴CD2=DF2+CF2=2在Rt△BDE中,DE=4,BE=OB﹣OE=3﹣1=2,∴BD2=DE2+BE2=20∴BC2+CD2=BD2∴△BCD为直角三角形.解法二:过点D作DF⊥y轴于点F.在Rt△BOC中,∵OB=3,OC=3∴OB=OC∴∠OCB=45°∵在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1∴DF=CF∴∠DCF=45°∴∠BCD=180°﹣∠DCF﹣∠OCB=90°∴△BCD为直角三角形.(3)①△BCD的三边,==,又=,故当P是原点O时,△ACP∽△DBC;②当AC是直角边时,若AC与CD是对应边,设P的坐标是(0,a),则PC=3﹣a,=,即=,解得:a=﹣9,则P的坐标是(0,﹣9),三角形ACP不是直角三角形,则△ACP∽△CBD不成立;③当AC是直角边,若AC与BC是对应边时,设P的坐标是(0,b),则PC=3﹣b,则=,即=,解得:b=﹣,故P是(0,﹣)时,则△ACP∽△CBD一定成立;④当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0).则AP=1﹣d,当AC与CD是对应边时,=,即=,解得:d=1﹣3,此时,两个三角形不相似;⑤当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0).则AP=1﹣e,当AC与DC是对应边时,=,即=,解得:e=﹣9,符合条件.总之,符合条件的点P的坐标为:.。
二次函数综合题(三)一.解答题(共16小题)1.(2019•成都)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.2.(2019•巴中)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.3.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.4.(2019•潍坊)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO 的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.5.(2019•青岛)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?6.(2019•衢州)某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间.经市场调查表明,该馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2)求y关于x的函数表达式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?7.(2019•甘肃)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD 面积的最大值及此时点E的坐标.8.(2019•南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?9.(2019•德州)如图,抛物线y=mx2﹣mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=.(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥时,均有y1≤y2,求a 的取值范围;(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.10.(2019•重庆)在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.11.(2019•自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =的距离?若存在,求出定点F的坐标;若不存在,请说明理由.12.(2019•达州)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.13.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.14.(2019•金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y 轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.15.(2019•枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.16.(2019•南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.二次函数综合题(三)参考答案与试题解析一.解答题(共16小题)1.(2019•成都)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.【解答】解:(1)由题意得:解得,∴抛物线的函数表达式为y=x2﹣2x﹣3.(2)∵抛物线与x轴交于B(﹣1,0),C(3,0),∴BC=4,抛物线的对称轴为直线x=1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,在Rt△BHC′中,由勾股定理,得C′H===2,∴点C′的坐标为(1,2),tan,∴∠C′BH=60°,由翻折得∠DBH=∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=,∴点D的坐标为(1,).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则,解得,∴直线BP的函数表达式为y=.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×,∴点E的坐标为(0,﹣).设直线BP的函数表达式为y=mx+n,则,解得,∴直线BP的函数表达式为y=﹣.综上所述,直线BP的函数表达式为或.2.(2019•巴中)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.【解答】解:①∵点B、C在直线为y=x+n上,∴B(﹣n,0)、C(0,n),∵点A(1,0)在抛物线上,∴,∴a=﹣1,b=6,∴抛物线解析式:y=﹣x2+6x﹣5;②由题意,得,PB=4﹣t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4﹣t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m﹣5﹣(﹣m2+6m﹣5)=4解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m>5,∴m=,Ⅲ.NH﹣HP=4,∴﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m<0,∴m=,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.3.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.【解答】解:(1)∵OA=3,tan∠OAC==,∴OC=,∵四边形OABC是矩形,∴BC=OA=3,∵D是BC的中点,∴CD=BC=,∴D(,);(2)①∵tan∠OAC=,∴∠OAC=30°,∴∠ACB=∠OAC=30°,设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,则DB'=DB=DC,∠BDF=∠B'DF,∴∠DB'C=∠ACB=30°∴∠BDB'=60°,∴∠BDF=∠B'DF=30°,∵∠B=90°,∴BF=BD•tan30°=,∵AB=,∴AF=BF=,∵∠BFD=∠AEF,∴∠B=∠F AE=90°,∴△BFD≌△AFE(ASA),∴AE=BD=,∴OE=OA+AE=,∴点E的坐标(,0);②动点P在点O时,∵抛物线过点P(0,0)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x,∴E(,0),∴直线DE:y=﹣x+,∴F1(3,);当动点P从点O运动到点M时,∵抛物线过点P(0,)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x+,∴E(6,0),∴直线DE:y=﹣x+,∴F2(3,);∴点F运动路径的长为F1F2==,∵△DFG为等边三角形,∴G运动路径的长为.4.(2019•潍坊)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO 的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.【解答】解:(1)点B(0,4),则点C(0,2),∵点A(4,0),则点M(2,1);(2)∵⊙P与直线AD,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO===tanα,则sinα=,cosα=,AC=,则CD==10,则点D(0,﹣8),将点A、D的坐标代入一次函数表达式:y=mx+n并解得:直线AD的表达式为:y=2x﹣8;(3)抛物线的表达式为:y=a(x﹣2)2+1,将点B坐标代入上式并解得:a=,故抛物线的表达式为:y=x2﹣3x+4,过点P作PH⊥EF,则EH=EF=2,cos∠PEH=,解得:PE=5,设点P(x,x2﹣3x+4),则点E(x,2x﹣8),则PE=x2﹣3x+4﹣2x+8=5,解得x=或2,则点P(,)或(2,1).5.(2019•青岛)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.6.(2019•衢州)某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间.经市场调查表明,该馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2)求y关于x的函数表达式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?【解答】解:(1)如图所示:(2)设y=kx+b,将(200,60)、(220,50)代入,得:,解得,∴y=﹣x+160(170≤x≤240);(3)w=xy=x(﹣x+160)=﹣x2+160x,∴对称轴为直线x=﹣=160,∵a=﹣<0,∴在170≤x≤240范围内,w随x的增大而减小,∴当x=170时,w由最大值,最大值为12750元.7.(2019•甘肃)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD 面积的最大值及此时点E的坐标.【解答】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).8.(2019•南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?【解答】解:(1)钢笔、笔记本的单价分别为x、y元,根据题意得,,解得:,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,a=10﹣0.1(b﹣30)=﹣0.1b+13,w=b(﹣0.1b+13)+6(100﹣b)=﹣0.1b2+7b+600=﹣0.1(b﹣35)2+722.5,∵当b=30时,w=720,当b=50时,w=700,∴当30≤b≤50时,700≤w≤722.5;②当50<b≤60时,a=8,w=8b+6(100﹣b)=2b+600,700<w≤720,∴当30≤b≤60时,w的最小值为700元,∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元.9.(2019•德州)如图,抛物线y=mx2﹣mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=.(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥时,均有y1≤y2,求a 的取值范围;(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.【解答】解:(1)函数的对称轴为:x=﹣==,而且x2﹣x1=,将上述两式联立并解得:x1=﹣,x2=4,则函数的表达式为:y=m(x+)(x﹣4)=m(x2﹣4x+x﹣6),即:﹣6m=﹣4,解得:m=,故抛物线的表达式为:y=x2﹣x﹣4;(2)由(1)知,函数的对称轴为:x=,则x=和x=﹣2关于对称轴对称,故其函数值相等,又a≤x1≤a+2,x2≥时,均有y1≤y2,结合函数图象可得:,解得:﹣2≤a≤;(3)如图,连接BC、CM,过点D作DG⊥OE于点G,而点B、C、D的坐标分别为:(4,0)、(0,﹣4)、(1,﹣5),则OB=OC=4,CG=GD=1,BC=4,CD=,故△BOC、△CDG均为等腰直角三角形,∴∠BCD=180°﹣∠OCB﹣∠GCD=90°,在Rt△BCD中,tan∠BDC==4,∠BDC=∠MCE,则tan∠MCE=4,将点B、D坐标代入一次函数表达式:y=mx+n并解得:直线BD的表达式为:y=x﹣,故点E(0,﹣),设点M(n,n﹣),过点M作MF⊥CE于点F,则MF=n,CF=OF﹣OC=﹣,tan∠MCE===4,解得:n=,故点M(,﹣).10.(2019•重庆)在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.【解答】解:(1)如图1中,对于抛物线y=﹣x2+x+2,令x=0,得到y=2,令y=0,得到﹣x2+x+2=0,解得x=﹣2或4,∴C(0,2),A(﹣2,0),B(4,0),抛物线顶点D坐标(1,),∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥OC,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,设P(m,﹣m2+m+2),则E(m,﹣m+2),∴PE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,∴当m=2时,PE有最大值,∴P(2,2),如图,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).(2)∵A(﹣2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥AC,D(1,),∴直线DD′的解析式为y=x+,设D′(m,m+),则平移后抛物线的解析式为y1=﹣(x﹣m)2+m+,将(0,0)代入可得m=5或﹣1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,①当NC=CD′时,1+(n﹣2)2=52+(﹣2)2,解得:n=②当NC=D′N时,1+(n﹣2)2=(5﹣1)2+(﹣n)2,解得:n=③当D′C=D′N时,52+(﹣2)2=(5﹣1)2+(﹣n)2,解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).11.(2019•自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,c=3,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×=,M(,);(3)存在点F,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,当y=0时,x1=﹣1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,设F (1,a),连接BF,CF,则BF=BN=﹣3=,CF=CH=,由题意可列:,解得,a=,∴F(1,).12.(2019•达州)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.【解答】解:(1)由题意把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,得,,解得b=﹣2,c=3,∴y=﹣x2﹣2x+3=﹣(x+1)2+4,∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);(2)∵抛物线顶点C(﹣1,4),∴抛物线对称轴为直线x=﹣1,设抛物线对称轴与x轴交于点H,则H(﹣1,0),在Rt△CHO中,CH=4,OH=1,∴tan∠COH==4,∵∠COH=∠CAO+∠ACO,∴当∠ACO=∠CDO时,tan(∠CAO+∠CDO)=tan∠COH=4,如图1,当点D在对称轴左侧时,∵∠ACO=∠CDO,∠CAO=∠CAO,∴△AOC∽△ACD,∴=,∵AC==2,AO=1,∴=,∴AD=20,∴OD=19,∴D(﹣19,0);当点D在对称轴右侧时,点D关于直线x=1的对称点D'的坐标为(17,0),∴点D的坐标为(﹣19,0)或(17,0);(3)设P(a,﹣a2﹣2a+3),将P(a,﹣a2﹣2a+3),A(1,0)代入y=kx+b,得,,解得,k=﹣a﹣3,b=a+3,∴y P A=(﹣a﹣3)x+a+3,当x=0时,y=a+3,∴N(0,a+3),如图2,∵S△BPM=S△BP A﹣S四边形BMNO﹣S△AON,S△EMN=S△EBO﹣S四边形BMNO,∴S△BPM﹣S△EMN=S△BP A﹣S△EBO﹣S△AON=×4×(﹣a2﹣2a+3)﹣×3×3﹣×1×(a+3)=﹣2a2﹣a=﹣2(a+)2+,由二次函数的性质知,当a=﹣时,S△BPM﹣S△EMN有最大值,∵△BMP和△EMN的面积分别为m、n,∴m﹣n的最大值为.13.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.【解答】解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,∴b=4.14.(2019•金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y 轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.【解答】解:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,函数图象如图1所示.∵当x=0时,y=2,当x=1时,y=1,∴抛物线经过点(0,2)和(1,1),观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5.如图2.∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,∴抛物线经过(1,1),(2,4),(4,4),共线图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).(3)如图3中,∵抛物线的顶点P(m,m+2),∴抛物线的顶点P在直线y=x+2上,∵点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),当抛物线经过点E时,﹣(2﹣m)2+m+2=1,解得m=或(舍弃),当抛物线经过点F时,﹣(2﹣m)2+m+2=2,解得m=1或4(舍弃),∴当≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.15.(2019•枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.【解答】解:(1)∵抛物线的对称轴是直线x=3,∴﹣=3,解得a=﹣,∴抛物线的解析式为:y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).答:抛物线的解析式为:y=﹣x2+x+4;点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b得,解得,∴直线BC的解析式为y=﹣x+4.假设存在点P,使四边形PBOC的面积最大,设点P的坐标为(x,﹣x2+x+4),如图所示,过点P作PD∥y轴,交直线BC于点D,则点D 的坐标为(x,﹣x+4),则PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S四边形PBOC=S△BOC+S△PBC=×8×4+PD•OB=16+×8(﹣x2+2x)=﹣x2+8x+16=﹣(x﹣4)2+32∴当x=4时,四边形PBOC的面积最大,最大值是32∵0<x<8,∴存在点P(4,6),使得四边形PBOC的面积最大.答:存在点P,使四边形PBOC的面积最大;点P的坐标为(4,6),四边形PBOC面积的最大值为32.(3)设点M的坐标为(m,﹣++4)则点N的坐标为(m,﹣),∴MN=|﹣++4﹣(﹣)|=|﹣+2m|,又∵MN=3,∴|﹣+2m|=3,当0<m<8时,﹣+2m﹣3=0,解得m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,﹣+2m+3=0,解得m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).答:点M的坐标为(2,6)、(6,4)、(4﹣2,﹣1)或(4+2,﹣﹣1).16.(2019•南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0),点B(﹣3,0)∴设交点式y=a(x+1)(x+3)∵OC=OB=3,点C在y轴负半轴∴C(0,﹣3)把点C代入抛物线解析式得:3a=﹣3∴a=﹣1∴抛物线解析式为y=﹣(x+1)(x+3)=﹣x2﹣4x﹣3(2)如图1,过点A作AG⊥BC于点G,过点P作PH⊥x轴于点H∴∠AGB=∠AGC=∠PHO=90°∵∠ACB=∠POB∴△ACG∽△POH∴∴∵OB=OC=3,∠BOC=90°∴∠ABC=45°,BC==3∴△ABG是等腰直角三角形∴AG=BG=AB=∴CG=BC﹣BG=3﹣=2∴∴OH=2PH设P(p,﹣p2﹣4p﹣3)①当p<﹣3或﹣1<p<0时,点P在点B左侧或在AC之间,横纵坐标均为负数∴OH=﹣p,PH=﹣(﹣p2﹣4p﹣3)=p2+4p+3∴﹣p=2(p2+4p+3)解得:p1=,p2=∴P(,)或(,)②当﹣3<p<﹣1或p>0时,点P在AB之间或在点C右侧,横纵坐标异号∴p=2(p2+4p+3)解得:p1=﹣2,p2=﹣∴P(﹣2,1)或(﹣,)综上所述,点P的坐标为(,)、(,)、(﹣2,1)或(﹣,).(3)①如图2,∵x=m+4时,y=﹣(m+4)2﹣4(m+4)﹣3=﹣m2﹣12m﹣35∴M(m,﹣m2﹣4m﹣3),N(m+4,﹣m2﹣12m﹣35)设直线MN解析式为y=kx+n∴解得:∴直线MN:y=(﹣2m﹣8)x+m2+4m﹣3设D(d,﹣d2﹣4d﹣3)(m<d<m+4)∵DE∥y轴∴x E=x D=d,E(d,(﹣2m﹣8)d+m2+4m﹣3)∴DE=﹣d2﹣4d﹣3﹣[(﹣2m﹣8)d+m2+4m﹣3]=﹣d2+(2m+4)d﹣m2﹣4m=﹣[d﹣(m+2)]2+4∴当d=m+2时,DE的最大值为4.②如图3,∵D、F关于点E对称∴DE=EF∵四边形MDNF是矩形∴MN=DF,且MN与DF互相平分∴DE=MN,E为MN中点∴x D=x E==m+2由①得当d=m+2时,DE=4∴MN=2DE=8∴(m+4﹣m)2+[﹣m2﹣12m﹣35﹣(﹣m2﹣4m﹣3)]2=82解得:m1=﹣4﹣,m2=﹣4+∴m的值为﹣4﹣或﹣4+时,四边形MDNF为矩形.。
2019年中考数学二次函数综合压轴题及答案二次函数是中考数学的必考点,每年的中考数学试题中,二次函数都占了不少的比例,考题或以综合题的形式出现,或以选择题的形式出现,或以填空题的形式出现,不论以哪种形式出现,都旨在考查学生对二次函数的理解,以及应用二次函数解决实际问题的能力,下面我们一起来看中考网为大家带来的"2019年中考数学二次函数综合压轴题及答案",希望通过本题的练习,能加强考生对二次函数性质的理解。
2019年中考数学二次函数综合压轴题及答案:如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。
点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动。
伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E。
点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止。
设点P、Q运动的时间是t秒(t>0)。
(1)当t=2时,AP=________,点Q到AC的距离是________(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值。
分析:(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离;(2)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;(3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t;(4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t;②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t. 解答:二次函数的性质是考生必须掌握的考点,在中学数学学习中占有重要的地位,本文为考生提供的2019年中考数学二次函数综合压轴题及答案除了考查学生利用二次函数的相关知识处,同时还考查了学生对相似三角形的判定定理、线段比的知识,做题时考生要注意巧妙利用辅助线的帮助解答,难度较大。
2018~2019 数学中考专项训练:二次函数【沙盘预演】1.计算(﹣ 2a2b)3的结果是()A .﹣ 6a6b3B .﹣ 8a6b3C. 8a6b3 D.﹣ 8a5b3【分析】解:(﹣2a2b)3=﹣ 8a6b3.应选 B .2.列式子的计算结果为26的是()A . 23+2 3B . 23?23C .( 23)3D. 212÷22【分析】解: A 、原式 =23?( 1+1 )=24,不合题意;B 、原式 =23+3 =26,切合题意;C、原式 =29,不合题意;D 、原式 =212﹣2=210,不合题意.应选 B .3.如图,二次函数 y=ax 2 +bx+c ( a≠0)的图象与 x 轴正半轴相交于 A 、 B 两点,与 y 轴相交于点 C ,对称轴为直线 x=2 ,且 OA=OC ,则下列结论:① abc > 0 ;② 9a+3b+c<0;③ c>﹣1;④关于x的方程ax2+bx+c(a≠0)有一个根为﹣其中正确的结论个数有()A . 1 个B . 2 个C . 3 个D . 4 个【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a、b 、c 的符号,从而可判断①;由图象可知当 x=3 时, y< 0,可判断②;由 OA=OC ,且 OA < 1 ,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.4.设边长为 3 的正方形的对角线长为a.以下对于 a 的四种说法:① a 是无理数;② a 能够用数轴上的一个点来表示;③ 3< a< 4;④ a 是 18 的算术平方根.此中,全部正确说法的序号是()A .①④B .②③C .①②④D.①③④【分析】解:∵ 边长为3的正方形的对角线长为a,∴ a===3.① a=3是无理数,说法正确;② a 能够用数轴上的一个点来表示,说法正确;③∵ 16< 18< 25, 4<<5,即4<a<5,说法错误;④a 是 18 的算术平方根,说法正确.因此说法正确的有①②④ .应选 C.25.已知抛物线 y=ax+bx+c ( b> a> 0 )与 x 轴最多有一个交点,现有以下四个结论:②关于 x 的方程 ax 2+bx+c+2=0无实数根;③a﹣ b+c≥0;④的最小值为 3.其中,正确结论的个数为()A . 1 个B . 2 个C . 3 个D . 4 个【解析】解:∵ b > a > 0∴﹣< 0 ,所以①正确;∵抛物线与 x 轴最多有一个交点,∴b2﹣ 4ac≤0,∴关于 x 的方程 ax 2+bx+c+2=0 中,△ =b 2﹣ 4a ( c+2 ) =b 2﹣ 4ac ﹣ 8a < 0 ,所以②正确;∵a> 0 及抛物线与 x 轴最多有一个交点,∴ x 取任何值时, y≥0∴当 x= ﹣ 1 时, a ﹣ b+c≥0;所以③正确;a+b+c ≥ 3b ﹣ 3aa+b+c ≥3( b﹣ a)≥3所以④正确.故选: D .6.如图,坐标平面上,二次函数 y= ﹣ x 2 +4x ﹣ k 的图形与 x 轴交于 A 、 B 两点,与 y 点,其顶点为 D ,且 k > 0 .若△ ABC 与△ ABD 的面积比为 1 : 4,则 k 值为何?(轴交于 C)A . 1B .C .D .22【解析】解:∵ y= ﹣ x +4x ﹣ k= ﹣( x﹣ 2)+4 ﹣ k ,∴OC=k ,∵△ ABC的面积=AB?OC=AB?k ,△ ABD的面积=AB ( 4 ﹣ k ),△ ABC与△ ABD的面积比为 1: 4,∴ k=(4﹣k),解得: k=.故选: D .32的结果是()7.计算( 2a )A . 4a6B . 4a5C. 2a6 D . 2a5【分析】解:(2a3)2=4a6.应选 A .8.以下计算中,正确的选项是()A . a+a11=a12B .5a﹣ 4a=a C. a6÷a5=1 D .( a2)3=a5【分析】解: A 、 a 与 a11是相加,不是相乘,因此不可以利用同底数幂相乘的性质计算,故 A 错误;C、应为 a6÷a5=a,故 C 错误;236D 、应为( a ) =a ,故 D 错误.9.已知二次函数 y= ( x﹣ h)2 +1 ( h 为常数),在自变量 x 的值满足 1≤ x≤3的情况下,与其对应的函数值 y 的最小值为 5 ,则 h 的值为()A . 1 或﹣ 5B .﹣ 1 或 5C . 1 或﹣ 3D . 1 或 3【解析】解:∵当x > h 时, y 随 x 的增大而增大,当 x < h 时, y 随 x 的增大而减小,∴①若 h < 1≤x≤3 , x=1时, y 取得最小值 5 ,可得:( 1 ﹣ h )2+1=5 ,解得: h= ﹣ 1 或 h=3 (舍);②若 1≤x≤3< h ,当 x=3时, y 取得最小值5 ,可得:( 3 ﹣ h )2 +1=5 ,解得: h=5 或 h=1 (舍).综上, h 的值为﹣ 1 或 5 ,故选: B .10.点 P1(﹣ 1 , y1), P 2( 3 , y2), P3( 5 , y 3)均在二次函数 y= ﹣ x 2+2x+c的图象上,则 y1,y 2, y 3的大小关系是()A . y3> y 2> y 1B . y 3> y 1=y 2C . y 1> y2> y 3D . y1 =y 2> y 3【解析】解:∵ y= ﹣ x2 +2x+c ,∴对称轴为 x=1 ,P 2( 3 , y 2), P 3( 5 , y 3)在对称轴的右侧, y 随 x 的增大而减小,∵ 3< 5,∴ y2> y 3,根据二次函数图象的对称性可知, P1(﹣ 1 , y 1)与( 3 , y 1)关于对称轴对称,故 y 1 =y 2> y3,故选 D .11.计算( x3)2的结果等于 x6.【分析】解:( x3)2=x 6,故答案为: x6.12.已知 a+b=3, a﹣ b=﹣ 1,则 a2﹣ b2的值为﹣ 3 .【分析】解:∵ a+b=3,a﹣b=﹣1,故答案为:﹣3.【真题操练】1.( 2018?淮安)将二次函数y=x 2﹣ 1 的图象向上平移 3 个单位长度,获得的图象所对应的函数表达式是y=x 2+2.【分析】解:二次函数y=x 2﹣ 1 的极点坐标为(0,﹣ 1),把点( 0,﹣ 1)向上平移 3 个单位长度所得对应点的坐标为( 0, 2),因此平移后的抛物线分析式为y=x 2+2.2故答案为: y=x +2 .2.( 2018?滨州)如图,若二次函数y=ax2+bx+c ( a≠0)图象的对称轴为x=1 ,与 y 轴交于点C,与 x 轴交于点A 、点B (﹣ 1, 0),则①二次函数的最大值为a+b+c;②a﹣ b+c< 0;③ b2﹣ 4ac< 0;④当 y> 0 时,﹣ 1<x< 3,此中正确的个数是()A . 1B . 2C. 3 D . 4【分析】解:①∵ 二次函数y=ax2+bx+c ( a≠0)图象的对称轴为x=1 ,且张口向下,∴ x=1 时, y=a+b+c ,即二次函数的最大值为a+b+c,故①正确;②当 x= ﹣ 1 时, a﹣ b+c=0,故②错误;③图象与 x 轴有 2 个交点,故 b2﹣ 4ac> 0,故③错误;④∵图象的对称轴为 x=1 ,与 x 轴交于点 A 、点 B(﹣ 1, 0),∴ A ( 3, 0),故当 y> 0 时,﹣ 1<x< 3,故④正确.应选: B.3.( 2018?上海)以下对二次函数y=x 2﹣ x 的图象的描绘,正确的选项是()A .张口向下B .对称轴是y 轴C.经过原点 D .在对称轴右边部分是降落的∴ 抛物线张口向上,选项 A 不正确;B 、∵ ﹣= ,∴ 抛物线的对称轴为直线x= ,选项 B 不正确;C、当 x=0 时, y=x2﹣ x=0,∴ 抛物线经过原点,选项 C 正确;D 、∵ a>0,抛物线的对称轴为直线 x=,∴当 x>时, y 随 x 值的增大而减小,选的 D 不正确.应选: C.4.( 2018?青岛)已知一次函数y= x+c 的图象如图,则二次函数y=ax 2+bx+c 在平面直角坐标系中的图象可能是()A .B .C. D .【分析】解:察看函数图象可知:< 0、 c> 0,∴二次函数 y=ax 2+bx+c 的图象对称轴x= ﹣>0,与y轴的交点在y 轴负正半轴.应选: A .5.2018?临安区)抛物线y=3( x﹣ 1)2+1 的极点坐标是()A .( 1, 1)B .(﹣ 1, 1)C.(﹣ 1,﹣ 1) D .( 1,﹣ 1)【剖析】已知抛物线极点式y=a( x﹣ h)2+k,极点坐标是(h, k).2【分析】解:∵ 抛物线y=3(x﹣1)+1是极点式,∴极点坐标是(1, 1).应选 A .6(. 2018?泸州)已知二次函数 y=ax 2+2ax+3a2+3(此中 x 是自变量),当 x≥2时,y 随 x 的增大而增大,且﹣ 2≤ x≤1时, y 的最大值为9,则 a 的值为()【分析】解:∵ 二次函数y=ax2+2ax+3a2+3(此中x是自变量),∴对称轴是直线x= ﹣=﹣ 1,∵当 x≥2时, y 随 x 的增大而增大,∴a> 0,∵ ﹣ 2≤x≤1时, y 的最大值为9,∴x=1 时, y=a+2a+3a 2+3=9,∴3a2+3a﹣ 6=0 ,∴a=1,或 a=﹣ 2(不合题意舍去).应选: D.7.( 2018?绍兴)若抛物线 y=x 2+ax+b 与 x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1 ,将此抛物线向左平移 2 个单位,再向下平移 3 个单位,获得的抛物线过点()A .(﹣ 3,﹣ 6) B .(﹣ 3, 0)C.(﹣ 3,﹣ 5) D .(﹣ 3,﹣ 1)【分析】解:∵ 某定弦抛物线的对称轴为直线x=1,∴ 该定弦抛物线过点(0, 0)、( 2,0),∴ 该抛物线分析式为y=x ( x﹣2) =x 2﹣ 2x=( x﹣ 1)2﹣ 1.将此抛物线向左平移 2 个单位,再向下平移 3个单位,获得新抛物线的分析式为y=( x﹣1+2 )2﹣1﹣ 3=(x+1 )2﹣ 4.当x= ﹣ 3 时, y= ( x+1)2﹣ 4=0 ,∴获得的新抛物线过点(﹣ 3,0).应选: B.8.( 2018?达州)如图,二次函数y=ax2+bx+c 的图象与x 轴交于点A(﹣ 1, 0),与 y 轴的交点 B 在( 0, 2)与( 0, 3)之间(不包含这两点),对称轴为直线x=2 .以下结论:① abc< 0;② 9a+3b+c> 0;③ 若点 M(,y1),点N(,y2)是函数图象上的两点,则y1< y2;④ ﹣<a<﹣.此中正确结论有()A . 1 个B . 2 个 C. 3 个 D . 4 个【分析】解:① 由张口可知:a<0,∴对称轴 x=> 0,∴b> 0,由抛物线与y 轴的交点可知:c> 0,∴ abc< 0,故①正确;②∵抛物线与x 轴交于点 A (﹣ 1, 0),对称轴为x=2,∴抛物线与 x 轴的此外一个交点为(5, 0),∴x=3 时, y> 0,∴9a+3b+c >0,故②正确;③因为< 2,且(,y2)对于直线 x=2 的对称点的坐标为(, y2),∵,∴y1< y2,故③正确,④∵=2 ,∴b=﹣ 4a,∵x= ﹣1,y=0 ,∴ a﹣ b+c=0,∴c=﹣ 5a,∵2< c< 3,∴ 2<﹣ 5a< 3,∴ ﹣<a<﹣,故④正确应选: D.。
中考数学专题复习二次函数综合(三)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3a(a≠0)经过点A(﹣1,0).(1)求抛物线的顶点坐标;(用含a的式子表示)(2)已知点B(3,4),将点B向左平移3个单位长度,得到点C.若抛物线与线段BC恰有一个公共点,结合函数的图象,求a的取值范围.2.已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0),(点A在点B 的左侧),抛物线的对称轴为直线x=-1.(1)若点A的坐标为(-3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为-2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.3.在平面直角坐标系xOy 中,横、纵坐标都是整数的点叫做整点.直线y =ax 与抛物线y =ax 2﹣2ax ﹣1(a ≠0)围成的封闭区域(不包含边界)为W .(1)求抛物线顶点坐标(用含a 的式子表示);(2)当a =12时,写出区域W 内的所有整点坐标;(3)若区域W 内有3个整点,求a 的取值范围.4.在平面直角坐标系xOy 中,一次函数3y ax =-+的图象与y 轴交于点A ,与抛物线()2230y ax ax a a =--≠的对称轴交于点B ,将点A 向右平移5个单位得到点C ,连接AB ,AC 得到的折线段记为图形G .(1)求出抛物线的对称轴和点C 坐标;(2)∠当1a =-时,直接写出抛物线223y ax ax a =--与图形G 的公共点个数.∠如果抛物线223y ax ax a =--与图形G 有且只有一个公共点,求出a 的取值范围.5.在平面直角坐标系xOy 中,已知抛物线241(0)y ax ax a =-+>.(1)抛物线的对称轴为_______;(2)若当15x ≤≤时,y 的最小值是1-,求当15x ≤≤时,y 的最大值;(3)已知直线3y x =-+与抛物线241(0)y ax ax a =-+>存在两个交点,设左侧的交点为点()11,P x y ,当121x -≤<-时,求a 的取值范围.6.在平面直角坐标系xOy 中,存在抛物线2y x 2x m 1=+++以及两点()()A m m 1B m m 3++,和,.(1)求该抛物线的顶点坐标;(用含m 的代数式表示)(2)若该抛物线经过点()A m m 1+,,求此抛物线的表达式;(3)若该抛物线与线段AB 有公共点,结合图象,求m 的取值范围.7.在平面直角坐标系xOy中,抛物线y=ax2+4ax+b(a>0)的顶点A在x轴上,与y 轴交于点B.(1)用含a的代数式表示b;(2)若∠BAO=45°,求a的值;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB 所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出a的取值范围.8.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C(0,﹣3).(1)求m的值;(2)若一次函数y=kx+5(k≠0)的图象经过点A,求k的值;(3)将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+5(k≠0)向上平移n个G有公共点时,请结合图象直接写出n的取值范围.单位,当平移后的直线与图象9.在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c 的图象经过点A (0,﹣4)和B (﹣2,2).(1)求c 的值,并用含a 的式子表示b ;(2)当﹣2<x <0时,若二次函数满足y 随x 的增大而减小,求a 的取值范围; (3)直线AB 上有一点C (m ,5),将点C 向右平移4个单位长度,得到点D ,若抛物线与线段CD 只有一个公共点,求a 的取值范围. 10.在平面直角坐标系xOy 中,抛物线222y x mx m m =-+-+的顶点为A(1)求抛物线的顶点坐标(用m 表示);(2)若点A 在第一象限,且2OA =,求抛物线的解析式;(3)已知点(1,2)B m m --,(2,2)C ,若抛物线与线段BC 有公共点,结合函数图象,直接写出m 的取值范围11.在平面直角坐标系xOy 中,二次函数y =x 2﹣2mx +1图象与y 轴的交点为A ,将点A 向右平移4个单位长度得到点B .(1)直接写出点A 与点B 的坐标;(2)求出抛物线的对称轴(用含m 的式子表示);(3)若函数y =x 2﹣2mx +1的图象与线段AB 恰有一个公共点,求m 的取值范围.12.在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx ﹣1交y 轴于点P .(1)过点P 作与x 轴平行的直线,交抛物线于点Q ,PQ =4,求b a的值; (2)横纵坐标都是整数的点叫做整点.在(1)的条件下,记抛物线与x 轴所围成的封闭区域(不含边界)为W .若区域W 内恰有4个整点,结合函数图象,求a 的取值范围.13.已知二次函数y =ax 2﹣2ax .(1)二次函数图象的对称轴是直线x = ;(2)当0≤x ≤3时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a <0,对于二次函数图象上的两点P (x 1,y 1),Q (x 2,y 2),当t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,请结合函数图象,直接写出t 的取值范围.14.在平面直角坐标系xOy 中,抛物线231y ax ax a =-++与y 轴交于点A .(1)求点A 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点(2,2),(0,)M a N a ---.若抛物线与线段MN 恰有一个公共点,结合函数图象,求a 的取值范围.参考答案:1.(1)(1,4)a -;(2)43a <-或1a =-. 【解析】【分析】(1)根据抛物线23(0)y ax bx a a =+-≠经过点(1,0)A -可得a 和b 的关系,然后将抛物线解析式化为顶点式,即可得到该抛物线的顶点坐标;(2)先根据点坐标平移的变化规律可得点C 的坐标,画出当0a >和0a <时抛物线的图象,然后结合图象即可得到a 的取值范围.【详解】(1)∠点(1,0)A -在抛物线23(0)y ax bx a a =+-≠上∠30a b a --=,解得2b a =-∠2223(1)4y ax ax a a x a =--=--∠抛物线的顶点坐标为(1,4)a -;(2)∠223(3)(1)(32)2y ax x a a x x x a a x --=-=-=+-∠抛物线与x 轴的另一个交点坐标为点(3,0),与y 轴交于点(0,3)a -∠将点(3,4)B 向左平移3个单位长度∴点C 的坐标为(33,4)C -,即(0,4)C由题意,分以下两种情况:∠如图,当0a >时由抛物线与x 、y 轴的交点可知,抛物线与线段BC 无公共点∠当0a <时若抛物线的顶点在线段BC 上,则顶点坐标为(1,4)∠44a -=解得1a =-若抛物线的顶点不在线段BC 上,要使抛物线与线段BC 恰有一个公共点,则抛物线与y 轴的交点位于点C 的上方即34a ->解得43a <-综上,a的取值范围是4 3a<-或1a=-.【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(2),正确分两种情况,并学会利用函数图象是解题关键.2.(1)21322y x x=--+,(1,0);(2)-1<x2<0;(3)a<-2.【解析】【分析】(1)由题意可知抛物线的对称轴为12bxa=-=-,求出b=2a,将点A的坐标代入抛物线的表达式,即可求解;(2)根据题意可得点C在第三象限,即点A在点C和函数对称轴之间,故-2<x1<-1,继而进行分析即可求解;(3)根据题意可得满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,即可求解.【详解】解:(1)抛物线的对称轴为12bxa=-=-,解得:b=2a,故y=ax2+bx+a+2=a(x+1)2+2,将点A的坐标代入上式并解得:12a=-,故抛物线的表达式为:2221)2113(22y x x x=-++=--+;令y=0,即21322x x--+=,解得:x=-3或1,故点B的坐标为:(1,0).(2)由(1)知:2(1)2y a x=++,点C在第三象限,即点C在点A的下方,即点A在点C和函数对称轴之间,故-2<x1<-1,而121(1)2x x+=-,即x2=-2-x1,故-1<x2<0.(3)∠抛物线的顶点为(-1,2),∠点D(-1,0),∠∠DOP=45°,若抛物线上满足条件的点P恰有4个,∠抛物线与x轴的交点在原点的左侧,如下图,∠满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,当x=0时,2220y ax bx a a=+++=+<,解得:a<-2,故a的取值范围为:a<-2.【点睛】本题考查的是二次函数综合运用,涉及到解不等式、函数作图,解题的关键是通过画出抛物线的位置,确定点的位置关系,进而分析求解即可.3.(1)(1,﹣a﹣1);(2)(1,0)、(2,0)、(3,1)、(1,﹣1);(3)区域W内有3个整点,a的取值范围为:a=13或﹣32≤a<﹣1【解析】【分析】(1)将抛物线化成顶点式表达式即可求解;(2)概略画出直线y=12x和抛物线y=12x2﹣x﹣1的图象,通过观察图象即可求解;(3)分a>0、a<0两种情况,结合(2)的结论,逐次探究即可求解.【详解】解:(1)y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1,故顶点的坐标为:(1,﹣a﹣1);(2)a=12时,概略画出直线y=12x和抛物线y=12x2﹣x﹣1的图象如下:从图中看,W区域整点为如图所示4个黑点的位置,其坐标为:(1,0)、(2,0)、(3,1)、(1,﹣1);(3)∠当a>0时,由(2)知,当a=12时,区域W内的所有整点数有4个;参考(2)可得:当a>12时,区域W内的所有整点数多于3个;当13<a12<时,区域W内的所有整点数有4个;同理当a=13时,区域W内的所有整点数有3个;当0<a<13时,区域W内的所有整点数多于3个;∠当a<0时,当﹣1≤a<0时,区域W内的所有整点数为0个;当a<﹣32时,区域W内的所有整点数多于3个;∠区域W内有3个整点时,a的取值范围为:﹣32≤a<﹣1,综上,区域W内有3个整点,a的取值范围为:a=13或﹣32≤a<﹣1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本性质等,这种探究性题目,通常按照题设的顺序逐次求解,一般较为容易得出正确的结论.4.(1)对称轴1x =,C (5,3);(2)∠3个;∠1a <-或14a ≥或34a =- 【解析】【分析】(1)根据抛物线的对称轴x =2b a-求解即可解决问题,再利用平移的性质求出点C 的坐标即可.(2)∠画出图形即可解决问题.∠分两种情形:a <0或a >0分别求解即可解决问题.【详解】解:(1)∠抛物线()2230y ax ax a a =--≠, ∠对称轴212a x a-=-=. ∠直线3y ax =-+与y 轴交于点A , ∠ A (0,3).∠将点A 向右平移5个单位得到点C ,∠ C (5,3).(2)∠如图1中,观察图象可知,抛物线与图象G 的交点有3个.∠由(1)得,抛物线的顶点为()14a -,. 当0a <时,由∠得,1a =-时,抛物线过点A ,B ,∠ 当1a <-时,抛物线与图形G 有且只有一个公共点.当抛物线顶点在AC 上时, 如图,也满足条件,∠43a -=,34a =-. 当0a >时,如图,抛物线经过点C 时,满足条件,∠251033a a a --=,14a =. 综上所述,当13144a a a <-=-或≥或时,抛物线与图形G 有且只有一个公共点. 【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,学会由分类讨论的思想思考问题,属于中考常考题型.5.(1)2x =;(2)当5x =时,72y =,即y 的最大值是72;(3)1335a ≤< 【解析】【分析】(1)根据抛物线的对称轴公式即可得结论;(2)根据抛物线的对称轴为x=2,可得顶点在1≤x≤5范围内,和y 的最小值是-1,得顶点坐标为(2,-1),把顶点(2,-1)代入y=ax 2-4ax+1,可得a 的值,进而可得y 的最大值; (3)当x=-2时,P (-2,5),把P (-2,5)代入y=ax 2-4ax+1,当x 1=-1时,P (-1,4),把P (-1,4)代入y=ax 2-4ax+1,分别求出a 的值,再根据函数的性质即可得a 的取值范围.【详解】(1)抛物线的对称轴为:4222b a x a a-=-=-=, 故答案为:x=2; (2)解:∠抛物线的对称轴为x=2,∠顶点在1≤x≤5范围内,∠y 的最小值是-1,∠顶点坐标为(2,-1).∠a >0,开口向上,∠当x >2时,y 随x 的增大而增大,即x=5时,y 有最大值,∠把顶点(2,-1)代入y=ax 2-4ax+1,∠4a-8a+1=-1,解得12a =∠21212y x x =-+ ∠当x=5时,72y = 即y 的最大值是72; (3)当x=-2时,P (-2,5),把P (-2,5)代入y=ax 2-4ax+1,∠4a+8a+1=5,解得a=13, 当x 1=-1时,P (-1,4),把P (-1,4)代入y=ax 2-4ax+1,∠a+4a+1=4,解得a=35, ∠13≤a <35. 【点睛】本题考查了二次函数的图象和性质、一次函数的性质、二次函数图象上点的坐标特征、二次函数的最值,解决本题的关键是掌握二次函数的图象和性质.6.(1)(1,)m -;(2):2y (1)x =+或2y (1)2x =+-;(3)013m ≤≤-+或132m --≤≤-.【解析】【分析】(1)根据题意将抛物线的一般解析式化为顶点式即可得出抛物线的顶点坐标; (2)根据题意将()A m m 1+,代入求出m 的值即可求得该抛物线的表达式;(3)根据题意分m≥0,m <0两种情形,分别构建不等式解决问题即可.【详解】解:(1)∠抛物线解析式为:22y x 2x m 1(1)x m =+++=++,∠顶点坐标为:(1,)m -.(2)∠抛物线经过点()A m m 1+,,∠21(1)m m m +=++,解得0,2m =-,所以该抛物线的表达式为:2y (1)x =+或2y (1)2x =+-.(3)当m≥0时,如图1中,观察图象可知:21213m m m m m +≤+++≤+,∠220m m +≥且2220m m +-≤,解得013m ≤≤-+.当m <0时,如图2中,观察图象可知:21213m m m m m +≤+++≤+,∠m 2+2m≥0且m 2+2m-2≤0,解得132m --≤≤-,综上所述,满足条件的m 的值为:013m ≤≤-+或132m --≤≤-.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解决本题的关键是结合图象进行分析解答.7.(1)b =4a ;(2)12a =;(3)102a <或a =1. 【解析】【分析】(1)先将抛物线解析式化为顶点式,然后根据抛物线y =ax 2+4ax +b (a >0)的顶点A 在x 轴上,可以得到该抛物线的顶点纵坐标为0,从而可以得到a 和b 的关系;(2)根据抛物线解析式,可以得到点B 的坐标为(0,4a ),然后∠BAO =45°,可知4a =2,从而可以求得a 的值;(3)根据函数图象,可以写出a 的取值范围.【详解】解:(1)∠y =ax 2+4ax +b =a (x +2)2+(b ﹣4a ),∠该抛物线顶点A 的坐标为(﹣2,b ﹣4a ),∠顶点A 在x 轴上,∠b ﹣4a =0,即b =4a ;(2)∠b =4a ,∠抛物线为y =ax 2+4ax +4a (a >0),∠抛物线顶点为A (﹣2,0),与y 轴的交点B (0,4a )在y 轴的正半轴,∠BAO =45°, ∠OB =OA =2,∠4a =2,∠12a =; (3)102a <或a =1. 理由:∠点A (﹣2,0),点B (0,4a ),设直线AB 的函数解析式为y =mx +n ,204m n n a -+=⎧⎨=⎩,得24m a n a =⎧⎨=⎩, 即直线AB 的解析式为y =2ax +4a ,∠抛物线解析式为y =ax 2+4ax +4a (a >0),抛物线在点A ,B 之间的部分与线段AB 所围成的区域(不含边界)内恰好没有整点,∠441242a a a a a -+≥⎧⎨-+⎩或241440a a a a a -+⎧⎨-+>⎩, 解得,a =1或0<a ≤12,即a 的取值范围是0<a ≤12或a =1.【点睛】二次函数综合题,考查了二次函数的性质,一次函数的性质、解一元一次不等式组,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合的思想解答.8.(1)m=1;(2)k=5;(3)2≤n≤5.【解析】【分析】(1)把点C的坐标代入抛物线的解析式即可求出m;(2)求出点A的坐标,利用待定系数法解决问题即可;(3)如图,设平移后的直线的解析式为y=5x+5+n,点C平移后的坐标为(﹣n,﹣3),点B平移后的坐标为(3﹣n,0),求出点C或B直线y=5x+5+n上时n的值,即可解决问题.【详解】(1)∠抛物线y=x2﹣2mx+m﹣4与y轴交于点C(0,﹣3),∠m﹣4=﹣3,∠m=1.(2)∠抛物线的解析式为y=x2﹣2x﹣3,令y=0,得到x2﹣2x﹣3=0,解得x=﹣1或3,∠抛物线y=x2﹣2mx+m﹣4与x轴交于点A,B(点A在点B的左侧),∠A(﹣1,0),B(3,0),∠一次函数y=kx+5(k≠0)的图象经过点A,∠﹣k+5=0,∠k=5.(3)如图,设平移后的直线的解析式为y=5x+5+n,点C平移后的坐标为(﹣n,﹣3),点B平移后的坐标为(3﹣n,0),当点C落在直线y=5x+5+n上时,﹣3=﹣5n+5+n,解得n=2,当点B落在直线y=5x+5+n上时,0=5(3﹣n)+5+n解得n=5,观察图像可知,满足条件的n的取值范围为2≤n≤5.【点睛】本题属于二次函数与一次函数综合题,主要考查了待定系数法,平移等知识,掌握待定系数法和数形结合思想是解题的关键.9.(1)b=2a﹣3;(2)32-≤a<0或0<a≤32;(3)0<a<4或3332=--a.【解析】【分析】(1)把点A(0,﹣4)和B(﹣2,2)分别代入y=ax2+bx+c,即可求解;(2)当a<0时,依题意抛物线的对称轴需满足232aa--≤﹣2;当a>0时,依题意抛物线的对称轴需满足232aa--≥0,即可求解;(3)∠当a>0时,若抛物线与线段CD只有一个公共点,则抛物线上的点(1,3a﹣7)在D点的下方,即可求解;∠当a<0时,若抛物线的顶点在线段CD上,则抛物线与线段只有一个公共点,即可求解.【详解】解:(1)把点A(0,﹣4)和B(﹣2,2)分别代入y=ax2+bx+c中,得c=﹣4,4a﹣2b+c=2.∠b=2a﹣3;(2)当a<0时,依题意抛物线的对称轴需满足232aa--≤﹣2,解得32-≤a<0.当a>0时,依题意抛物线的对称轴需满足232aa--≥0,解得0<a≤32.∠a的取值范围是32-≤a<0或0<a≤32;(3)设直线AB的表达式为:y=mx+n,则422nm n=-⎧⎨=-+⎩,解得:34mn=-⎧⎨=-⎩,故直线AB表达式为y=﹣3x﹣4,把C(m,5)代入得m=﹣3.∠C(﹣3,5),由平移得D(1,5).∠当a>0时,若抛物线与线段CD只有一个公共点(如图1),y=ax2+bx+c=ax2+(2a﹣3)﹣4,当x=1时,y=3a﹣7,则抛物线上的点(1,3a﹣7)在D点的下方,∠a+2a﹣3﹣4<5.解得a<4.∠0<a<4;∠当a<0时,若抛物线的顶点在线段CD上,则抛物线与线段只有一个公共点(如图2),∠2454ac b a-=. 即24(4)(23)54a a a⨯---=. 解得3332a =-+(舍去)或3332=--a . 综上,a 的取值范围是0<a <4或3332=--a . 【点睛】 本题考查的是二次函数综合运用,涉及到一次函数的性质、解不等式等,解题的关键是通过画图确定抛物线图象与直线之间的位置关系,进而求解. 10.(1)(,)m m ;(2)22y x x =-+或写为:2(1)1y x =--+;(3)2m ≤,或3m ≥.【解析】【分析】(1)化抛物线为顶点式,即可写出顶点坐标;(2)求出点AO ,列方程求解即可;(3)考虑点C 在抛物线上时m 的值,再结合图形,分情况进行讨论.【详解】(1)∠2222()y x mx m m x m m =-+-+=--+,∠抛物线的顶点A 坐标为(,)m m .(2)点A 在第一象限,∠2OA m =,∠2OA =∠1m =抛物线的表达式为22y x x=-+,或写为:2(1)1y x=--+(3)把22C(,)代入222y x mx m m=-+-+,得22224m m m=-+-+,解得2m=或3,结合图象可得:当2m≤时,抛物线与线段BC有公共点,当23m<<时,抛物线与线段BC无公共点,当3m≥时,抛物线与线段BC有公共点;综上,当2m≤或3m≥时,抛物线与线段BC有公共点.【点睛】本题考查了二次函数的综合,解决本题的关键是掌握二次函数的图象和性质.11.(1)A(0,1),B(4,1);(2)x=m;(3)m≤0或m>2.【解析】【分析】(1)计算自变量为0的函数值得到A点坐标,然后利用点平移的规律确定B点坐标;(2)利用抛物线的对称轴方程求解;(3)当对称轴为y轴时,满足条件,此时m=0;当m<0时满足条件;若m>0时,利用当x=4,y<1时抛物线与线段AB恰有一个公共点,然后求出此时m的范围.【详解】解:(1)当x=0时,y=x2﹣2mx+1=1,则A点坐标为(0,1),把A(0,1)右平移4个单位长度得到点B,则B点坐标为(4,1),(2)抛物线的对称轴为直线x=-22m-=m;(3)当m=0时,抛物线解析式为y=x2+1,此抛物线与线段AB恰有一个公共点;当m <0时,抛物线与线段AB 恰有一个公共点;当m >0时,当x=4,y <1,即16﹣8m +1<1,解得m >2,所以m 的范围为m ≤0或m >2.【点睛】本题考查了二次函数的图像和性质,解题的关键是结合图像求解.12.(1)-4或4;(2)14<a≤13或﹣1≤a <﹣34. 【解析】【分析】 (1)根据题意先求出点Q 坐标,代入解析式进行计算即可求解;(2)根据题意分两种情况讨论,利用特殊点进行分析计算即可求解.【详解】解:(1)∠抛物线y =ax 2+bx ﹣1交y 轴于点P ,∠点P (0,﹣1),∠PQ =4,PQ∠x 轴,∠点Q (4,﹣1),(﹣4,﹣1)当点Q 为(4,﹣1),∠﹣1=16a+4b ﹣1,∠4=-b a, 当点Q (﹣4,﹣1)∠﹣1=16a ﹣4b ﹣1,∠ba=4;(2)当a>0时,当抛物线过点(2,﹣2)时,a=14,当抛物线过点(1,﹣2)时,a=13,∠14<a≤13;当a<0时,当抛物线过点(2,2)时,a=﹣34,当抛物线过点(2,3)时,a=﹣1,∠﹣1≤a<﹣34,综上所述:14<a≤13或﹣1≤a<﹣34.【点睛】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,理解整点定义,并熟练掌握与运用是解答本题的关键.13.(1)1;(2)y =x 2﹣2x 或y =﹣x 2+2x ;(3)﹣1≤t ≤2【解析】【分析】(1)由对称轴是直线x =2b a-,可求解; (2)分a >0或a <0两种情况讨论,求出y 的最大值和最小值,即可求解;(3)利用函数图象的性质可求解.【详解】解:(1)由题意可得:对称轴是直线x =22a a--=1, 故答案为:1;(2)当a >0时,∠对称轴为x =1,当x =1时,y 有最小值为﹣a ,当x =3时,y 有最大值为3a ,∠3a ﹣(﹣a )=4.∠a =1,∠二次函数的表达式为:y =x 2﹣2x ;当a <0时,同理可得y 有最大值为﹣a ; y 有最小值为3a ,∠﹣a ﹣3a =4,∠a =﹣1,∠二次函数的表达式为:y =﹣x 2+2x ;综上所述,二次函数的表达式为y =x 2﹣2x 或y =﹣x 2+2x ;(3)∠a <0,对称轴为x =1,∠x ≤1时,y 随x 的增大而增大,x >1时,y 随x 的增大而减小,x =﹣1和x =3时的函数值相等,∠t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,∠t ≥﹣1,t +1≤3,∠﹣1≤t ≤2.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识点的综合应用,能利用分类思想解决问题是本题的关键.14.(1)(01)A a +,;(2)32x =;(3)a 的取值范围是14a - 【解析】【分析】 (1)与y 轴的交点横坐标为0,然后计算0x =时的函数值即可求出坐标;(2)根据抛物线的对称轴为2b x a=-求解即可; (3)由N 点和A 点的坐标,可知点A 在点N 的上方,令抛物线上的点()2,c C y -,可得111c y a =+,分a >0,a <0两种情形分别求解即可解决问题.【详解】解:(1)∠抛物线231y ax ax a =-++与y 轴交于点A ,令0x =,得1y a =+.(0,1)A a ∴+.(2)由抛物线231y ax ax a =-++可知3322a x a -=-=. ∠抛物线的对称轴为直线32x =. (3)对于任意的实数a ,都有1a a +>. 可知点A 总在点N 的上方.令抛物线上的点()2,c C y -.111c y a ∴=+.∠如图1,当0a >时, 2c y a >--.∠点C 在点M 的上方.结合函数图象,可知抛物线与线段MN 没有公共点.∠当0a <时(i)如图2,当抛物线经过点M时,2cy a=--.14a∴=-.结合函数图象,可知抛物线与线段MN恰有一个公共点M.(ii)当14a-<<时,可知抛物线与线段MN没有公共点.(∠)如图3,当14a<-,时,2cy a<--.∠点C在点M的下方.结合函数图象,可知抛物线与线段MN恰有一个公共点.综上所述,a的取值范围是14a-.【点睛】本题考查了二次函数的图象和性质,解题的关键是理解题意利用不等式解决问题,属于二次函数综合题,题目较难.。
二次函数知识点汇总含二次函数-综合题一、基本概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b ca≠)的函数,,,是常数,0叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
2019年中考数学真题分类专项训练--二次函数综合题1.(2019广东)如图1,在平面直角坐标系中,抛物线y =233373848x x +-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答这样的点P 共有几个?解:(1233373x x +-=0, 解得x 1=1,x 2=–7.∴A (1,0),B (–7,0). 由y 233373x x +-233)23x +-D (–3,–3(2)∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴11D D COFD OF=,∵D (–3,–23), ∴D 1D =23,OD =3,∵AC =CF ,CO ⊥AF ,∴OF =OA =1, ∴D 1F =D 1O –OF =3–1=2231OC=, ∴OC 3CA =CF =FA =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF , ∵△CAD 绕点C 顺时针旋转得到△CFE , ∴∠ECF =∠AFC =60°,∴EC ∥BF , ∵EC =DC 223(323)++=6, ∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形; (3)∵点P 是抛物线上一动点, ∴设P 点(x ,233373848x x +-), ①当点P 在B 点的左侧时, ∵△PAM 与△DD 1A 相似, ∴11DD D A PM MA =或11DD D AAM PM=,41848x=-或1848x=-,解得:x1=1(不合题意舍去),x2=–11或x1=1(不合题意舍去)x2=–373;当点P在A点的右侧时,∵△PAM与△DD1A相似,∴11DDPMAM D A=或11D APMMA DD=,∴28481x xx=-或28481x xx-=-,解得:x1=1(不合题意舍去),x2=–3(不合题意舍去)或x1=1(不合题意舍去),x2=–53(不合题意舍去);当点P在AB之间时,∵△PAM与△DD1A相似,∴PMAM=11DDD A或PMMA=11D ADD,∴28481x xx=-或28481x xx-=-,解得:x1=1(不合题意舍去),x2=–3(不合题意舍去)或x1=1(不合题意舍去),x2=–53;综上所述,点P的横坐标为–11或–373或–53;②由①得,这样的点P共有3个.2.(2019深圳)如图,抛物线经y=ax2+bx+c过点A(-1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.解:(1)∵OB =OC , ∴点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a , 故-3a =3,解得:a =-1,故抛物线的表达式为:y =-x 2+2x +3,对称轴为x =1.(2)ACDE 的周长=AC +DE +CD +AE ,其中AC 10=、DE =1是常数, 故CD +AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD =C ′D , 取点A ′(-1,1),则A ′D =AE ,故:CD +AE =A ′D +DC ′,则当A ′、D 、C ′三点共线时,CD +AE =A ′D +DC ′最小,周长也最小,四边形ACDE 的周长的最小值=AC +DE +CD +AE 101=+A ′D +DC ′101=+A ′C ′10113=(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3∶5两部分, 又∵S △PCB ∶S △PCA 12=EB ×(y C -y P )∶12AE ×(y C -y P )=BE ∶AE , 则BE ∶AE =3∶5或5∶3, 则AE 52=或32, 即:点E 的坐标为(32,0)或(12,0), 将点E 、C 的坐标代入一次函数表达式:y =kx +3, 解得:k =-6或-2,故直线CP 的表达式为:y =-2x +3或y =-6x +3,联立22363y x x y x ⎧=-++⎨=-+⎩并解得:x =4或8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).3.(2019雅安) 已知二次函数y=ax 2(a ≠0)的图象过点(2,-1),点P (P 与O 不重合)是图象上的一点,直线l 过点(0,1)且平行于x 轴。
2019年中考江苏省、南京市、广东省各地市数学试题“二次函数综合题”专题汇编与解析一.解答题(共11小题)1.(2019•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣12x2﹣32x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.2.(2019•南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B (x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=4x(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)3.(2019•淮安)如图,已知二次函数的图象与x轴交于A、B两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3).(1)求该二次函数的表达式;(2)点E是线段BD上的一点,过点E作x轴的垂线,垂足为F,且ED=EF,求点E的坐标.(3)试问在该二次函数图象上是否存在点G,使得△ADG的面积是△BDG的面积的35?若存在,求出点G的坐标;若不存在,请说明理由.4.(2019•常州)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A 的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB =2S△QRB,求点P的坐标.5.(2019•镇江)如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y=25x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是;(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.①当n=275时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围.6.(2019•苏州)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A 是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.7.(2019•无锡)已知二次函数y=ax2+bx﹣4(a>0)的图象与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.8.(2019•宿迁)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.9.(2019•深圳)如图抛物线y =ax 2+bx +c 经过点A (﹣1,0),点C (0,3),且OB =OC . (1)求抛物线的解析式及其对称轴;(2)点D 、E 在直线x =1上的两个动点,且DE =1,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBP A 的面积分为3:5两部分,求点P 的坐标.10.(2019•广州)已知抛物线G :y =mx 2﹣2mx ﹣3有最低点. (1)求二次函数y =mx 2﹣2mx ﹣3的最小值(用含m 的式子表示);(2)将抛物线G 向右平移m 个单位得到抛物线G 1.经过探究发现,随着m 的变化,抛物线G 1顶点的纵坐标y 与横坐标x 之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的图象交于点P ,结合图象,求点P 的纵坐标的取值范围.11.(2019•广东)如图1,在平面直角坐标系中,抛物线y =8x 2+4x ﹣8与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△P AM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?2019年中考江苏省、南京市、广东省各地市数学试题“二次函数综合题”专题汇编参考解析一.解答题(共11小题)1.(2019•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣12x2﹣32x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.【解】:(1)将x=2代入y=﹣12x2﹣32x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得,解得,∴抛物线L1:y=x2﹣2x﹣3;(2)如图,设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,①当点Q在点P右侧时,则点Q的坐标为(x+2,2﹣2x﹣3),将Q(x+2,x2﹣2x﹣3)代入y=﹣12x2﹣32x+2,得x2﹣2x﹣3=﹣12(x+2)2﹣32(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);②当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣12x2﹣32x+2,得y=﹣12x2﹣32x+2,得x2﹣2x﹣3=﹣12(x﹣2)2﹣32(x﹣2)+2,解得,x=3,或x=﹣43,此时点P的坐标为(3,0)或(﹣43,139);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(2,﹣3),得PQ的中点坐标为(2,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣12x2﹣32x+2,得﹣x2+2x﹣3═﹣12(2﹣x)2﹣32(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣43,139)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分∠PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊥TR于点H,则有∠PSC=∠RTC=90°,由CA平分∠PCR,得∠PCA=∠RCA,则∠PCS=∠RCT,∴△PSC∽△RTC,∴,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt△PRH中,tan∠PRH==过点Q作QK⊥x轴于点K,设点Q坐标为(m,),若OQ∥PR,则需∠QOK=∠PRH,所以tan∠QOK=tan∠PRH=2,所以2m=,解得,m=,所以点Q坐标为(,﹣,﹣7.2.(2019•南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B (x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)= 3 .②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是(1,2).(2)函数y=4x(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【解】:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,4400x xx x -+-=+,∴43x x+=,∴x 2+4=3x , ∴x 2﹣3x +4=0,∴△=b 2﹣4ac =﹣7<0, ∴方程x 2﹣3x +4=0没有实数根,∴该函数的图象上不存在点C ,使d (O ,C )=3. (3)设D (x ,y ),根据题意得,d (O ,D )=|x ﹣0|+|x 2﹣5x +7﹣0|=|x |+|x 2﹣5x +7|, ∵225357()024x x x -+=-+>, 又x ≥0,∴d (O ,D )=|x |+|x 2﹣5x +7|=x +x 2﹣5x +7=x 2﹣4x +7=(x ﹣2)2+3, ∴当x =2时,d (O ,D )有最小值3,此时点D 的坐标是(2,1).(4)如图,以M 为原点,MN 所在的直线为x 轴建立平面直角坐标系xOy ,将函数y =﹣x 的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E ,过点E 作EH ⊥MN ,垂足为H ,修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P 作直线l 2∥l 1,l 2与x 轴相交于点G .∵∠EFH =45°,∴EH =HF ,d (O ,E )=OH +EH =OF , 同理d (O ,P )=OG , ∵OG ≥OF ,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.3.(2019•淮安)如图,已知二次函数的图象与x轴交于A、B两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3).(1)求该二次函数的表达式;(2)点E是线段BD上的一点,过点E作x轴的垂线,垂足为F,且ED=EF,求点E的坐标.(3)试问在该二次函数图象上是否存在点G,使得△ADG的面积是△BDG的面积的35?若存在,求出点G的坐标;若不存在,请说明理由.【解】:(1)依题意,设二次函数的解析式为y=a(x﹣1)2+3将点B代入得0=a(5﹣1)2+3,得a=﹣3 16∴二次函数的表达式为:y=﹣316(x﹣1)2+3(2)依题意,点B(5,0),点D(1,3),设直线BD的解析式为y=kx+b,代入得,解得∴线段BD所在的直线为y=34-x+154,设点E的坐标为:(x,34-x+154)∴ED2=(x﹣1)2+(﹣34x+154﹣3)2,EF=∵ED=EF,∴(x﹣1)2+(﹣34x+154﹣3)2=,整理得2x2+5x﹣25=0,解得x1=52,x2=﹣5(舍去)故点E的纵坐标为y=351515 4248 -⨯+=∴点E的坐标为515 (,) 28(3)存在点G,当点G在x轴的上方时,设点G的坐标为(m,n),∵点B的坐标为(5,0),对称轴x=1∴点A的坐标为(﹣3,0),∴设AD所在的直线解析式为y=kx+b,代入得033k bk b=-+⎧⎨=+⎩,解得3494kb⎧=⎪⎪⎨⎪=⎪⎩∴直线AD的解析式为y=39 44 x+∴AD的距离为5,过点G作直线AD:3x﹣4y+9=0的垂线,交点垂足为Q(x,y),得,化简得由上式整理得,(32+42)[(x﹣m)2+(y﹣n)2]=(3m﹣4n+9)2∴|GQ|==∴点G到AD的距离为:d1=||,由(2)知直线BD的解析式为:y=34-x+154,∴BD 的距离为5,∴同理得点G 至BD 的距离为:d 2=|34155m n +-|,∴S ADG S BDG =121212ADd BDd =3493415m n m n -++-=35,整理得6m ﹣32n +90=0 ∵点G 在二次函数上, ∴n =代入得6m ﹣32[﹣316(m ﹣1)2+3]+90=0, 整理得2660m m -=, 解得m 1=0,m 2=1(舍去) 此时点G 的坐标为(0,4516) 当点G 在x 轴下方时,如图2所示,∵AO :OB =3:5∴当△ADG 与△BDG 的高相等时, 存在点G 使得S △ADG :S △BDG =3:5,此时,DG 的直线经过原点,设直线DG 的解析式为y =kx , 将点D 代入得,k =3, 故y =3x ,则有整理得,(x﹣1)(x+15)=0,得x1=1(舍去),x2=﹣15当x=﹣15时,y=﹣45,故点G为(﹣15,﹣45),综上所述,点G的坐标为(0,4516)或(﹣15,﹣45).4.(2019•常州)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A 的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=2;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB =2S△QRB,求点P的坐标.【解】:(1)∵二次函数y=﹣x2+bx+3的图象与x轴交于点A(﹣1,0)∴﹣1﹣b+3=0解得:b=2故答案为:2.(2)存在满足条件呢的点P,使得PM=MN=NH.∵二次函数解析式为y=﹣x2+2x+3当x=0时y=3,∴C(0,3)当y=0时,﹣x2+2x+3=0解得:x1=﹣1,x2=3∴A(﹣1,0),B(3,0)∴直线BC的解析式为y=﹣x+3∵点D为OC的中点,∴D(0,32)∴直线BD的解析式为y=﹣+32,设P(t,﹣t2+2t+3)(0<t<3),则M(t,﹣t+3),N(t,﹣12t+32),H(t,0)∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,MN=﹣t+3﹣(﹣12x+32)=﹣12t+32,NH=﹣12t+32∴MN=NH ∵PM=MN∴﹣t2+3t=﹣12t+32解得:t1=12,t2=3(舍去)∴P(12,154)∴P的坐标为(12,154),使得PM=MN=NH.(3)过点P作PF⊥x轴于F,交直线BD于E∵OB=3,OD=32,∠BOD=90°∴BD==∴cos∠OBD=∵PQ⊥BD于点Q,PF⊥x轴于点F∴∠PQE=∠BQR=∠PFR=90°∴∠PRF+∠OBD=∠PRF+∠EPQ=90°∴∠EPQ=∠OBD,即cos∠EPQ=cos∠OBD=在Rt△PQE中,cos∠EPQ=∴PQ=PE在Rt△PFR中,cos∠RPF=∴PR=PF∵S△PQB=2S△QRB,S△PQB=12BQ•PQ,S△QRB=12BQ•QR∴PQ=2QR设直线BD与抛物线交于点G∵﹣+32=﹣x2+2x+3,解得:x1=3(即点B横坐标),x2=﹣12∴点G横坐标为﹣1 2设P(t,﹣t2+2t+3)(t<3),则E(t,﹣12t+32)∴PF=|﹣t2+2t+3|,PE=|﹣t2+2t+3﹣(﹣12t+32)|=|﹣t2+52t+32|①若﹣12<t<3,则点P在直线BD上方,如图2,②∴PF=﹣t2+2t+3,PE=﹣t2+52t+32∵PQ=2QR∴PQ=23 PR∴PE=23•PF,即6PE=5PF∴6(﹣t2+52t+32)=5(﹣t2+2t+3)解得:t1=2,t2=3(舍去)∴P(2,3)②若﹣1<t<﹣12,则点P在x轴上方、直线BD下方,如图3,此时,PQ<QR,即S△PQB=2S△QRB不成立.③若t<﹣1,则点P在x轴下方,如图4,∴PF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,PE=﹣12t+32﹣(﹣t2+2t+3)=t2﹣52t﹣32∵PQ=2QR∴PQ=2PR=2,即2PE=5PF∴2(t2﹣52t﹣32)=5(t2﹣2t﹣3)解得:t1=﹣43,t2=3(舍去)∴P(﹣43,﹣139)综上所述,点P坐标为(2,3)或(﹣43,﹣139).5.(2019•镇江)如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y=25x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是(2,9);(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.①当n=275时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围9 5<n<215.【解】:(1)顶点为D(2,9);故答案为(2,9);(2)对称轴x=2,∴C(2,95),由已知可求A(﹣52,0),点A关于x=2对称点为(132,0),则AD关于x=2对称的直线为y=﹣2x+13,∴B(5,3),①当n=275时,N(2,275),∴DA=,DN=185,CD=365当PQ∥AB时,△DPQ∽△DAB,∵△DAC∽△DPN,∴DP DN DA DC=,∴DP=;当PQ与AB不平行时,△DPQ∽△DBA,∴△DNQ∽△DCA,∴,∴DP=;综上所述,DP=;②当PQ∥AB,DB=DP时,DB=∴DP DN DA DC=,∴DN=245,∴N(2,215),∴有且只有一个△DPQ与△DAB相似时,95<n<215;故答案为95<n<215;6.(2019•苏州)如图①,抛物线y=﹣2x+(a+1)x﹣a与x轴交于A,B两点(点A位于点B 的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A 是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.【解】:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵S△ABC=6∴1(1)()6 2a a--=解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣32,32)∵A(﹣3,0),C(0,3),∴OA=OC,∴线段AC的垂直平分线过原点,∴线段AC的垂直平分线解析式为:y=﹣x,∵由A(﹣3,0),B(1,0),∴线段AB的垂直平分线为x=﹣1将x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴交x轴于M,则S△BAP=12AB•PM=12×4d∵S△PQB=S△P AB∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)7.(2019•无锡)已知二次函数y=ax2+bx﹣4(a>0)的图象与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.【解】:(1)令x=0,则y=﹣4,∴C(0,﹣4),∵OA<OB,∴对称轴在y轴右侧,即∵a>0,∴b<0;(2)①过点D作DM⊥Oy,则,∴,设A (﹣2m ,0)m >0,则AO =2m ,DM =m ∵OC =4,∴CM =2, ∴D (m ,﹣6),B (4m ,0), 则,∴OE =8, S △BEF =12×4×4m =8, ∴m =1,∴A (﹣2,0),B (4,0), 设y =a (x +2)(x ﹣4), 即y =ax 2﹣2ax ﹣8a , 令x =0,则y =﹣8a , ∴C (0,﹣8a ), ∴﹣8a =﹣4,a =12, ∴;②由①知B (4m ,0)C (0,﹣4)D (m ,﹣6),则∠CBD 一定为锐角, CB 2=16m 2+16,CD 2=m 2+4,DB 2=9m 2+36, 当∠CDB 为锐角时, CD 2+DB 2>CB 2, m 2+4+9m 2+36>16m 2+16, 解得﹣2<m <2; 当∠BCD 为锐角时, CD 2+CB 2>DB 2, m 2+4+16m 2+16>9m 2+36, 解得,综上:,24m <;故:4OA <<.8.(2019•宿迁)如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【解】:(1)∵抛物线y=x2+bx+c经过点A(1,0),C(0,﹣3)∴解得:∴抛物线的函数表达式为y=x2+2x﹣3(2)①若点P在x轴下方,如图1,延长AP到H,使AH=AB,过点B作BI⊥x轴,连接BH,作BH中点G,连接并延长AG交BI 于点F,过点H作HI⊥BI于点I∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1∴B(﹣3,0)∵A(1,0),C(0,﹣3)∴OA=1,OC=3,AC=,AB=4∴Rt △AOC 中,sin ∠ACO =,cos ∠ACO =∵AB =AH ,G 为BH 中点 ∴AG ⊥BH ,BG =GH∴∠BAG =∠HAG ,即∠P AB =2∠BAG ∵∠P AB =2∠ACO ∴∠BAG =∠ACO∴Rt △ABG 中,∠AGB =90°,sin ∠BAG =∴BG =AB =5∴BH =2BG =5∵∠HBI +∠ABG =∠ABG +∠BAG =90° ∴∠HBI =∠BAG =∠ACO∴Rt △BHI 中,∠BIH =90°,sin ∠HBI =,cos ∠HBI =BI BH∴HI =BH =45,BI BH =125∴x H =﹣3+45=﹣115,y H =﹣125,即H (﹣115,﹣125) 设直线AH 解析式为y =kx +a∴ 解得:∴直线AH :y =34x ﹣34∵解得:(即点A ),∴P (﹣94,﹣3916) 若点P 在x 轴上方,如图2,在AP 上截取AH '=AH ,则H '与H 关于x 轴对称 ∴H '(﹣115,125) 设直线AH '解析式为y =k 'x +a '∴解得:3434k a ⎧'=-⎪⎪⎨⎪'=⎪⎩∴直线AH ':y =34x ﹣34∵2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩解得:(即点A ),∴P (﹣154,5716) 综上所述,点P 的坐标为(﹣94,﹣3916)或(﹣154,5716). (3)DM +DN 为定值∵抛物线y =x 2+2x ﹣3的对称轴为:直线x =﹣1 ∴D (﹣1,0),x M =x N =﹣1 设Q (t ,t 2+2t ﹣3)(﹣3<t <1) 设直线AQ 解析式为y =dx +e ∴解得:∴直线AQ :y =(t +3)x ﹣t ﹣3当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6 ∴DM =0﹣(﹣2t ﹣6)=2t +6设直线BQ 解析式为y =mx +n∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩ ∴直线BQ :y =(t ﹣1)x +3t ﹣3 当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2 ∴DN =0﹣(2t ﹣2)=﹣2t +2∴DM +DN =2t +6+(﹣2t +2)=8,为定值.9.(2019•深圳)如图抛物线y =ax 2+bx +c 经过点A (﹣1,0),点C (0,3),且OB =OC . (1)求抛物线的解析式及其对称轴;(2)点D 、E 在直线x =1上的两个动点,且DE =1,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBP A 的面积分为3:5两部分,求点P 的坐标.【解】:(1)∵OB =OC ,∴点B (3,0),则抛物线的表达式为:y =a (x +1)(x ﹣3)=a (x 2﹣2x ﹣3)=ax 2﹣2ax ﹣3a , 故﹣3a =3,解得:a =﹣1,故抛物线的表达式为:y =﹣2x +2x +3…①, 函数的对称轴为:x =1;(2)ACDE 的周长=AC +DE +CD +AE ,其中AC DE =1是常数, 故CD +AE 最小时,周长最小,取点C 关于函数对称点C ′(2,3),则CD =C ′D , 取点A ′(﹣1,1),则A ′D =AE ,故:CD +AE =A ′D +DC ′,则当A ′、D 、C ′三点共线时,CD +AE =A ′D +DC ′最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE1+A′D+DC′=1+A′C′=1(3)如图,设直线CP交x轴于点E,直线CP把四边形CBP A的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C﹣y P):12AE×(y C﹣y P)=BE:AE,则BE:AE,=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E、C的坐标代入一次函数表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45).10.(2019•广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.【解】:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值范围为﹣4<y P<﹣3法二:整理的:m (x 2﹣2x )=1﹣x∵x >1,且x =2时,方程为0=﹣1不成立∴x ≠2,即x 2﹣2x =x (x ﹣2)≠0∴m =>0 ∵x >1∴1﹣x <0∴x (x ﹣2)<0∴x ﹣2<0∴x <2即1<x <2∵y P =﹣x ﹣2∴﹣4<y P <﹣311.(2019•广东)如图1,在平面直角坐标系中,抛物线y 2与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△P AM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?【解】:(1)令8x 2+4x ﹣8=0,解得x 1=1,x 2=﹣7.∴A (1,0),B (﹣7,0).由y=8x 2+4x ﹣8=8(x +3)2﹣D (﹣3,﹣;(2)证明:∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF , ∴=,∵D (﹣3,﹣,∴D 1D =OD 1=3,∵AC =CF ,CO ⊥AF∴OF =OA =1∴D 1F =D 1O ﹣OF =3﹣1=2, ∴=,∴OC ,∴CA =CF =F A =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF ,∵△CAD 绕点C 顺时针旋转得到△CFE ,∴∠ECF =∠AFC =60°,∴EC ∥BF ,∵EC =DC 6 ,∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形;(3)∵点P 是抛物线上一动点,∴设P点(x x2+4x),①当点P在B点的左侧时,∵△P AM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣373;当点P在A点的右侧时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣53(不合题意舍去);当点P在AB之间时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣53;综上所述,点P的横坐标为﹣11或﹣373或﹣53;②由①得,这样的点P共有3个.。