山东省济宁市嘉祥县九年级(上)期末数学试卷
- 格式:pdf
- 大小:374.00 KB
- 文档页数:7
2022-2023学年山东省济宁市嘉祥县九年级(上)期末数学试卷一、单选题(本大题共10各小题,每小题3分,共30分)1.(3分)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件2.(3分)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换()A.平移B.轴对称C.旋转D.位似3.(3分)如图,若方格纸中每个小正方形的边长均为1,则S△AOB:S△COD为()A.1:2B.1:4C.2:1D.4:14.(3分)已知反比例函数y=(k≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A.(4,2)B.(1,8)C.(﹣1,8)D.(﹣1,﹣8)5.(3分)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.150(1﹣x2)=96B.150(1﹣x)=96C.150(1﹣x)2=96D.150(1﹣2x)=966.(3分)如图,在边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则tan∠ADC的值为()A.B.C.D.7.(3分)用一张半圆形铁皮,围成一个底面半径为4cm的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为()A.4cm B.8cm C.12cm D.16cm8.(3分)如图,矩形OABC与反比例函数y1=(x>0)的图象交于点M,N,与反比例函数y2=(x >0)的图象交于点B,连接OM,ON.则四边形OMBN的面积为()A.3B.C.4D.9.(3分)抛物线的函数表达式为y=(x﹣2)2﹣9,则下列结论中,正确的序号为()①当x=2时,y取得最小值﹣9;②若点(3,y1),(4,y2)在其图象上,则y2>y1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y=(x﹣5)2﹣5;④函数图象与x轴有两个交点,且两交点的距离为6.A.②③④B.①②④C.①③D.①②③④10.(3分)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD'.给出下列结论:①△ACD≌△ABD';②△ACB∽△ADD';③当BD=CD时,△ADD'的积取得最小值.其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共15分)11.(3分)若反比例函数y=﹣的图象上有两点A(﹣3,m),B(﹣2,n)则m与n的大小关系为m n.(填“>”、“=”或“<”)12.(3分)若关于x的一元二次方程3x2﹣2x+m=0的两根之积等于﹣4,则m的值为.13.(3分)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t 为s时,小球达到最高点.14.(3分)如图,在矩形ABCD中,AD=2,DC=4,将线段DC绕点D按逆时针方向旋转,当点C的对应点E恰好落在边AB上时,图中阴影部分的面积是.15.(3分)如图,在平面直角坐标系中,点P在反比例函数y=(k>0,x>0)的图象上,其纵坐标为2,过点P作PQ∥y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为.三、解答题(共55分)16.(6分)(1)解方程:x2﹣2x﹣5=0(2)计算:4sin60°•cos60°﹣tan245°.17.(6分)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,并且使所作的位似图形与△OAB的相似比等于;(2)在(1)的条件下,若P(x,y)是△OAB边上任意一点,则变换后点P的对应点的坐标为.18.(6分)2022年4月15日是第七个全民国家安全教育日,某校七、八年级举行了一次国家安全知识竞赛,经过评比后,七年级的两名学生(用A,B表示)和八年级的两名学生(用C,D表示)获得优秀奖.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是.(2)从获得优秀奖的学生中随机抽取两名分享经验,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.19.(8分)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.20.(8分)如图,一次函数y=x﹣1的图象与x轴、y轴分别相交于C、B两点,与反比例函数y=(k ≠0,x>0)的图象相交于点A(m,2).(1)求反比例函数的表达式;(2)点D是线段AB上任意一点,过点D作y轴平行线,交反比例函数的图象于点E,连接BE.求△BDE的面积.21.(9分)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)若AB=6,AC=8,求点O到AD的距离.22.(12分)如图①,抛物线y=﹣x2+bx+c与x轴交于A(1,0)、B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q.使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)若点M从B点以每秒个单位长度沿BA方向向点A运动,同时,点N从C点以每秒个单位沿CB方向向点B运动.设运动时间为t秒,当t为何值,以B,M,N为顶点的三角形与△OBC相似?参考答案一、单选题(本大题共10各小题,每小题3分,共30分)1.D;2.D;3.B;4.C;5.C;6.C;7.B;8.A;9.B;10.D;二、填空题(每题3分,共15分)11.<;12.﹣12;13.2;14.8﹣2﹣;15.;三、解答题(共55分)16.(1)x1=1+,x2=1﹣;(2)﹣1.;17.()或(﹣);18.;19.约96米.;20.(1)y=(x >0);(2)4.;21.(1)证明见解答;(2)证明见解答;(3).;22.(1)y=﹣x2﹣2x+3;(2)存在,Q(﹣1,2);(3)秒或秒.。
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.已知函数y =ax 2+bx +c (a ≠1)的图象如图,给出下列4个结论:①abc >1; ②b 2>4ac ; ③4a +2b +c >1;④2a +b =1.其中正确的有( )个.A .1B .2C .3D .4 2.二次函数21y x =-的图象与y 轴的交点坐标是( )A .(0,1)B .(1,0)C .(-1,0)D .(0,-1)3.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>4.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.55.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房建设力度.2013年市政府共投资2亿元人民币建设廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率都为x ,可列方程( )A .229.5x =B .()22212(1)9.5x x ++++=C .22(1)9.5x +=D .()2221(1)9.58x x ++++=⨯6.下列关系式中,y 是x 的反比例函数的是( )A .5y x =B .3y x =C .1y x =-D .23y x =-7.方程2568a a =-化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )A .5,6,-8B .5,-6,-8C .5,-6,8D .6,5,-88.如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠BCE=43.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .9.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 10.已知二次函数y =ax 1+bx +c +1的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 1﹣4ac =0;③a >1;④ax 1+bx +c =﹣1的根为x 1=x 1=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 1)为函数图象上的两点,则y 1>y 1.其中正确的个数是( )A .1B .3C .4D .5二、填空题(每小题3分,共24分)11.若方程263330x x +-=的解为12x x 、,则1212x x x x ++的值为_____________.12.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A ′B ′CD ′的位置,AB =2,AD =4,则阴影部分的面积为_____.13.如图,ABCD 中,点E 、F 分别是边AD 、CD 的中点,EC 、EF 分别交对角线BD 于点H 、G ,则::DG GH HB =______.14.点P (4,﹣6)关于原点对称的点的坐标是_____.15.已知抛物线24y x bx =-++经过(2,)n -和(4,)n 两点,则n 的值为__________. 16.超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表: 测试项目 创新能力综合知识 语言表达 测试成绩/分 70 80 90将创新能力,综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是__________分.17.函数11y x =-的自变量的取值范围是.18.将抛物线2(1)y x =+向右平移2个单位长度,则所得抛物线对应的函数表达式为______.三、解答题(共66分)19.(10分)如图,已知AD•AC =AB•AE .求证:△ADE ∽△ABC .20.(6分)如图,已知AB 为⊙O 的直径,AD ,BD 是⊙O 的弦,BC 是⊙O 的切线,切点为B ,OC ∥AD ,BA ,CD的延长线相交于点E .(1)求证:DC 是⊙O 的切线;(2)若AE =1,ED =3,求⊙O 的半径.21.(6分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)22.(8分)如图,已知直线y =﹣2x +4分别交x 轴、y 轴于点A 、B ,抛物线y =﹣2x 2+bx +c 过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D ,抛物线的顶点为M ,其对称轴交AB 于点N . (1)求抛物线的表达式及点M 、N 的坐标;(2)是否存在点P ,使四边形MNPD 为平行四边形?若存在求出点P 的坐标,若不存在,请说明理由.23.(8分)如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D .(1)求证:AE•BC=BD•AC ;(2)如果ADE S =3,BDE S =2,DE=6,求BC 的长.24.(8分)在精准脱贫期间,江口县委、政府对江口教育制定了目标,为了保证2018年中考目标的实现,对九年级进行了一次模拟测试,现对这次模拟测试的数学成绩进行了分段统计,统计如表,共有2500名学生参加了这次模拟测试,为了解本次考试成绩,从中随机抽取了部分学生的数学成绩x (得分均为整数,满分为100分)进行统计后得到下表,请根据表格解答下列问题:(1)随机抽取了多少学生?(2)根据表格计算:a = ;b = .分组频数 频率 x <3014 0.07 30≤x <6032 b 60≤x <90a 0.62 90≤x 30 0.15 合计 ﹣ 1(3)设60分(含60)以上为合格,请据此估计我县这次这次九年级数学模拟测试成绩合格的学生有多少名?25.(10分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲7 ① . 7 乙 ② . 5.4③ . (1)请将右上表补充完整:(参考公式:方差222212[()()()]n S x x x x x x n =-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.26.(10分)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (O A B C D ,,,,在同一条直线上),测得2 2.1AC m BD m ==,,如果小明眼睛距地面高度BF ,DG 为1.6m ,试确定楼的高度OE .参考答案一、选择题(每小题3分,共30分)1、C【分析】二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点来确定,结合抛物线与x 轴交点的个数来分析解答. 【详解】解:①由抛物线的对称轴可知:2b a ->1, ∴ab <1,由抛物线与y 轴的交点可知:c >1,∴abc <1,故①错误;②由图象可知:△>1,∴b 2−4ac >1,即b 2>4ac ,故②正确;③∵(1,c )关于直线x =1的对称点为(2,c ),而x =1时,y =c >1,∴x =2时,y =c >1,∴y =4a +2b +c >1,故③正确; ④∵12b a-=, ∴b =−2a ,∴2a +b =1,故④正确.故选C .【点睛】本题考查了二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中等题型. 2、D【详解】当x =0时,y =0-1=-1,∴图象与y 轴的交点坐标是(0,-1).故选D.3、C【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2b a-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>.故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.4、B【分析】把0x =代入可得210a -=,根据一元二次方程的定义可得10a -≠,从而可求出a 的值.【详解】把0x =代入()22110a x x a -++-=,得: 210a -=,解得:1a =±,∵()22110a x x a -++-=是关于x 的一元二次方程, ∴10a -≠,即1a ≠,∴a 的值是1-,故选:B .【点睛】本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件10a -≠.5、B【分析】根据1013年市政府共投资1亿元人民币建设了廉租房,预计1015年底三年共累计投资9.5亿元人民币建设廉租房,由每年投资的年平均增长率为x 可得出1014年、1015年的投资额,由三年共投资9.5亿元即可列出方程.【详解】解:这两年内每年投资的增长率都为x ,则1014年投资为1(1+x )亿元,1015年投资为1(1+x )1亿元,由题意则有()222x 12(x 1)9.5++++=,故选B.【点睛】本题考查了一元二次方程的应用——增长率问题,正确理解题意是解题的关键.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a (1±x )1.增长用“+”,下降用“-”. 6、C【解析】根据反比例函数的定义逐一判断即可.【详解】解:A 、是正比例函数,故A 错误;B 、是正比例函数,故B 错误;C 、是反比例函数,故C 正确;D 、是二次函数,故D 错误;故选:C .【点睛】本题考查了反比例函数的定义,形如y =k x(k≠0)的函数是反比例函数.正确理解反比例函数解析式是解题的关键. 7、C【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:25680a a -+=.从而确定二次项系数为5,一次项系数为-6,常数项为8 故选C .【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.8、D【解析】设AB =x ,根据折叠,可证明∠AFB=90°,由tan ∠BCE=43,分别表示EB 、BC 、CE ,进而证明△AFB ∽△EBC ,根据相似三角形面积之比等于相似比平方,表示△ABF 的面积.【详解】设AB =x ,则AE =EB =12x ,由折叠,FE =EB =12x ,则∠AFB =90°,由tan ∠BCE =43,∴BC =23x ,EC =56x ,∵F 、B 关于EC 对称,∴∠FBA =∠BCE ,∴△AFB ∽△EBC ,∴2()EBC yAB S EC =,∴y =221366×62525x x =,故选D.【点睛】 本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF 和△E BC 的面积比是解题关键.9、D【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .10、D【解析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-,∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题(每小题3分,共24分)11、-【分析】根据根与系数的关系可得出12=x x -+12=x x -【详解】解:∵方程20x +-=的两根是12x x 、,∴12=x x -+12=x x -∴((121212===x x x x x x -+++-+-故答案为:-【点睛】 本题主要考查了一元二次方程根与系数的关系,牢记如果一元二次方程有两根,那么两根之和等于b a-、两根之积等于c a是解题的关键.12、83π-【解析】试题解析:连接,CE∵四边形ABCD 是矩形,4,2,90AD BC CD AB BCD ADC ∴====∠=∠=,∴CE =BC =4,∴CE =2CD ,30DEC ∴∠=,60DCE ∴∠=,由勾股定理得:23DE =,∴阴影部分的面积是S =S 扇形CEB ′−S △CDE 260π4218223π 3.36023⨯=-⨯⨯=- 故答案为8π2 3.3- 13、3:1:8【分析】由四边形ABCD 是平行四边形可得AD ∥BC ,AD =BC ,△DEH ∽△BCH ,进而得12DH EH DE BH CH BC ===,连接AC ,交BD 于点M ,如图,根据三角形的中位线定理可得EF ∥AC ,可推得1DG DE MG AE==,△EGH ∽△CMH ,于是得DG=MG ,12GH EH MH HC ==,设HG =a ,依次用a 的代数式表示出MH 、DG 、BH ,进而可得答案. 【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△DEH ∽△BCH ,∵E 是AD 中点,AD =BC ,∴12DH EH DE BH CH BC ===, 连接AC ,交BD 于点M ,如图,∵点E 、F 分别是边AD 、CD 的中点,∴EF ∥AC , ∴1DG DE MG AE ==,△EGH ∽△CMH ,∴DG=MG ,12GH EH MH HC ==, 设HG =a ,则MH =2a ,MG =3a ,∴DG =3a ,∴DM =6a ,∵四边形ABCD 是平行四边形,∴BM=DM =6a ,BH =8a ,∴::3::83:1:8DG GH HB a a a ==.故答案为:3:1:8.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、相似三角形的判定和性质、三角形的中位线定理等知识,连接AC ,充分利用平行四边形的性质、构建三角形的中位线和相似三角形的模型是解题的关键.14、 (﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.15、4-【分析】根据(-2,n )和(1,n )可以确定函数的对称轴x=1,再由对称轴的x=2(1)b -⨯-,即可求出b ,于是可求n 的值.【详解】解:抛物线24y x bx =-++经过(-2,n )和(1,n )两点,可知函数的对称轴x=1, ∴2(1)b -⨯-=1, ∴b=2;∴y=-x 2+2x+1,将点(-2,n )代入函数解析式,可得n=-1;故答案是:-1.【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.16、77【详解】解:5+3+2=10.53270809077101010⨯+⨯+⨯=, 故答案为:77.17、x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X -1≠0,即x≠1那么函数y=的自变量的取值范围是x≠118、2(1)y x =- 【分析】利用顶点式根据平移不改变二次项系数可得新抛物线解析式. 【详解】2(1)y x =+的顶点为(−1,0),∴向右平移2个单位得到的顶点为(1,0),∴把抛物线2(1)y x =+向右平移2个单位,所得抛物线的表达式为2(1)y x =-.故答案为:2(1)y x =-.【点睛】本题考查了二次函数图象与几何变换,熟练掌握“左加右减,上加下减”的平移规则是解题的关键.三、解答题(共66分)19、证明见解析.【分析】由AD•AC =AE•AB ,可得AD AE AB AC =,从而根据“两边对应成比例并且夹角相等的两个三角形相似”可证明结论成立.【详解】试题分析:证明:∵AD•AC =AE•AB , ∴AD AB =AE AC 在△ABC 与△ADE 中 ∵AD AB =AE AC ,∠A =∠A , ∴ △ABC ∽△ADE20、(1)证明见解析;(2)1.【解析】试题分析:(1)、连接DO ,根据平行线的性质得出∠DAO=∠COB ,∠ADO=∠COD ,结合OA=OD 得出∠COD=∠COB ,从而得出△COD 和△COB 全等,从而得出切线;(2)、设⊙O 的半径为R ,则OD=R ,OE=R+1,根据Rt △ODE 的勾股定理求出R 的值得出答案.试题解析:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CBO=90°,∴∠CDO=90°,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设⊙O的半径为R,则OD=R,OE=R+1,∵CD是⊙O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=1,∴⊙O的半径为1.21、作图见解析.【解析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.22、(1)y=﹣2x2+2x+4,M1922,⎛⎫⎪⎝⎭,N132,⎛⎫⎪⎝⎭,(2)存在,P32,1⎛⎫⎪⎝⎭.【分析】(1)先由直线解析式求出A,B的坐标,再利用待定系数法可求出抛物线解析式,可进一步化为顶点式即可写出顶点M的坐标并求出点N坐标;(2)先求出MN的长度,设点P的坐标为(m,﹣2m+4),用含m的代数式表示点D坐标,并表示出PD的长度,当PD=MN时,列出关于m的方程,即可求出点P的坐标.【详解】(1)∵直线y=﹣2x+4分别交x轴,y轴于点A,B,∴A(2,0),B(0,4),把点A(2,0),B(0,4)代入y=﹣2x2+bx+c,得24204b c c -⨯++=⎧⎨=⎩, 解得,24b c =⎧⎨=⎩, ∴抛物线的解析式为:y =﹣2x 2+2x +4=﹣2(x ﹣12)2+92, ∴顶点M 的坐标为(12,92), 当x =12时,y =﹣2×12+4=3, 则点N 坐标为(12,3); (2)存在点P ,理由如下:MN =92﹣3=32, 设点P 的坐标为(m ,﹣2m +4),则D (m ,﹣2m 2+2m +4),∴PD =﹣2m 2+2m +4﹣(﹣2m +4)=﹣2m 2+4m ,∵PD ∥MN ,∴当PD =MN 时,四边形MNPD 为平行四边形,即﹣2m 2+4m =32, 解得,m 1=32,m 2=12(舍去), ∴此时P 点坐标为(32,1). 【点睛】本题考查了待定系数法求二次函数解析式,平行四边形的存在性等,解题关键是要熟练掌握平行四边形的性质并能够灵活运用.23、 (1)证明详见解析;(2)1.【详解】试题分析:(1)由BE 平分∠ABC 交AC 于点E ,ED ∥BC ,可证得BD=DE ,△ADE ∽△ABC ,然后由相似三角形的对应边成比例,证得AE•BC=BD•AC ;(2)根据三角形面积公式与ADE S=3,BDE S =2,可得AD :BD=3:2,然后由平行线分线段成比例定理,求得BC 的长.试题解析:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE∥BC,∴△ADE∽△ABC,∴AE DE AC BC=,∴AE BD AC BC=,∴AE•BC=BD•AC;(2)解:设△ABE中边AB上的高为h,∴1·21·2ADEBDEAD hS ADS BDBD h===32,∵DE∥BC,∴DE AD BC AB=,∴635 BC=,∴BC=1.考点:相似三角形的判定与性质.24、(1)200名;(2)124,0.16;(3)1925名【分析】(1)由题意根据频数分布表中的数据,可以计算出随机抽取的学生人数;(2)由题意根据(1)中的数据和频数分布表中的数据,可以计算出a和b的值;(3)根据频数分布表中的数据,即可计算出我县这次这次九年级数学模拟测试成绩合格的学生有多少名.【详解】解:(1)14÷0.07=200(名),即随机抽取了200名学生;(2)a=200×0.62=124,b=32÷200=0.16,故答案为:124,0.16;(3)2500×(0.62+0.15)=2500×0.77=1925(名),答:我县这次这次九年级数学模拟测试成绩合格的学生有1925名.【点睛】本题考查频数分布表和用样本估计总体,解答本题的关键是明确题意并求出相应的数据.25、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:2222221[(97)(57)4(77)2(87)2(67)] 1.210S =-+-+⨯-+⨯-+⨯-=, ②乙的平均数为:()24687789910107+++++++++÷=,③乙的中位数为:()7827.5+÷=,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.26、32米【分析】设E 关于O 的对称点为M ,根据光线的反射可知,延长GC 、FA 相交于点M ,连接GF 并延长交OE 于点H ,先根据镜面反射的基本性质,得出MAC MFG ∆∆∽,再运用相似三角形对应边成比例即可解答.【详解】设E 关于O 的对称点为M ,根据光线的反射可知,延长GC 、FA 相交于点M ,连接GF 并延长交OE 于点H ,由题意可知GD FB =且GD DO ⊥、FB DO ⊥∴GF AC∴MAC MFG ∆∆∽ ∴AC MA MO FG MF MH== 即:AC EO EO EO BD MH MO OH EO BF===++ ∴22.1 1.6EO EO =+ ∴32EO =答:楼的高度OE 为32米.【点睛】本题考查了相似三角形的应用、镜面反射的基本性质,准确作出辅助线是关键.。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √-1B. √2C. πD. 02. 已知a,b是实数,若a+b=0,则下列结论正确的是()。
A. a=0,b≠0B. b=0,a≠0C. a和b同时为0D. a和b互为相反数3. 下列函数中,定义域为实数集R的是()。
A. y = |x|B. y = √xC. y = 1/xD. y = x²4. 在直角坐标系中,点P(-2,3)关于原点的对称点是()。
A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,3)5. 已知等边三角形ABC的边长为a,则其内切圆半径r等于()。
A. a/2B. a/3C. √3/2 aD. √3/3 a6. 下列各数中,属于正比例函数图象上点的坐标是()。
A.(1,3)B.(2,4)C.(3,2)D.(4,3)7. 下列各方程中,无解的是()。
A. 2x + 3 = 7B. 3x - 2 = 5C. 2x + 3 = 2xD. 3x - 2 = 5x8. 已知一元二次方程x² - 5x + 6 = 0,则它的两个根x₁和x₂满足()。
A. x₁ + x₂ = 5B. x₁ x₂ = 6C. x₁ + x₂ = 6D. x₁ x₂ = 59. 在等腰三角形ABC中,AB=AC,且底边BC上的高AD将BC平分于点D,则∠BDA 的度数是()。
A. 45°B. 60°C. 90°D. 30°10. 下列各图中,轴对称图形是()。
A. ①B. ②C. ③D. ④二、填空题(每题5分,共25分)11. 若实数a,b满足a² + b² = 1,则a+b的最小值为______。
12. 已知函数y = 2x - 3,当x=2时,y的值为______。
13. 在直角坐标系中,点P(3,-4)到原点O的距离是______。
14. 等腰三角形底边长为8,腰长为10,则其周长为______。
九年级上册济宁数学期末试卷测试卷附答案一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人2.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①② B .②③C .①③D .①②③4.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°5.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4D .y =2(x ﹣3)2+46.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .67.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个 A .1B .2C .3D .48.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°9.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月 D .1月,2月,3月,12月10.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2 B .y =32x +2C .y =3()22x -D .y =3()22x +11.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3412.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.15.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)16.若点C 是线段AB 的黄金分割点且AC >BC ,则AC =_____AB (用含无理数式子表示).17.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 18.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.19.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)20.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.21..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.22.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.23.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)24.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题25.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅; (2)若43AB =,8AD =,求DG 的长. 26.已知关于x 的方程x 2+ax +a ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根; (2)若该方程的一个根为1,求a 的值及该方程的另一根.27.我们不妨约定:如图①,若点D 在△ABC 的边AB 上,且满足∠ACD=∠B (或∠BCD=∠A ),则称满足这样条件的点为△ABC 边AB 上的“理想点”.(1)如图①,若点D 是△ABC 的边AB 的中点,AC=22AB=4.试判断点D 是不是△ABC 边AB 上的“理想点”,并说明理由.(2)如图②,在⊙O 中,AB 为直径,且AB=5,AC=4.若点D 是△ABC 边AB 上的“理想点”,求CD 的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C 为x 轴正半轴上一点,且满足∠ACB=45°,在y 轴上是否存在一点D ,使点A 是B ,C ,D 三点围成的三角形的“理想点”,若存在,请求出点D 的坐标;若不存在,请说明理由.28.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.29.如图,已知抛物线214y x bx c =++经过ABC 的三个顶点,其中点(0,3)A ,点(12,15)-B ,//AC x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交与点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC 相似,若存在,直接写出点Q 的坐标;若不存在,请说明理由.30.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率. 31.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D ==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.32.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.()1求一次函数y kx b=+的表达式;()2若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.C解析:C【解析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.C解析:C 【解析】∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .5.A解析:A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 6.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.7.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案. 【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误; ④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x 时,y<0;故此选项正确;综上:①④两项正确, 故选:B . 【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.8.A解析:A 【解析】 【分析】先依据切线的性质求得∠CAB 的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD 的度数. 【详解】解:∵AC 是圆O 的切线,AB 是圆O 的直径, ∴AB ⊥AC , ∴∠CAB=90°, 又∵∠C=70°, ∴∠CBA=20°, ∴∠AOD=40°. 故选:A . 【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.9.D解析:D 【解析】 【分析】 【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D10.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是3.8故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC 的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y =2(x -2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.15.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 16.【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC =AB .故答案为:.【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分解析:12 【解析】【分析】直接利用黄金分割的定义求解.【详解】解:∵点C 是线段AB 的黄金分割点且AC >BC ,∴AC AB .故答案为:12. 【点睛】本题考查了黄金分割的定义,点C 是线段AB 的黄金分割点且AC >BC ,则AC BC =正确理解黄金分割的定义是解题的关键.17.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 18.2【解析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 20.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.21.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.22.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 23.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题25.(1)见解析;(283 3【解析】【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF= ,∴CG CF CD BF∴CG BF CD CF⋅=⋅.(2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, 3AB=∴AE=123 2AB ,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF⋅=⋅,∴12434CG=,∴CG=3,∴.【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.26.(1)见解析;(2)a=12,x1=﹣32【解析】【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x2+ax+a﹣2=0,求出a,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x2+ax+a﹣2=0得1+a+a﹣2=0,解得a=12;∴方程为x2+12x﹣32=0,即2x2+x﹣3=0,设另一根为x1,则1×x1=ca=﹣32,∴另一根x1=﹣32.【点睛】此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.27.(1)是,理由见解析;(2)125;(3)D(0,42)或D(0,6)【解析】【分析】(1)依据边长AC=AB=4,D是边AB的中点,得到AC2=AD AB,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D 是△ABC 边AB 上的“理想点”,理由: ∵AB=4,点D 是△ABC 的边AB 的中点, ∴AD=2,∵AC 2=8,8AD AB •=,∴AC 2=AD AB ,又∵∠A=∠A ,∴△ADC ∽△ACB ,∴∠ACD=∠B ,∴D 是△ABC 边AB 上的“理想点”.(2)如图②,∵点D 是△ABC 的“理想点”,∴∠ACD=∠B 或∠BCD=∠A,当∠ACD=∠B 时,∵∠ACD+∠BCD=90︒,∴∠BCD+∠B=90︒,∴∠CDB=90︒,当∠BCD=∠A 时,同理可得CD ⊥AB ,在Rt △ABC 中,∵∠ACB=90︒,AB=5,AC=4, ∴222254AB AC -=-=3, ∵1122AB CD AC BC ⋅=⋅, ∴1153422CD , ∴125CD =. (3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90︒,∠ACM=45︒,∴∠AMC=∠ACM=45︒,∴AM=AC,∵∠MAH+∠CAO=90︒,∠CAO+∠ACO=90︒,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴MH BH OC OB,∴253aa,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴2111CD D A D B,∴226(2)(3)m m m,解得m=42,∴D1(0,42);②当∠BCA=∠CD 2B 时,点A 是△BCD 2“理想点”,可知:∠CD 2O=45︒,∴OD 2=OC=6,∴D 2(0,6).综上,满足条件的点D 的坐标为D (0,42)或D (0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.28.(1)(3,0)m ,2(,4)m m ;(2)①213y x x =-++,②2955y x x =-++ 【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =,∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:3m =(3m =-舍去), ∴二次函数的关系式为:2231y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:155m =(155m =-舍去),∴二次函数的关系式为:2215955y x x=-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.29.(1)21234y x x=++;(2)(6,0)P-;(3)存在,116(,3)3Q-,2(4,3)Q【解析】【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,21234m m++),表示出PE=2134m m--,再用S四边形AECP=S△AEC+S△APC=12AC×PE,建立函数关系式,求出最值即可;(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【详解】(1)∵点(0,3)A,(12,15)-B在抛物线上,∴3115144124cb c=⎧⎪⎨=⨯-+⎪⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为21234y x x=++,(2)∵AC∥x轴,A(0,3)∴21234x x++=3,∴x 1=−6,x 2=0,∴点C 的坐标(−8,3),∵点(0,3)A ,(12,15)-B ,求得直线AB 的解析式为y =−x +3,设点P (m ,21234m m ++)∴E (m ,−m +3) ∴PE =−m +3−(21234m m ++)=2134m m --, ∵AC ⊥EP ,AC =8,∴S 四边形AECP=S △AEC +S △APC =12AC ×EF +12AC ×PF =12AC ×(EF +PF ) =12AC ×PE =12×8×(2134m m --) =−m 2−12m=−(m +6)2+36,∵−8<m <0∴当m =−6时,四边形AECP 的面积的最大,此时点P (−6,0);(3)∵21234y x x =++=21(4)14x +-, ∴P (−4,−1),∴PF =y F −y P =4,CF =x F −x C =4,∴PF =CF ,∴∠PCF =45°同理可得:∠EAF =45°,∴∠PCF =∠EAF ,∴在直线AC 上存在满足条件的Q ,设Q (t ,3)且AB ,AC =8,CP ==, ∵以C 、P 、Q 为顶点的三角形与△ABC 相似, ①当△CPQ ∽△ABC 时,∴CQ CP AC AB =,∴88t +=, ∴t =−163或t =−323(不符合题意,舍) ∴Q (−163,3) ②当△CQP ∽△ABC 时, ∴CQ CP AB AC =,=, ∴t =4或t =−20(不符合题意,舍)∴Q (4,3) 综上,存在点116(,3)3Q -2(4,3)Q . 【点睛】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.30.(1)14;(2)14. 【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P (E )=416=14. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.31.△ABC ∽△A 'B 'C ',理由见解析【解析】【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '.【详解】△ABC ∽△A 'B 'C ', 理由:∵==''''''AB BD AD A B B D A D ∴△ABD ∽△A 'B 'D ',∴∠B =∠B ', ∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线 ∴12BD BC =,1''''2B D BC =, ∴12==1''''''2BC AB BC A B B C B C , 在△ABC 和△A 'B 'C '中 ∵=''''AB BC A B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '.【点睛】 本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.32.(1)120y x =-+;(2)销售单价定为87元时,商场可获得最大利润,最大利润是891元.【解析】【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题.。
2017-2018学年山东省济宁市嘉祥县九年级(上)期末数学试卷(J)副标题一、选择题(本大题共10小题,共10.0分)1.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是A. B. C. D.【答案】A【解析】解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.根据把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形的定义,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列函数中,y是x反比例函数的是A. B. C. D.【答案】B【解析】解:A、该函数中,y是x的正比例函数,故本选项错误;B、该函数中,y是x的反比例函数,故本选项正确;C、该函数中,当时,y不是x的反比例函数,故本选项错误;D、该函数中,y是的反比例函数,故本选项错误.故选:B.根据反比例函数的定义和一次函数的定义对各选项分析判断即可得解.本题考查了反比例函数的定义,熟记一般式是解题的关键.3.下列事件是必然事件的是A. 抛掷一枚硬币四次,有两次正面朝上B. 射击运动员射击一次,命中靶心C. 随意翻到一本书的某页,这页的页码是奇数D. 方程必有实数根【答案】D【解析】解:A、抛掷一枚硬币四次,有两次正面朝上,是随机事件,不合题意;B、射击运动员射击一次,命中靶心,是随机事件,不合题意;C、随意翻到一本书的某页,这页的页码是奇数,是随机事件,不合题意;D、方程必有实数根,是必然事件,符合题意.故选:D.直接利用随机事件以及必然事件的定义分别分析得出答案.此题主要考查了随机事件,关键是掌握随机事件的定义.4.一元二次方程式可表示成的形式,其中a、b为整数,求之值为何A. 20B. 12C.D.【答案】A【解析】解:,,,,,.故选:A.将一元二次方程式配方,可求a、b,再代入代数式即可求解.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.在网格中的位置如图所示每个小正方形边长为,于D,下列四个选项中,错误的是A.B.C.D.【答案】C【解析】解:观察图象可知,是等腰直角三角形,,,,,,,故A正确,,故B正确,,故D正确,,,,故C错误.故选:C.观察图形可知,是等腰直角三角形,,,,,,利用锐角三角函数一一计算即可判断.本题考查锐角三角函数的应用等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,点A为边上的任意一点,作于点C,于点D,下列用线段比表示的值,错误的是A. B. C. D.【答案】C【解析】解:,,,,,只有选项C错误,符合题意.故选:C.利用垂直的定义以及互余的定义得出,进而利用锐角三角函数关系得出答案.此题主要考查了锐角三角函数的定义,得出是解题关键.7.如图,在平面直角坐标系中,已知点、,以原点O为位似中心,相似比为,把缩小,则点A的对应点的坐标是A. B.C. 或D. 或【答案】D【解析】解:点,以原点O为位似中心,相似比为,把缩小,点A的对应点的坐标是或,故选:D.根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或解答.本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或.8.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为A. B. C. D.【答案】C【解析】解:设圆心角是n度,根据题意得,解得:.故选:C.根据弧长公式,即可求解.本题考查了扇形的弧长公式,是一个基础题.9.二次函数b,c为常数,且中的x与y的部分对应值如下给出下列说法:抛物线与y轴的交点为;抛物线的对称轴在y轴的左侧;抛物线一定经过点;在对称轴左侧y随x的增大而增大.从表中可知,其中正确的个数为A. 4B. 3C. 2D. 1【答案】B【解析】解:当时,时,时,可得,解得,抛物线解析式为,当时,抛物线与y轴的交点为,故正确;抛物线的对称轴为,故不正确;当时,,抛物线过点,故正确;抛物线开口向下,在对称轴左侧y随x的增大而增大,故正确;综上可知正确的个数为3个,故选:B.由所给数据求得抛物线解析式,再逐个判断即可.本题主要考查二次函数的性质,利用待定系数法求得二次函数的解析式是解题的关键.10.反比例函数和在第一象限内的图象如图所示,点P在的图象上,轴,交的图象于点A,轴,交的图象于点当点P在的图象上运动时,以下结论:与的面积相等;与PB始终相等;四边形PAOB的面积不会发生变化;当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是A. B. C. D.【答案】D【解析】解:点A、B均在反比例函数的图象上,且轴,轴,,,,结论正确;设点P的坐标为,则点B的坐标,点,,,与PB的关系无法确定,结论错误;点P在反比例函数的图象上,且轴,轴,,矩形,结论正确;四边形矩形设点P的坐标为,则点B的坐标,点,点A是PC的中点,,,,点B是PD的中点,结论正确.故选:D.由点A、B均在反比例函数的图象上,利用反比例函数系数k的几何意义即可得出,结论正确;利用分割图形求面积法即可得出四边形,结论正确;设点P的坐标为,则点B的坐标,点,求出PA、PB的长度,由此可得出PA与PB的关系无法确定,结论错误;设点P的坐标为,则点B的坐标,点,由点A是PC的中点可得出,将其带入点P、B 的坐标即可得出点B是PD的中点,结论正确此题得解.本题考查了反比例函数系数k的几何意义、反比例函数的图象以及反比例函数图象上点的坐标特征,逐一分析说四条结论的正误是解题的关键.二、填空题(本大题共5小题,共5.0分)11.将抛物线先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为______.【答案】【解析】解:抛物线先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为,即:.故答案为:.根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.12.如图,在反比例函数图象上,轴于H,则的值为______.【答案】【解析】解:在反比例函数图象上,,轴于H,,,,故答案为:.利用锐角三角函数的定义求解,为的对边比邻边,求出即可.此题主要考查了反比例函数图象上点的坐标特征,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.13.我县于2017年12月被评为“全国老年气排球之乡”,这也是我省、我市首次获得该项荣誉,为继续推广此项运动,我县体育局要组织一次气排比赛,赛制为单循环每两队之间都赛一场,计划安排21场比赛,应邀请多少个球队参赛?若设邀请x个球队参赛,则所列方程为______.【答案】【解析】解:设有x个队,每个队都要赛场,但两队之间只有一场比赛,由题意得:,故答案为.赛制为单循环形式每两队之间都赛一场,x个球队比赛总场数即可列方程.本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.14.如图,圆O的直径AB垂直于弦CD,垂足是E,,,CD的长为______.【答案】【解析】解:,,的直径AB垂直于弦CD,,为等腰直角三角形,,.故答案为.根据圆周角定理得,由于的直径AB垂直于弦CD,根据垂径定理得,且可判断为等腰直角三角形,所以,然后利用进行计算.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了等腰直角三角形的性质和圆周角定理.15.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知,则下列结论:;;;∽ ,其中一定正确的是______填序号【答案】【解析】解:在▱ABCD中,,点E是OA的中点,,,∽ ,,,,;故正确;,,;故正确;,,,故正确;不平行于CD,与只有一个角相等,与不一定相似,故错误,故答案为:.根据平行四边形的性质得到,根据相似三角形的性质得到,等量代换得到,于是得到;故正确;根据相似三角形的性质得到;故正确;根据三角形的面积公式得到,故正确;由于与只有一个角相等,于是得到与不一定相似,故错误.本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.三、计算题(本大题共2小题,共2.0分)16.解方程:;计算:.【答案】解:移项可得:,两边同时除以2可得:,两边同时加1可得:,配法可得:,,,;【解析】根据配方法的求解即可;根据特殊角的三角函数值计算.本题主要考查一元二次方程的解法和特殊角三角函数值的计算,熟练掌握各种解法是解题的关键.17.如图是由边长为1的小正三角形组成的网格图,点O和的顶点都在正三角形的格点上,将绕点O逆时针旋转得到.在网格中画出旋转后的;求AB边旋转时扫过的面积.【答案】解:如图,为所作;边旋转时扫过的面积扇形扇形.【解析】利用网格特点、等边三角形的性质和旋转的性质画出点A、B、C的对应点、、C,从而得到;根据扇形的面积公式,利用AB边旋转时扫过的面积扇形扇形进行计算即可.本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.四、解答题(本大题共5小题,共5.0分)18.一不透明的布袋里,装有红、黄、蓝三种颜色的小球除颜色外其余都相同,其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球不放回,再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;【答案】解:设口袋中黄球的个数为x个,根据题意得:,解得:,经检验:是原分式方程的解,口袋中黄球的个数为1个;画树状图得:共有12种等可能的结果,两次摸出都是红球的有2种情况,两次摸出都是红球的概率为:.【解析】设口袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19.如图1,2分别是某款篮球架的实物图与示意图,已知底座米,底座BC与支架AC所成的角,支架AF的长为米,篮板顶端F点到篮框D 的距离米,篮板底部支架HE与支架AF所成的角,求篮框D到地面的距离精确到米参考数据:,,,,【答案】解:延长FE交CB的延长线于M,过A作于G,在中,,,,在中,,,,,米.答:篮框D到地面的距离是米.【解析】延长FE交CB的延长线于M,过A作于G,解直角三角形即可得到结论.本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.20.如图,在矩形OABC中,,,点F是AB上的一个动点不与A,B重合,过点F的反比例函数的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;当k为何值时,的面积最大,最大面积是多少?【答案】解:在矩形OABC中,,,,为AB的中点,,点F在反比例函数的图象上,,该函数的解析式为;由题意知E,F两点坐标分别为,,,当时,S有最大值..最大值【解析】当F为AB的中点时,点F的坐标为,由此代入求得函数解析式即可;根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.21.如图,是的内接三角形,的角平分线AE交于点E,交BC于点D,过点E作直线.判断直线l与的位置关系,并说明理由;若在AE上取一点F使,求证:BF是的平分线;在的条件下,若,,求AE的长.【答案】解:直线l与相切,如图1,连接OE,平分,,,半径,,,直线l与相切;,,,,,,,平分;,,∽ ,,即,解得:.【解析】连接OE,由AE平分知,据此得,根据可得,从而得证;由知,由、及可得,从而得证;证 ∽ 得,据此可得答案.本题主要考查圆的综合问题,解题的关键是掌握垂径定理、圆周角定理、切线的判定及相似三角形的判定与性质等知识点.22.如图,已知点,以A为圆心作与y轴切于原点,与x轴的另一个交点为B,过B作的切线l.以直线l为对称轴的抛物线过点A,抛物线与x轴的另一个交点为点C,抛物线的顶点为点E,如果,求此抛物线的解析式;过点C作的切线CD,D为切点,求此切线长;点F是切线CD上的一个动点,当与相似时,求出CF的长.【答案】解:,与y轴切于原点,的半径为2.点B的坐标为为.点A、C关于对称,.又,设抛物线的解析式为,;抛物线经过点,解得:.抛物线的解析式为;如图1所示:连接AD,是的切线,,,由知,.,,在中,,.如图2所示:当时,连结AD.,,∽ ,,即.解得:.如图3所示:当时,连结AD、过点B作,垂足为F.,,∽ ,,即..综上所述,BF的长为或.【解析】由题意可知抛物线的对称轴为,然后设出抛物线的两点式,然后将点E的坐标代入求解即可;由于AD是的切线,连接AD,那么根据切线的性质知,在中,可利用勾股定理求得切线CD的长度;若与相似,则有两种情况需要考虑: ∽ , ∽ ,根据不同的相似三角形所得不同的比例线段即可求得CF的长.此题主要考查了二次函数解析式的确定、切线的性质、二次函数的对称性、勾股定理以及相似三角形的性质等重要知识,当相似三角形的对应边和对应角不明确的情况下,分类讨论是解题的关键.。
九年级上册济宁数学期末试卷测试卷附答案一、选择题1.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .102.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º3.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .164.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++5.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 6.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .57.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .22338.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 9.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 10.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣111.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252B .25C .251D 52二、填空题13.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.14.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.15.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.16.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)18.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.19.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.20.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.21.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m . 22.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.23.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.24.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…三、解答题25.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2. 26.已知二次函数y =x 2-22mx +m 2+m -1(m 为常数). (1)求证:不论m 为何值,该二次函数的图像与x 轴总有两个公共点;(2)将该二次函数的图像向下平移k (k >0)个单位长度,使得平移后的图像经过点(0,-2),则k 的取值范围是 .27.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.28.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.29.如图,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),(1)半径 BP 的长度范围为;(2)连接 BF 并延长交 CD 于 K,若 tan ∠KFC = 3 ,求 BP;(3)连接 GH,将劣弧 HG 沿着 HG 翻折交 BD 于点 M,试探究PMBP是否为定值,若是求出该值,若不是,请说明理由.30.如图,在平面直角坐标系中,一次函数y=12x+2的图象与y轴交于A点,与x轴交于B点,⊙P5P在x轴上运动.(1)如图1,当圆心P 的坐标为(1,0)时,求证:⊙P 与直线AB 相切;(2)在(1)的条件下,点C 为⊙P 上在第一象限内的一点,过点C 作⊙P 的切线交直线AB 于点D ,且∠ADC =120°,求D 点的坐标;(3)如图2,若⊙P 向左运动,圆心P 与点B 重合,且⊙P 与线段AB 交于E 点,与线段BO 相交于F 点,G 点为弧EF 上一点,直接写出12AG +OG 的最小值 . 31.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)32.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.2.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∵DEBC=12,∴14ADEABCSS∆∆=,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.4.B解析:B 【解析】 【分析】根据题意直接利用二次函数平移规律进而判断得出选项. 【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-. 故选:B . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.B解析:B 【解析】 【分析】 【详解】解:将点(m ,3m )代入反比例函数ky x=得, k=m•3m=3m 2>0; 故函数在第一、三象限, 故选B .6.B解析:B 【解析】 【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可. 【详解】∵这组数据有唯一的众数4, ∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4, ∴中位数为:3. 故选B . 【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.7.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b ,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.B解析:B 【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.9.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 10.C解析:C【解析】【分析】根据二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,可知二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点两种情况,然后分别计算出c 的值即可解答本题.【详解】解:∵二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,∴二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点,当二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点时,(﹣2)2﹣4×1×c =0,得c =1;当二次函数y =x 2﹣2x +c 的图象与轴有两个公共点,其中一个为原点时,则c =0,y =x 2﹣2x =x (x ﹣2),与x 轴两个交点,坐标分别为(0,0),(2,0);由上可得,c 的值是1或0,故选:C .【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.11.D解析:D【解析】【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 12.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题13.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr 即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr 即可求解. 【详解】底面周长是:10π, 则侧面展开图的面积是:12×10π×7=35πcm 2. 故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 14.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE 即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.15.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴∴FE’=171+,故答案是:171+【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.16.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.17.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 18.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72=故答案为:7 2 .【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.19.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2解析:272-【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=12MD=1,∴FM=DM×cos30°=3,∴2227MC FM CF=+=,∴A′C=MC﹣MA′=272-.故答案为272-.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.20.【解析】 如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.21.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案. 【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长, 即,1.62.825.2=教学楼高 解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.22.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(31x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.23.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 24.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.三、解答题25.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=±3∴x 1=1+3,x 2=1-3 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.26.(1)证明见解析;(2)k ≥34. 【解析】【分析】(1)根据判别式的值得到△=(2m -1)2 +3>0,然后根据判别式的意义得到结论; (2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果. 【详解】(1)证:当y =0时 x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2 +3>0∴方程x 2-mx +m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-mx +m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为: y =x 2-mx +m 2+m -1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k ≥34. 【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.27.(1)见解析;(2)见解析;(3)2【解析】【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=32OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积2.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.28.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.29.(1)95102BP <<;(2)BP=1;(3)1125PM BP = 【解析】【分析】(1)当点G 和点E 重合,当点G 和点D 重合两种临界状态,分别求出BP 的值,因为任意点都不重合,所以BP 在两者之间即可得出答案; (2)∠KFC 和∠BFE 是对顶角,得到tan =3BE BFE EF∠=,得出EF 的值,再根据△BEF ∽△FEG ,求出EG 的值,进而可求出BP 的值;(3)设圆的半径,利用三角函数表示出PO ,GO 的值,看PP G '∆用面积法求出P Q ',在P GQ '∆中由勾股定理得出MQ 的值,进而可求出PM 的值即可得出答案.【详解】(1)当G 点与E 点重合时,BG=BE ,如图所示:∵四边形ABCD 是矩形,AB=4,BC=3,∴BD=5,∵CE ⊥BD ,∴1122BC CD BD CE ⋅=⋅, ∴125CE =, 在△BEC 中,由勾股定理得:221293()55BE =-=,∴910BP =, 当点G 和点D 重合时,如图所示:∵△BCD 是直角三角形,∴BP=DP=CP , ∴52BP =, ∵任意两点都不重合,∴95102BP <<, (2)连接FG ,如图所示:∵∠KFC=∠BFE ,tan ∠KFC = 3,∴tan 3BFE ∠=,∴3BE EF=, ∴335BE EF ==, ∵BG 是圆的直径,∴∠BFG=90°,∴∠GFE+∠BFE=90°,∵CE ⊥BD ,∴∠FEG=∠FEB=90°,∴∠GFE+∠FGE=90°,∴∠BFE=∠FGE∴△BEF ∽△FEG ,∴2EF BE EG =⋅,∴99255EG =, ∴15EG =, ∴BG=EG+BE=2,∴BP=1,(3)PM BP为定值, 过P '作P Q BD '⊥,连接P G ',P M ',P P '交GH 于点O ,如下图所示:设5BP x PG P G P M ''====,则3PO P O x '==,4GO x =,∴1122P Q PG GO PP ''⋅=⋅, ∴245P Q x '=, ∴2275MQ GQ P G P Q x ''==-=, ∴145MG x =, ∴115PM PG MG x =-=, ∴1111:5525PM x x BP == 【点睛】本题考查了动圆问题,矩形的性质,面积法的运用,三角函数,相似三角形的判定和性质等知识点,属于圆和矩形的综合题,难度中等偏上,利用数形结合思想和扎实的基础是解决本题的关键.30.(1)见解析;(2)D(233,33+2);(3)372.【解析】【分析】(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=12∠ADC=60°,利用锐角三角函数求出AD,设D(m,12m+2),根据平面直角坐标系中任意两点之间的距离公式求出m的值即可;(3)在BA上取一点J,使得BJ=5,连接BG,OJ,JG,根据相似三角形的判定定理证出△BJG∽△BGA,列出比例式可得GJ=12AG,从而得出12AG+OG=GJ+OG,设J点的坐标为(n,12n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】(1)证明:如图1中,连接PA.∵一次函数y=12x+2的图象与y轴交于A点,与x轴交于B点,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB•OP,225+=OA OP∴OAOP=OBOA,点A在圆上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切线.(2)如图1﹣1中,连接PA,PD.∵DA,DC是⊙P的切线,∠ADC=120°,∴∠ADP=∠PDC=12∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA•tan3015,设D(m,12m+2),∵A(0,2),∴m2+(12m+2﹣2)2=159,解得m23∵点D在第一象限,∴m 23,∴D 233).(3)在BA上取一点J,使得BJ5,连接BG,OJ,JG.∵OA=2,OB=4,∠AOB=90°,∴AB22OA OB+2224+5∵BG5BJ5,∴BG2=BJ•BA,∴BGBJ=BABG,∵∠JBG=∠ABG,∴△BJG∽△BGA,∴JGAG=BGAB=12,∴GJ=12 AG,∴12AG+OG=GJ+OG,∵BJ 5,设J点的坐标为(n,12n+2),点B的坐标为(-4,0)∴(n+4)2+(12n+2)2=54,解得:n=-3或-5(点J在点B右侧,故舍去)∴J(﹣3,12),∴OJ22132⎛⎫+ ⎪⎝⎭37∵GJ+OG≥OJ,∴12AG+OG37∴12AG+OG37故答案为2. 【点睛】 此题考查的是一次函数与圆的综合大题,掌握相似三角形的判定及性质、切线的判定及性质、切线长定理、勾股定理、锐角三角函数和两点之间线段最短是解决此题的关键.31.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°, 综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC )=120° ∴∠BQA=∠CQA=∠BQC如图③,点Q 即为所求. (4)③⑤.①如下图所示,在RtABC 中,∠ABC=90°,O 为△ABC 的内心假设∠BAC=60°,∠ACB=30°∵点O 是△ABC 的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15° ∴∠AOC=180°-∠CAO -∠ACO=135°,∠AOB=180°-∠BAO -∠ABO=105°,∠BOC=180°-∠CBO -∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q .如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.32.5%。
2014-2015学年山东省济宁市嘉祥县老僧堂中学初三上学期期末数学试卷一、选择题1.(3分)下列标志中,可以看作是中心对称图形的是()A.B.C.D.2.(3分)用配方法解方程x2﹣4x﹣2=0变形后为()A.(x﹣2)2=6B.(x﹣4)2=6C.(x﹣2)2=2D.(x+2)2=6 3.(3分)函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)4.(3分)下列三个命题:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直平分弦并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④只有在同圆或等圆中,才会存在等弧.其中真命题的是()A.①②B.②③C.①③D.①④5.(3分)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°6.(3分)商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是()A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.(3分)圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是()A.x2﹣6x+10=0B.x2﹣6x+1=0C.x2﹣5x+6=0D.x2+6x+9=0 8.(3分)若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0C.k≤﹣D.k>﹣且k≠0 9.(3分)如图,A、C是函数的图象上的任意两点,过A作x轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD 的面积为S2.则()A.S1>S2B.S1<S2C.S1=S2D.S1与S2的大小关系不能确定10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有()A.1个B.2个C.3个D.4个二、填空题11.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为.12.(3分)如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.13.(3分)点A(3,n)关于原点对称的点的坐标是(m,2),那么m=,n=.14.(3分)已知⊙O的半径为5cm,则圆中最长的弦长为cm.15.(3分)如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是.三、计算题16.解方程:(1)(2x﹣1)2﹣4=0(2)(x﹣2)2﹣3(2﹣x)=4(3)(x+1)(x+2)=12.四、解答题17.(10分)不透明的口袋里装有3个球,这3个球分别标有数字1,2,3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.18.(10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.19.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?20.(8分)某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量y与销售单价x之间的关系可以近似地看作一次函数:y=﹣5x+150,物价部门规定这种笔记本每本的销售单价不得高于18元.(1)当每月销售量为70本时,获得的利润为多少元;(2)该文具店这种笔记本每月获得利润为w元,求每月获得的利润w元与销售单价x之间的函数关系式,并写出自变量的取值范围;(3)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?21.(10分)如图,已知直线y=﹣x+4与反比例函数y=的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求a的值;(2)求反比例函数的表达式;(3)求△AOB的面积;(4)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.22.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2014-2015学年山东省济宁市嘉祥县老僧堂中学初三上学期期末数学试卷参考答案与试题解析一、选择题1.(3分)下列标志中,可以看作是中心对称图形的是()A.B.C.D.【解答】解:根据中心对称的定义可得:A、C、D都不符合中心对称的定义.故选:B.2.(3分)用配方法解方程x2﹣4x﹣2=0变形后为()A.(x﹣2)2=6B.(x﹣4)2=6C.(x﹣2)2=2D.(x+2)2=6【解答】解:把方程x2﹣4x﹣2=0的常数项移到等号的右边,得到x2﹣4x=2方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=2+4配方得(x﹣2)2=6.故选:A.3.(3分)函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【解答】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.4.(3分)下列三个命题:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直平分弦并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④只有在同圆或等圆中,才会存在等弧.其中真命题的是()A.①②B.②③C.①③D.①④【解答】解:①圆既是轴对称图形又是中心对称图形,是真命题;②平分弦(不是直径)的直径垂直平分弦并且平分弦所对的两条弧,故原命题是假命题;③同圆或等圆中,相等的圆心角所对的弧相等,故原命题是假命题;④只有在同圆或等圆中,才会存在等弧,是真命题;其中真命题的是①④;故选:D.5.(3分)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.6.(3分)商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是()A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖【解答】解:根据概率的意义可得“抽到一等奖的概率为O.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.(3分)圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是()A.x2﹣6x+10=0B.x2﹣6x+1=0C.x2﹣5x+6=0D.x2+6x+9=0【解答】解:A选项∵△=b2﹣4ac=36﹣40=﹣4<0,∴此方程无解.B选项∵△=b2﹣4ac=36﹣4=32>0,∴此方程有解.又x1+x2==6.C,D选项的两根之和都不是6,故选:B.8.(3分)若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0C.k≤﹣D.k>﹣且k≠0【解答】解:整理方程得:ky2﹣7y﹣7=0由题意知k≠0,方程有实数根.∴△=b2﹣4ac=49+28k≥0∴k≥﹣且k≠0.故选:B.9.(3分)如图,A、C是函数的图象上的任意两点,过A作x轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD 的面积为S2.则()A.S1>S2B.S1<S2C.S1=S2D.S1与S2的大小关系不能确定【解答】解:依题意有:Rt△AOB和Rt△COD的面积是个定值|k|.所以S1=S2.故选:C.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有()A.1个B.2个C.3个D.4个【解答】解:抛物线的开口向上,则a>0;对称轴为x=﹣=1,即b=﹣2a,故b<0,故(2)错误;抛物线交y轴于负半轴,则c<0,故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0,故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0,把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c <0,则(a+b+c)(a﹣b+c)>0,故(4)错误;不正确的是(2)(3)(4);故选:C.二、填空题11.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为12.【解答】解:解方程x2﹣12x+35=0,得x1=5,x2=7,∵1<第三边<7,∴第三边长为5,∴周长为3+4+5=12.12.(3分)如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是0.【解答】解:根据二次函数的定义,得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴当k=0时,这个函数是二次函数.13.(3分)点A(3,n)关于原点对称的点的坐标是(m,2),那么m=﹣3,n=﹣2.【解答】解:根据两点关于原点的对称,横纵坐标均变号,∴m=﹣3,n=﹣2.故答案为:﹣3;﹣2.14.(3分)已知⊙O的半径为5cm,则圆中最长的弦长为10cm.【解答】解:∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.故答案为10.15.(3分)如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是.【解答】解:观察这个图可知:黑白石子的面积相等,即其概率相等,各占.三、计算题16.解方程:(1)(2x﹣1)2﹣4=0(2)(x﹣2)2﹣3(2﹣x)=4(3)(x+1)(x+2)=12.【解答】解:(1)方程变形得:(2x﹣1)2=4,开方得:2x﹣1=2或2x﹣1=﹣2,解得:x1=1.5,x2=﹣0.5;(2)方程变形得:(x﹣2)2+3(x﹣2)﹣4=0,分解因式得:(x﹣2﹣1)(x﹣2+4)=0,解得:x1=3,x2=﹣2;(3)方程整理得:x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x1=2,x2=﹣5.四、解答题17.(10分)不透明的口袋里装有3个球,这3个球分别标有数字1,2,3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.【解答】解:(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是或P(摸到标有数字是2的球)=(3分);(2)游戏规则对双方公平.(1分)(注:学生只用一种方法做即可)(4分)由图(或表)可知,P(小明获胜)=,P(小东获胜)=,(2分)∵P(小明获胜)=P(小东获胜),∴游戏规则对双方公平.(1分)18.(10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.【解答】(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.19.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得.∴y=;(2)∵b=﹣1,∴拱桥顶O到CD的距离为1m,∴=5(小时).所以再持续5小时到达拱桥顶.20.(8分)某文具店销售一种进价为每本10元的笔记本,为获得高利润,以不低于进价进行销售,结果发现,每月销售量y与销售单价x之间的关系可以近似地看作一次函数:y=﹣5x+150,物价部门规定这种笔记本每本的销售单价不得高于18元.(1)当每月销售量为70本时,获得的利润为多少元;(2)该文具店这种笔记本每月获得利润为w元,求每月获得的利润w元与销售单价x之间的函数关系式,并写出自变量的取值范围;(3)当销售单价定为多少元时,每月可获得最大利润,最大利润为多少元?【解答】解:(1)当y=70时,70=﹣5x+150,解得x=16,则(16﹣10)×70=420元;(2)w=(x﹣10)(﹣5x+150)=﹣5x2+200x﹣1500,∵,∴自变量的取值范围为10≤x≤18;(3)w=﹣5x2+200x﹣1500=﹣5(x﹣20)2+500∵a=﹣5<0,∴当10≤x≤18时,w随x的增大而增大,∴当x=18时,w有最大值,为480元.答:当销售单价定为18元时,每月可获得最大利润,最大利润为480元.21.(10分)如图,已知直线y=﹣x+4与反比例函数y=的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求a的值;(2)求反比例函数的表达式;(3)求△AOB的面积;(4)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)∵点A(﹣2,a)在y=﹣x+4的图象上,∴a=2+4=6;(2)将A(﹣2,6)代入y=,得k=﹣12,所以反比例函数的解析式为y=﹣;(3)如图:过A点作AD⊥x轴于D,∵A(﹣2,6),∴AD=6,在直线y=﹣x+4中,令y=0,得x=4,∴B(4,0),∴OB=4,∴△AOB的面积S=OB×AD=×4×6=12.△AOB的面积为12;(4)设一次函数与反比例函数的另一个交点为C,把y=﹣x+4代入y=﹣,整理得x2﹣4x﹣12=0,解得x=6或﹣2,当x=6时,y=﹣6+4=﹣2,所以C点坐标(6,﹣2),由图象知,要使一次函数的值大于反比例函数的值,x的取值范围是:x<﹣2或0<x<6.22.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.=S△PAQ+S△PCQ=×(﹣m2+m)×6∵S△PAC=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,Rt ABC 中,90C ∠=︒,4b =,5c =,则sin A 的值是( )A .34B .45C .35 D .562.下列事件中是随机事件的个数是( )①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A .0B .1C .2D .33.函数y =ax 2与y =﹣ax +b 的图象可能是( )A .B .C .D .4.已知x 1,x 2是关于x 的方程x 2+ax -2b =0的两个实数根,且x 1+x 2=-2,x 1·x 2=1,则b a 的值是()A .B .-C .4D .-15.如图,已知直线25y x =-+与x 轴交于点A ,与y 轴交于点B ,将AOB ∆沿直线AB 翻折后,设点O 的对应点为点C ,双曲线()0k y x x =>经过点C ,则k 的值为( )A .8B .6C .43D .45 6.对于二次函数22(1)2y x =-+的图象,下列说法正确的是A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点.7.下列银行标志图片中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,在平行四边形ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于点G ,2,4,3AF cm DF cm AG cm ===,则AC 的长为( )A .14cmB .15cmC .16cmD .463cm 9.下列事件中是必然事件的是( )A .﹣a 是负数B .两个相似图形是位似图形C .随机抛掷一枚质地均匀的硬币,落地后正面朝上D .平移后的图形与原来的图形对应线段相等10.将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,A n 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为( )A .14cm 2B .14n -cm 2 C .4n cm 2 D .(14)n cm 2 11.函数2y ax a =+与()0a y a x =≠,在同一坐标系中的图象可能是( ) A .B .C .D .12.在平面直角坐标系中,将点A (−1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是( )A .(−4,−2)B .(2,2)C .(−2,2)D .(2,−2)二、填空题(每题4分,共24分)13.在双曲线3m y x+=的每个分支上,函数值y 随自变量x 的增大而增大,则实数m 的取值范围是________. 14.如图,在△ABC 中,∠BAC=35°,将△ABC 绕点A 顺时针方向旋转50°,得到△AB′C′,则∠B′AC 的度数是 .15.两幢大楼的部分截面及相关数据如图,小明在甲楼A 处透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D 处喷出,水流正好经过E ,F . 若点B 和点E 、点C 和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m ,再向左后退了____m ,恰好把水喷到F 处进行灭火.16.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.17.如图,在等腰Rt ABC △中,90ABC ∠=︒,点D 是以AB 为直径的圆与AC 的交点,若4AB =,则图中阴影部分的面积为__________.18.如图所示,等边△ABC 中D 点为AB 边上一动点,E 为直线AC 上一点,将△ADE 沿着DE 折叠,点A 落在直线BC 上,对应点为F ,若AB =4,BF :FC =1:3,则线段AE 的长度为_____.三、解答题(共78分)19.(8分)如图,在某广场上空飘着一只气球P ,A 、B 是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P 的高度(精确到0.1米).20.(8分)已知关于x 的方程2(1)220k x kx -++= (1)求证:无论k 为何值,方程总有实数根.(2)设1x ,2x 是方程2(1)220k x kx -++=的两个根,记211212x x S x x x x =+++,S 的值能为2吗?若能,求出此时k 的值;若不能,请说明理由.21.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O 为位似中心,△ABC 与△A 1B 1C 1位似比为1:2,在y 轴的左侧,请画出△ABC 放大后的图形△A 1B 1C 1.22.(10分)如图,△ABC 中,点E 在BC 边上,AE =AB ,将线段AC 绕A 点逆时针旋转到AF 的位置,使得∠CAF =∠BAE ,连接EF ,EF 与AC 交于点G .求证:EF =BC .23.(10分)直线1y k x b =+与双曲线2k y x=只有一个交点12A (,),且与x 轴、y 轴分别交于B 、C 两点,AD 垂直平分OB ,交x 轴于点D . (1)求直线1y k x b =+、双曲线2k y x=的解析式; (2)过点B 作x 轴的垂线交双曲线2k y x =于点E ,求 ABE ∆的面积.24.(10分)“互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?25.(12分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.26.用合适的方法解方程:(1)(1)22x x x -=-;(2)23610x x -+=.参考答案一、选择题(每题4分,共48分)1、C【分析】根据勾股定理求出a ,然后根据正弦的定义计算即可.【详解】解:根据勾股定理可得a 223c b -= ∴3sin 5a A c == 故选C .【点睛】此题考查的是勾股定理和求锐角三角函数值,掌握利用勾股定理解直角三角形和正弦的定义是解决此题的关键. 2、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】①掷一枚硬币正面朝上是随机事件;②五边形的内角和是540°是必然事件;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、B【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b ”的取值无关.4、A【解析】根据根与系数的关系和已知x 1+x 2和x 1•x 2的值,可求a 、b 的值,再代入求值即可.【详解】解:∵x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,∴x 1+x 2=﹣a=﹣2,x 1•x 2=﹣2b=1,解得a=2,b=,∴b a =()2=.故选A .5、A【分析】作CD y ⊥轴于D ,CE x ⊥轴于E ,设(),C a b .依据直线的解析式即可得到点A 和点B 的坐标,进而得出5BC BO ==,52AC AO ==,再根据勾股定理即可得到2a b =,进而得出()4,2C ,即可得到k 的值. 【详解】解:作CD y ⊥轴于D ,CE x ⊥轴于E ,如图,设(),C a b ,当0x =时,255y x =-+-,则()0,5B ,当0y =时,250x -+=,解得52x =,则5,02A ⎛⎫ ⎪⎝⎭, ∵AOB ∆沿直线AB 翻折后,点O 的对应点为点C ,∴5BC BO ==,52AC AO ==, 在Rt BCD ∆中,()22255a b +-=,①在Rt ACE ∆中,2225522a b ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,② ①-②得2a b =,把2a b =代入①得220b b ,解得2b =, ∴4a =,∴()4,2C ,∴428k =⨯=.故选A .【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.6、D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A 、B 、C ,令y =0利用判别式可判断D ,则可求得答案.【详解】∵y =2(x−1)2+2,∴抛物线开口向上,对称轴为x =1,顶点坐标为(1,2),故A 、B 、C 均不正确,令y =0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x 轴没有交点,故D 正确;故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ).7、B【解析】由题意根据轴对称图形与中心对称图形的概念进行依次判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、是轴对称图形,也是中心对称图形,故本选项正确;C 、是轴对称图形,不是中心对称图形,故本选项错误;D 、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【分析】延长CB ,FE 交于H ,由AFE BHE ∆≅∆,AFGCHG ∆∆,即可得出答案.【详解】如图所示,延长CB 交FG 与点H∵四边形ABCD 为平行四边形∴BC=AD=DF+AF=6cm ,BC ∥AD∴∠FAE=∠HBE又∵E 是AB 的中点∴AE=BE在△AEF 和△BEH 中 FAE HBE AE BE AEF BEH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEF ≌△BEH(ASA)∴BH=AF=2cm∴CH=8cm∵BC ∥CD∴∠FAG=∠HCG又∠FGA=∠CGH∴△AGF ∽△CGH∴2184 AG AFCG CH===∴CG=4AG=12cm∴AC=AG+CG=15cm故答案选择B.【点睛】本题考查了全等三角形的判定以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解决本题的关键.9、D【解析】分析: 根据必然事件指在一定条件下,一定发生的事件,可得答案.详解: A. −a是非正数,是随机事件,故A错误;B. 两个相似图形是位似图形是随机事件,故B错误;C. 随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C错误;D. 平移后的图形与原来对应线段相等是必然事件,故D正确;故选D.点睛:考查随机事件,解决本题的关键是正确理解随机事件,不可能事件,必然事件的概念.10、B【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.【详解】由题意可得阴影部分面积等于正方形面积的14,即是14,5个这样的正方形重叠部分(阴影部分)的面积和为14×4,n个这样的正方形重叠部分(阴影部分)的面积和为14×(n-1)=n14-cm1.故选B.【点睛】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.11、D【解析】由二次函数y=ax2+a中一次项系数为0,我们易得函数y=ax2+a的图象关于y轴对称,然后分当a>0时和a<0时两种情况,讨论函数y=ax2+a的图象与函数y=ax(a≠0)的图象位置、形状、顶点位置,可用排除法进行解答.【详解】解:由函数y=ax2+a中一次项系数为0,我们易得函数y=ax2+a的图象关于y轴对称,可排除A;当a>0时,函数y=ax2+a的图象开口方向朝上,顶点(0,a)点在x轴上方,可排除C;当a<0时,函数y=ax2+a的图象开口方向朝下,顶点(0,a)点在x轴下方,函数y=ax(a≠0)的图象位于第二、四象限,可排除B;故选:D.【点睛】本题考查的知识点是函数的表示方法-图象法,熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键.12、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为D二、填空题(每题4分,共24分)13、m<﹣1【分析】根据在双曲线的每个分支上,函数值y随自变量x的增大而增大,可以得到m+1<0,从而可以求得m的取值范围.【详解】∵在双曲线的每个分支上,函数值y随自变量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案为m<﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.【分析】先根据旋转的性质,求得∠BAB'的度数,再根据∠BAC=35°,求得∠B′AC 的度数即可.【详解】∵将ABC 绕点A 顺时针方向旋转50°得到AB C ''△,∴50BAB '∠=︒,又∵35BAC ∠=︒,∴503515B AC '∠=︒-︒=︒,故答案为:15°.【点睛】本题主要考查了旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.1510【详解】设直线AE 的解析式为:y =kx +21.2.把E (20,9.2)代入得,20k +21.2=9.2,∴k =-0.6,∴y =-0.6x +21.2.把y =6.2代入得,-0.6x +21.2=6.2,∴x =25,∴F (25,6.2).设抛物线解析式为:y=ax 2+bx +1.2,把E (20,9.2), F (25,6.2)代入得,40020 1.29.262525 1.2 6.2a b a b ++=⎧⎨++=⎩ ,解之得:0.041.2a b =-⎧⎨=⎩, ∴y =-0.04x 2+1.2x +1.2,设向上平移0.4m ,向左后退了h m, 恰好把水喷到F 处进行灭火由题意得y =-0.04(x +h )2+1.2(x+h )+1.2+0.4,把F (25,6.2)代入得,6.2=-0.04×(25+h )2+1.2(25+h )+1.2+0.4,整理得:h 2+20h -10=0,解之得:110x =- ,210x =-.∴向后退了10)m本题考查了二次函数和一次函数的实际应用,设直线AE 的解析式为:y =kx +21.2.把E (20,9.2)代入求出直线解析式,从而求出点F 的坐标.把E (20,9.2), F (25,6.2)代入y=ax 2+bx +1.2求出二次函数解析式.设向左平移了h m ,表示出平移后的解析式,把点F 的坐标代入可求出k 的值.16、1【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是1,所以这组数据的众数为1,故答案为:1.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.17、6π-【分析】取AB 的中点O ,连接OD ,根据圆周角定理得出290DOB A ︒∠=∠=,根据阴影部分的面积ABC AOD S S ∆∆=--扇形BOD 的面积进行求解.【详解】取AB 的中点O ,连接OD ,∵在等腰Rt ABC △中,90ABC ∠=︒,4AB =,∴2OD OB OA ===,45A ︒∠=,∴290DOB A ︒∠=∠=,∴阴影部分的面积ABC AOD S S ∆∆=--扇形BOD 的面积,211902=442282622360πππ⨯⨯⨯-⨯⨯-=--=-, 故答案为:6π-.【点睛】本题考查了圆周角定理,扇形面积计算公式,通过作辅助线构造三角形与扇形是解题的关键.18、135或14【解析】点E在直线AC上,本题分两类讨论,翻折后点F在BC线段上或点F在CB延长线上,根据一线三角的相似关系求出线段长.【详解】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE,∴BD DF BF CF EF CE==∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴1 34 BD DFx x ==-解得BD=34x-,DF=4xx-∵BD+DF=AD+BD=4∴34 44xx x+= --解得x=135,经检验当x=135时,4﹣x≠0∴x=135是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF ∽△CFE ∴BD DF BF CF EF CE== ∵AB =4,BF :FC =1:3,可得BF =2,CF =6设AE =a ,可知AE =EF =a ,CE =a ﹣4 ∴264BD DF a a ==- 解得BD =124a -,DF =24a a - ∵BD+DF =BD+AD =4 ∴122444a a a +=--解得a =14 经检验当a =14时,a ﹣4≠0∴a =14是原方程的解,综上可得线段AE 的长为135或14 故答案为135或14 【点睛】本题考查了翻折问题,根据点在不同的位置对问题进行分类,并通过一线三角形的相似关系建立方程是本题的关键.三、解答题(共78分)19、气球P 的高度约是32.9米.【分析】过点P 作PC ⊥AB 于C 点,由PC 及∠A 、∠B 的正切值表示出AB ,即AB=tan tan PC PC A B+∠∠,求得PC 即可.【详解】过点P 作PC ⊥AB 于C ,设PC = x 米,在Rt △PAC 中,∠PAB=45°,在Rt△PBC中,∠PBA=30°,∵ tan∠PBA =PC BC,∴BC==(米)又∵ AB = 90米,∴AB = AC + CB =90x=米∴x=≈32.9(米),答:气球P的高度约是32.9米.20、(1)见解析;(2)2k=时,S的值为2【解析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k≠1时,方程是一元二次方程,所以证明判别式是非负数即可;(2)由韦达定理得121222,,11kx x x xk k+=-=--,代入到2112122x xx xx x+++=中,可求得k的值.【详解】解:(1)①当10k-=,即k=1时,方程为一元一次方程220x+=,∴1x=-是方程的一个解.②当10k-≠时,1k≠时,方程为一元二次方程,则222(2)42(1)4884(1)40k k k k k∆=-⨯-=-+=-+>,∴方程有两不相等的实数根.综合①②得,无论k为何值,方程总有实数根.(2)S的值能为2,根据根与系数的关系可得121222,11kx x x xk k+=-⋅=--∴22211212121212()x x x xS x x x xx x x x+=+++=++=22121212()22()2211x x k kx xx x k k+++=--=--,即2320k k-+=,解得11k=,22k=∵方程有两个根,∴10k-≠∴1k=应舍去,∴2k =时,S 的值为2【点睛】 本题考查了根与系数的关系及根的判别式,熟练掌握12b x x a +=-,12c x x a⋅=是解题的关键. 21、见解析.【分析】根据位似图形的画图要求作出位似图形即可.【详解】解:如图所示,△A 1B 1C 1即为所求.【点睛】本题主要考察位似图形的作图,掌握位似图形的画法是解题的关键.22、见解析【分析】由旋转前后图形全等的性质可得AC =AF ,由“SAS”可证△ABC ≌△AEF ,可得EF =BC .【详解】证明:∵∠CAF =∠BAE ,∴∠BAC =∠EAF ,∵将线段AC 绕A 点旋转到AF 的位置,∴AC =AF ,在△ABC 与△AEF 中,AB AE BAC EAF AC AF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AEF (SAS ),∴EF =BC ;【点睛】本题主要考查的是旋转前后图形全等的性质以及全等三角形的判定,掌握全等三角形的判定是解题的关键.23、(1)24y x =-+;2y x =;(2)12ABE S ∆=.(2)根据题意求出BE 和BD 的值,运用三角形面积公式即可得解.【详解】解:(1)由已知得OD 1=,OB 2DO 2==,∴B 20(,). 将点A 、点B 坐标代入1y k x b =+,得1102k 2k b b =+⎧⎨=+⎩,解得1k 24b =-⎧⎨=⎩, 直线解析式为y 2x 4=-+;将点A 坐标代入2k y x=得2k 2=, ∴反比例函数的解析式为2y x =. (2)∵E 和B 同横轴坐标,∴当x 2=时2y 1x==,即 BE 1= , ∵B 20(,),A 12(,),D (1,0) ∴BD=1,即为ΔABE 以BE 为底的高, ∴ΔABE 11S BE ?DB 22==. 【点睛】本题考查反比例函数和几何图形的综合问题,熟练掌握待定系数法求反比例函数解析式以及运用数形结合思维分析是解题的关键.24、(1)5500y x =-+;(2)当销售单价为70元时,最大利润4500元;(3)销售单价定为60元.【分析】(1)根据降价1元,销量增加5条,则降价()80x -元,销量增加()580-x 件,即可得出关系式; (2)根据总利润=每条利润×销量,可建立函数关系式,再根据二次函数最值的求法得到最大利润;(3)先求出利润为(3800+200)元时的售价,取符合题意的价格即可.【详解】解:(1)由题意可得:()100580y x =+-整理得5500y x =-+(2)()()405500w x x =--+ 2570020000x x =-+-()25704500x =--+∴ 当70x =时,w 4500=最大值即当销售单价为70元时,最大利润4500元.(3)由题意,得:()257045003800200x --+=+解得:160x =,280x =抛物线开口向下,对称轴为直线70x = ∴当6080x ≤≤时,符合该网店要求而为了让顾客得到最大实惠,故60x =∴当销售单价定为60元时,即符合网店要求,又能让顾客得到最大实惠.【点睛】本题考查了二次函数的应用,熟练掌握销售问题的等量关系建立二次函数模型是解题的关键.25、(1)0.3 ,45;(2)108°;(3)16. 【分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ;(2)B 组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a =30100=0.3,b =100×0.45=45(人). 故答案为0.3,45;(2)360°×0.3=108°. 答:扇形统计图中B 组对应扇形的圆心角为108°. (3)将同一班级的甲、乙学生记为A 、B ,另外两学生记为C 、D ,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16. 【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26、(1)121,2x x ==;(2)11x =+,2x = 【分析】(1)把方程整理后左边进行因式分解,求方程的解即可;(2)方程整理配方后,开方即可求出解;【详解】(1)(1)22x x x -=- ,移项整理得:(1)2(1)0x x x ---=,提公因式得:(1)(2)0x x --=,∴10x -=或20x -=,解得:121,2x x ==;(2)23610x x -+= ,方程移项得:2361x x -=-,二次项系数化成1得:2123x x -=-, 配方得:212113x x -+=-+, 即22(1)3x -=,开方得:1x -=,解得:11x =2x = 【点睛】 本题主要考查了解一元二次方程-配方法、因式分解法,熟练掌握一元二次方程的各种解法是解题的关键.。
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,PA ,PB 切⊙O 于点A ,B ,点C 是⊙O 上一点,且∠P =36°,则∠ACB =( )A .54°B .72°C .108°D .144°2.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是( ) 年龄 13 14 15 16 17 人数 12231A .16,15B .16,14C .15,15D .14,153.若抛物线y=x 2-2x-1与x 轴的一个交点坐标为(m ,0),则代数式2m 2-4m+2017的值为( ) A .2019B .2018C .2017D .20154.如图,抛物线2y x x =+交x 轴的负半轴于点A ,点B 是y 轴的正半轴上一点,点A 关于点B 的对称点Aʹ恰好落在抛物线上.过点Aʹ作x 轴的平行线交抛物线于另一点C ,则点Aʹ的纵坐标为()A .1.5B .2C .2.5D .35.按如图所示的运算程序,输入的 x 的值为12,那么输出的 y 的值为( )A .1B .2C .3D .46.若14b a b =-,则ab的值为( ) A .5 B .15C .3D .137.如图,在半径为1的⊙O 中,直径AB 把⊙O 分成上、下两个半圆,点C 是上半圆上一个动点(C 与点A 、B 不重合),过点C 作弦CD ⊥AB ,垂足为E ,∠OCD 的平分线交⊙O 于点P ,设CE =x ,AP =y ,下列图象中,最能刻画y 与x 的函数关系的图象是( )A .B .C .D .8.如图,矩形ABCD 中,BC =4,CD =2,O 为AD 的中点,以AD 为直径的弧DE 与BC 相切于点E ,连接BD ,则阴影部分的面积为( )A .πB .2πC .π+2D .2π+4 9.如图,在ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(1,0)-.以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C '',使得A B C ''的边长是ABC 的边长的2倍.设点B 的坐标是13,2⎛⎫- ⎪⎝⎭,则点B '的坐标是( )A .(3,1)-B .(4,)1-C .(5,2)-D .(6,1)-10.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =110°,则∠BCD 的度数为( )A .55°B .70°C .110°D .125°二、填空题(每小题3分,共24分)11.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.12.边长为1的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF AE ⊥,交CD 边于点F ,若CF 的长为316,则CE 的长为__________.13.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 (结果保留π)14.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=3m ,AD= 2m ,弧CD 所对的圆心角为∠COD=120°.现将窗框绕点B 顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m .15.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.16.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB= .17.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第7个小三角形的面积为_________________18.某水果公司以1.1元/千克的成本价购进10000kg 苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下: 苹果损坏的频率mn0.106 0.097 0.101 0.098 0.099 0.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克. 三、解答题(共66分)19.(10分)计算:|13|+()2160tan 30cos --︒-︒0327(253).20.(6分)下面是一位同学做的一道作图题:已知线段a 、b 、c (如图所示),求作线段x ,使::a b c x =.a b c他的作法如下:1.以下O 为端点画射线OM ,ON .2.在OM 上依次截取OA a =,AB b =.3.在ON 上截取OC c =.4.联结AC ,过点B 作BDAC ,交ON 于点D .所以:线段______就是所求的线段x .(1)试将结论补完整:线段______就是所求的线段x . (2)这位同学作图的依据是______;(3)如果4OA =,5AB =,AC m =,试用向量m 表示向量DB .21.(6分)如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、OC 、BC(1)求证:∠ACO =∠BCD ;(2)若EB =8cm ,CD =24cm ,求⊙O 的面积.(结果保留π) 22.(8分)解下列方程 (1)223x x += (2)3(2)2x x x -=-23.(8分)如图,矩形AOBC 放置在平面直角坐标系xOy 中,边OA 在y 轴的正半轴上,边OB 在x 轴的正半轴上,抛物线的顶点为F ,对称轴交AC 于点E ,且抛物线经过点A (0,2),点C ,点D (3,0).∠AOB 的平分线是OE ,交抛物线对称轴左侧于点H ,连接HF .(1)求该抛物线的解析式;(2)在x 轴上有动点M ,线段BC 上有动点N ,求四边形EAMN 的周长的最小值;(3)该抛物线上是否存在点P ,使得四边形EHFP 为平行四边形?如果存在,求出点P 的坐标;如果不存在,请说明理由.24.(8分)如图,点A 、点B 的坐标分别为(4,0)、(0,3),将线段BA 绕点A 沿顺时针旋转90°,设点B 旋转后的对应点是点B 1,求点B 1的坐标.25.(10分)关于x 的一元二次方程2220x x m ++=有两个不相等的实数根. (1)求m 的取值范围;(2)若1x ,2x 是一元二次方程2220x x m ++=的两个根,且22128x x +=,求m 的值.26.(10分)先锋中学数学课题组为了了解初中学生阅读数学教科书的现状,随机抽取某校部分初中学生进行调查,调查结果分为“重视”、“一般”、“不重视”、“说不清楚”四种情况(依次用A 、B 、C 、D 表示),依据相关数据绘制成以下不完整的统计表和统计图,请根据图表中的信息解答下列问题: 类别 频数 频率 重视 a 0.25 一般 60 0.3 不重视 b c 说不清楚100.05(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有2000名学生,请估计该校“不重视阅读数学教科书”的学生人数.参考答案一、选择题(每小题3分,共30分)1、B【解析】连接AO,BO,∠P=36°,所以∠AOB=144°,所以∠ACB=72°.故选B.2、A【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点睛】本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.3、A【分析】将()0m ,代入抛物线的解析式中,可得2210m m --=,变形为2242m m -=然后代入原式即可求出答案. 【详解】将()0m ,代入221y x x =--, ∴2210m m --=, 变形得:2242m m -=,∴2242017220172019m m -+=+=, 故选:A . 【点睛】本题考查抛物线的与x 轴的交点,解题的关键是根据题意得出2242m m -=,本题属于基础题型. 4、B【分析】先求出点A 坐标,利用对称可得点'A 横坐标,代入2y x x =+可得纵坐标. 【详解】解:令0y =得20x x +=,即(1)0x x += 解得120,1x x ==- (1,0)A ∴-点B 是y 轴的正半轴上一点,点A 关于点B 的对称点Aʹ恰好落在抛物线上'A ∴点的横坐标为1当1x =时,2y = 所以点Aʹ的纵坐标为2. 故选:B 【点睛】本题考查了二次函数的图像,熟练利用函数解析式求点的坐标是解题的关键. 5、D【分析】把1=2x 代入程序中计算,知道满足条件,即可确定输出的结果. 【详解】把1=2x 代入程序,∵12是分数, ∴120=-=-<y x不满足输出条件,进行下一轮计算; 把=2x -代入程序, ∵2-不是分数 ∴()()22112122214044=--+=-⨯--⨯-+=>y x x 满足输出条件,输出结果y=4, 故选D. 【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则. 6、A【分析】根据比例的性质,可用b 表示a ,根据分式的性质,可得答案. 【详解】由14b a b =-,得 4b =a−b .,解得a =5b ,55a b b b== 故选:A . 【点睛】本题考查了比例的性质,利用比例的性质得出b 表示a 是解题关键. 7、A【分析】连接OP ,根据条件可判断出PO ⊥AB ,即AP 是定值,与x 的大小无关,所以是平行于x 轴的线段.要注意CE 的长度是小于1而大于0的. 【详解】连接OP , ∵OC =OP , ∴∠OCP =∠OPC .∵∠OCP =∠DCP ,CD ⊥AB , ∴∠OPC =∠DCP . ∴OP ∥CD . ∴PO ⊥AB . ∵OA =OP =1,∴AP =y <x <1). 故选A .【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.8、A【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE和四边形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【详解】连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC.∵四边形ABCD为矩形,OA=OD=2,而CD=2,∴四边形ODCE和四边形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴阴影部分的面积=S扇形EOD2902360ππ⋅⋅==.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形面积公式.9、A【分析】作BD ⊥x 轴于D ,B′E ⊥x 轴于E ,根据相似三角形的性质求出CE ,B′E 的长,得到点B′的坐标. 【详解】作BD ⊥x 轴于D ,B′E ⊥x 轴于E , ∵点C 的坐标是(1,0)-,点B 的坐标是13,2⎛⎫- ⎪⎝⎭, ∴CD=2,BD=12, 由题意得:ABC C ∽△A B C '',相似比为1:2, ∴''12BD CD BC B E CE B C ===, ∴CE=4,B′E=1, ∴点B′的坐标为(3,-1), 故选:A .【点睛】本题考查了位似变换、坐标与图形性质,熟练掌握位似变换的性质是解答的关键. 10、D【分析】根据圆周角定理求出∠A ,根据圆内接四边形的性质计算即可. 【详解】由圆周角定理得,∠A=12∠BOD=55°, ∵四边形ABCD 为⊙O 的内接四边形, ∴∠BCD=180°−∠A=125°, 故选:C. 【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质.二、填空题(每小题3分,共24分) 11、1【分析】由S 阴影部分图形=S 四边形BDFE =BD×OE ,即可求解.【详解】令y =0,则:x =±1,令x =0,则y =2, 则:OB =1,BD =2,OB =2,S 阴影部分图形=S 四边形BDFE =BD×OE =2×2=1. 故:答案为1. 【点睛】本题考查的是抛物线性质的综合运用,确定S 阴影部分图形=S 四边形BDFE 是本题的关键. 12、14或 34【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE ∽△ECF ,得出AB BE CE CF=,代入数值得到关于CE 的一元二次方程,求解即可. 【详解】解:∵正方形ABCD , ∴∠B=∠C ,∠BAE+∠BEA=90°, ∵EF ⊥AE ,∴∠BEA+∠CEF=90°, ∴∠BAE=∠CEF , ∴△ABE ∽△ECF ,AB BECE CF∴=. 21,1131661630,CE CECE CE -∴=∴-+=解得,CE=14或34. 故答案为:14或34. 【点睛】考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大. 13、3π【解析】试题分析:此题考查扇形面积的计算,熟记扇形面积公式2360n r S π=,即可求解.根据扇形面积公式,计算这个扇形的面积为212033360Sππ==.考点:扇形面积的计算14、(13+)【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=12CD=123,∴ON=33CN=12m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=12m,3,∴BH=BC-CH=32 m,∴22BH OH+3,3+1)m,故答案为:3).【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.15、14【分析】直接根据概率公式求解.【详解】解:随机摸出一个球是红色的概率=421125=++.故答案为:14. 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数. 16、4【解析】∵AB ⊥BD ,ED ⊥BD ∴∠B=∠D=90°,∠A+∠ACB=90° ∵AC ⊥CE ,即∠ECD+∠ACB=90°∴∠A=∠ECD ∴△ABC ∽△CDE ∴AB BCCD DE= ∴AB=4 17、1312 【分析】记原来三角形的面积为s ,第一个小三角形的面积为1s ,第二个小三角形的面积为2s ,…,求出1s ,2s ,3s ,探究规律后即可解决问题.【详解】解:记原来三角形的面积为s ,第一个小三角形的面积为1s ,第二个小三角形的面积为2s ,…,∵121142s s s ==, 24111442s s s =⨯=,3612s s =,∴22211111222222n n n n s s -==⨯⨯⨯=,∴7271131122s ⨯-==.故答案为:1312.【点睛】本题考查了三角形中位线定理,三角形的面积 ,图形类规律探索等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题. 18、0.2 3【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x 元,然后根据“售价=进价+利润”列方程解答.【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,所以苹果的损坏概率为0.2.根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克. 设每千克苹果的销售价为x 元,则应有9000x=2.2×20000+23000, 解得x=3.答:出售苹果时每千克大约定价为3元可获利润23000元. 故答案为:0.2,3. 【点睛】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.三、解答题(共66分) 19、1.【分析】根据根式、绝对值、指数的运算,以及特殊角的三角函数值,即可求得.【详解】|1(﹣cos60°)2﹣1tan 30︒+)01+4﹣1 =1 【点睛】本题考查根式、绝对值、指数的运算,以及特殊角的三角函数值,属基础题.20、(1)CD ;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)94DB m =- 【分析】(1)根据作图依据平行线分线段成比例定理求解可得;(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得; (3)先证△OAC ∽△OBD 得AC OA BD OB =,即94BD AC =,从而知94BD AC =,又AC m =,BD 与AC 反向可得出结果.【详解】解:(1)根据作图知,线段CD 就是所求的线段x , 故答案为:CD ;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例). (3)BD AC ∥,∴△OAC ∽△OBD ,AC OABD OB∴=.4=OA ,5AB =,49AC BD ∴=.得94BD AC =.94BD AC =,AC m =,BD 与AC 反向,94DB m ∴=-.【点睛】本题主要考查作图-复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算. 21、(1)见解析;(2)169π(cm 2).【分析】(1)根据垂径定理,即可得BC =BD ,根据同弧所对的圆周角相等,证出∠BAC =∠BCD ,再根据等边对等角,即可得到∠BAC =∠ACO ,从而证出∠ACO =∠BCD ;(2)根据垂径定理和勾股定理列出方程,求出圆的半径,即可求出圆的面积. 【详解】解:(1)∵AB 为⊙O 的直径,AB ⊥CD , ∴BC =BD . ∴∠BAC =∠BCD . ∵OA =OC , ∴∠BAC =∠ACO . ∴∠ACO =∠BCD ;(2)∵AB 为⊙O 的直径,AB ⊥CD , ∴CE =12CD =12×24=12(cm ). 在Rt △COE 中,设CO 为r ,则OE =r ﹣8, 根据勾股定理得:122+(r ﹣8)2=r 2 解得r =1.∴S ⊙O =π×12=169π(cm 2). 【点睛】此题考查的是垂径定理、等腰三角形的性质、圆周角定理推论和求圆的面积,掌握垂径定理和勾股定理的结合是解决此题的关键.22、(1)121,3x x ==-;(2)1212,3x x ==. 【分析】(1)方程变形后,利用因式分解法即可求解; (2)方程变形后,利用因式分解法即可求解.【详解】(1)方程变形得:2230x x +-=, 分解因式得:()()130x x -+=, 即:10x -=或30x +=, ∴1213x x ==-,;(2)方程变形得:()()3220x x x ---=, 分解因式得:()()2310x x --=, 即:20x -=或310x -=, ∴12123x x ==,. 【点睛】本题考查了一元二次方程的解法,灵活运用因式分解法是解决本题的关键. 23、(1)y =23x 2﹣83x+2;(2)2;(3)不存在点P ,使得四边形EHFP 为平行四边形,理由见解析.【分析】(1)根据题意可以得到C 的坐标,然后根据抛物线过点A 、C 、D 可以求得该抛物线的解析式;(2)根据对称轴和图形可以画出相应的图形,然后找到使得四边形EAMN 的周长的取得最小值时的点M 和点N 即可,然后求出直线MN 的解析式,然后直线MN 与x 轴的交点即可解答本题;(3)根据题意作出合适的图形,然后根据平行四边形的性质可知EH =FP ,而通过计算看EH 和FP 是否相等,即可解答本题.【详解】解:(1)∵AE ∥x 轴,OE 平分∠AOB , ∴∠AEO =∠EOB =∠AOE , ∴AO =AE , ∵A (0,2), ∴E (2,2), ∴点C (4,2),设二次函数解析式为y =ax 2+bx+2, ∵C (4,2)和D (3,0)在该函数图象上,∴164229320a b a b ++=⎧⎨++=⎩,得2383a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴该抛物线的解析式为y =23x 2﹣83x+2;(2)作点A 关于x 轴的对称点A 1,作点E 关于直线BC 的对称点E 1,连接A 1E 1,交x 轴于点M ,交线段BC 于点N . 根据对称与最短路径原理, 此时,四边形AMNE 周长最小. 易知A 1(0,﹣2),E 1(6,2). 设直线A 1E 1的解析式为y =kx+b ,262b k b =-⎧⎨+=⎩,得232k b ⎧=⎪⎨⎪=-⎩, ∴直线A 1E 1的解析式为223y x =-. 当y =0时,x =3, ∴点M 的坐标为(3,0).∴由勾股定理得AM=ME 1=∴四边形EAMN 周长的最小值为AM+MN+NE+AE =AM+ME 1+AE=2; (3)不存在.理由:过点F 作EH 的平行线,交抛物线于点P . 易得直线OE 的解析式为y =x ,∵抛物线的解析式为y =23x 2﹣83x+2=222(2)33x --,∴抛物线的顶点F 的坐标为(2,﹣23),设直线FP 的解析式为y =x+b , 将点F 代入,得83b =-, ∴直线FP 的解析式为83y x =-. 28328233y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩, 解得7256x y ⎧=⎪⎪⎨⎪=⎪⎩或223x y =⎧⎪⎨=⎪⎩,∴点P 的坐标为(72,56),FP =2×(72﹣2)=322, 228233y xy x x =⎧⎪⎨=-+⎪⎩, 解得,1173411734x y ⎧-=⎪⎪⎨-⎪=⎪⎩或1173411734x y ⎧+=⎪⎪⎨+⎪=⎪⎩,∵点H 是直线y =x 与抛物线左侧的交点, ∴点H 的坐标为(11734-,11734-), ∴OH =11734-×2=1121464-, 易得,OE =22, EH =OE ﹣OH =22﹣ 1121464- =321464-+,∵EH≠FP , ∴点P 不符合要求,∴不存在点P ,使得四边形EHFP 为平行四边形.【点睛】本题主要考察二次函数综合题,解题关键是得到C 的坐标,然后根据抛物线过点A 、C 、D 求得抛物线的解析式. 24、B 1点的坐标为(7,4)【分析】如图,作B 1C ⊥x 轴于C ,证明△ABO ≌△B 1AC 得到AC=OB=3,B 1C=OA=4,然后写出B 1点的坐标. 【详解】如图,作B 1C ⊥x 轴于C .∵A (4,0)、B (0,3), ∵OA =4,OB =3,∵线段BA 绕点A 沿顺时针旋转90°得A B 1, ∴BA =A B 1,且∠BA B 1=90°, ∴∠BAO+∠B 1AC =90° 而∠BAO+∠ABO =90°, ∴∠ABO =∠B 1AC , ∴△ABO ≌△B 1AC ,∴AC =OB =3,B 1C =OA =4, ∴OC =OA+AC =7, ∴B 1点的坐标为(7,4). 【点睛】本题考查了坐标与图形变化-旋转,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型. 25、(1)m <12;(2)﹣1. 【解析】试题分析:(1)根据方程根的个数结合根的判别式,可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系得出122x x +=-,122x x m =,再结合完全平方公式可得出222121212()2x x x x x x +=+-,代入数据即可得出关于关于m 的一元一次方程,解方程即可求出m 的值,经验值m=﹣1符合题意,此题得解.试题解析:(1)∵一元二次方程2220x x m ++=有两个不相等的实数根,∴△=4﹣4×1×2m=4﹣8m >0,解得:m <12,∴m 的取值范围为m <12. (2)∵1x ,2x 是一元二次方程2220x x m ++=的两个根,∴122x x +=-,122x x m =,∴222121212()2x x x x x x +=+-=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0,∴m 的值为﹣1.考点:根与系数的关系;根的判别式.26、(1)样本容量为200,a=50,b=80,c=0.4,图见解析;(2)800人【分析】(1)由“一般”的频数及其频率可得样本容量,再根据频率=频数÷样本容量及频数之和等于总人数求解可得;(2)用总人数乘以样本中“不重视”对应的频率即可得.【详解】(1)样本容量为60÷0.3=200,则a=200×0.25=50,b=200﹣50﹣60﹣10=80,c=80÷200=0.4,补全条形图如下:(2)估计该校“不重视阅读数学教科书”的学生人数为2000×0.4=800(人).【点睛】本题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识.。
济宁市数学九年级上册期末试卷(含答案)一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=2.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)3.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,955.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .46.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.下列方程是一元二次方程的是( ) A .2321x x =+B .3230x x --C .221x y -=D .20x y +=8.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.5 11.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .412.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°13.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 14.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1915.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .3B .3C .7D .7二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.18.抛物线286y x x =++的顶点坐标为______.19.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .20.一元二次方程x 2﹣4=0的解是._________21.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.22.一组数据:2,5,3,1,6,则这组数据的中位数是________.23.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).24.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.25.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.26.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.27.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.28.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m元推广费用,当68x≤≤时销售利润最大值为22500万元时,求m的值.32.如图,在ABC∆中,AB AC=.以AB为直径的O与BC交于点E,与AC交于点D,点F在边AC的延长线上,且12CBF BAC∠=∠.(1)试说明FB是O的切线;(2)过点C作CG AF⊥,垂足为C.若4CF=,3BG=,求O的半径;(3)连接DE,设CDE∆的面积为1S,ABC∆的面积为2S,若1215SS=,10AB=,求BC的长.33.如图,AB为O的直径,PD切O于点C,交AB的延长线于点D,且2D A∠=∠.(1)求D∠的度数.(2)若O的半径为2,求BD的长.34.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.35.小亮晚上在广场散步,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)请你在图中画出小亮站在AB 处的影子BE ;(2)小亮的身高为1.6m ,当小亮离开灯杆的距离OB 为2.4m 时,影长为1.2m ,若小亮离开灯杆的距离OD =6m 时,则小亮(CD )的影长为多少米?四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.38.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.39.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断. 【详解】解:∵四边形ABCD 是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90° ∴AO=CO=BO=DO, ∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.2.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).3.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.4.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B .5.B解析:B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 6.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.8.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90°∴△ABC ≌△ADE (AAS )∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得,CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2,解得:a=5x ,∴y=S四边形ABCD=S梯形ACDE=12×(DE+AC)×DF=12×(a+4a)×4a=10a2=25x2.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.9.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.C解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.11.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.12.C解析:C【解析】【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.13.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.14.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.15.B解析:B【解析】【分析】如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .首先证明∠CE ′B =∠D ′=60°,解直角三角形求出HE ′,BH 即可解决问题. 【详解】解:如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .∵∠ACB =90°,∠ABC =30°,∴∠CAB =60°,∵DE ∥AB ,∴CD CA =CE CB ,∠CDE =∠CAB =∠D ′=60° ∴'CD CA ='CE CB, ∵∠ACB =∠D ′CE ′,∴∠ACD ′=∠BCE ′,∴△ACD ′∽△BCE ′,∴∠D ′=∠CE ′B =∠CAB ,在Rt △ACB 中,∵∠ACB =90°,AC 7,∠ABC =30°,∴AB =2AC =7,BC 3AC 21,∵DE ∥AB ,∴CDCA=CECB,∴7=21,∴CE=3,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=3∴E′H=12CE′=32,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.二、填空题16.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20x a+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.17.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E =∠CAE =45°,∵∠ACD =7解析:115°【解析】【分析】根据∠EDC =180°﹣∠E ﹣∠DCE ,想办法求出∠E ,∠DCE 即可.【详解】由题意可知:CA =CE ,∠ACE =90°,∴∠E =∠CAE =45°,∵∠ACD =70°,∴∠DCE =20°,∴∠EDC =180°﹣∠E ﹣∠DCE =180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.18.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-.解:由题目得出:抛物线顶点的横坐标为:84 221ba-=-=-⨯;抛物线顶点的纵坐标为:2244168246410 4414ac ba-⨯⨯--===-⨯抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键. 19.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 20.x=±2移项得x2=4,∴x=±2.故答案是:x=±2.解析:x=±2【解析】移项得x 2=4,∴x=±2.故答案是:x=±2.21..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38. 【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==,∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.22.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.23.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.24.【解析】【分析】作BM⊥AC 于M ,交AD 于F ,根据三线合一定理求出BD 的长和AD⊥BC,根据三角形面积公式求出BM ,根据对称性质求出BF =CF ,根据垂线段最短得出CF +EF≥BM,即可得出答案解析:245【解析】【分析】作BM ⊥AC 于M ,交AD 于F ,根据三线合一定理求出BD 的长和AD ⊥BC ,根据三角形面积公式求出BM ,根据对称性质求出BF =CF ,根据垂线段最短得出CF +EF ≥BM ,即可得出答案.【详解】 作BM ⊥AC 于M ,交AD 于F ,∵AB =AC =5,BC =6,AD 是BC 边上的中线,∴BD =DC =3,AD ⊥BC ,AD 平分∠BAC ,∴B 、C 关于AD 对称,∴BF =CF ,根据垂线段最短得出:CF +EF =BF +EF ≥BF +FM =BM ,即CF +EF ≥BM ,∵S △ABC =12×BC ×AD =12×AC ×BM , ∴BM =642455BC ADAC , 即CF +EF 的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.25.x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x解析:x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x1﹣x,两边平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,检验:x=4时,=5,左边≠右边,∴x=4不是原方程的解,当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.26.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.27.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x =−1-2<0,∵-4≤-3,∴322-≤≤-,∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.28.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量30.【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD 为直径的圆上.解析:42【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为42.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+32.∴当x=4时,BD取得最小值为42.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为2.故答案为:2.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题31.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)9000 7.【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y 值即可;(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.32.(1)详见解析;(2)3;(3)BC =【解析】【分析】(1)根据切线的判断方法证明AB BF ⊥即可求解;(2)根据tan CG AB F CF BF==即可求出AB 即可求解; (3)连接BD .求出E 为BC 中点,得到BDECDE S S ∆∆=,根据1215S S =,设1S a =,25S a =,得到2BCD S a ∆=,3ABD S a ∆=,求出23CD AD =得到6AD =,4CD =,再根据勾股定理即可求解.【详解】(1)证明:连接AE . ∵AB 为直径,∴90AEB =︒∠.又∵AB AC =, ∴12BAE BAC ∠=∠, ∵12CBF BAC ∠=∠,∴CBF BAE ∠=∠. ∵90BAE ABE ∠+∠=︒,∴90FBC ABE ∠+∠=︒,即AB BF ⊥.又∵AB 是直径,∴FB 与O 相切.(2)解:∵AB AC =,∴A ABC CB =∠∠,又∵AB BF ⊥,CG AC ⊥,∴ABC GBC ACB BCG ∠+∠=∠+∠,∴GBC BCG ∠=∠,∴3BG CG ==.∵3CG =,4CF =,∴5FG =,∴8FB =. ∵tan CG AB F CF BF==, ∴6AB =,∴O 的半径是3. (3)解:连接BD .∵AB 为直径,∴90ADB ∠=︒.∵AB AC =,AE BC ⊥,∴E 为BC 中点,∴BDE CDE S S ∆∆=. 又∵1215S S =,设1S a =,25S a =,∴2BCD S a ∆=,3ABD S a ∆=, ∴23BCD ABD S S ∆∆=,∴23CD AD =. 又∵10AB AC ==,∴6AD =,4CD =. ∵在Rt ABD ∆中,22BD AB AD 8=-=, ∴在Rt BCD ∆中,2245BC CD BD +=【点睛】此题主要考查圆的切线综合,解题的关键是熟知三角函数的性质、切线的判定、勾股定理的应用.33.(1)45D ∠=︒;(2)222BD =.【解析】【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可.【详解】解:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A ,∵∠D=2∠A ,∴∠D=∠COD ,。
山东省济宁市嘉祥县九年级(上)期末数学试卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
1.(3分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()
A.B.C.D.
2.(3分)下列函数中,y是x反比例函数的是()
A.y=B.y=﹣C.y=kx﹣1D.y=
3.(3分)下列事件是必然事件的是()
A.抛掷一枚硬币四次,有两次正面朝上
B.射击运动员射击一次,命中靶心
C.随意翻到一本书的某页,这页的页码是奇数
D.方程x2﹣2x﹣1=0必有实数根
4.(3分)一元二次方程式x2﹣8x=48可表示成(x﹣a)2=48+b的形式,其中a、b为整数,求a+b之值为何()
A.20B.12C.﹣12D.﹣20
5.(3分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()
A.sinα=cosαB.tan C=2C.sinβ=cosβD.tanα=1
6.(3分)如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()
A.B.C.D.
7.(3分)如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()
A.(﹣1,2)B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)
8.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°
9.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:
x…﹣3﹣2﹣101…
y…﹣60466…
给出下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴在y轴的左侧;
③抛物线一定经过(3,0)点;
④在对称轴左侧y随x的增大而增大.
从表中可知,其中正确的个数为()
A.4B.3C.2D.1
10.(3分)反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象
上,PC⊥x轴,交y=的图象于点A,PD⊥y轴,交y=的图象于点B.当点P在y =的图象上运动时,以下结论:
①△ODB与△OCA的面积相等;
②P A与PB始终相等;
③四边形P AOB的面积不会发生变化;
④当点A是PC的中点时,点B一定是PD的中点.
其中一定正确的是()
A.①②③④B.①②③C.②③④D.①③④
二、填空题(本大题共5小题,每小题3分,共15分。
把答案填在题中横线上)11.(3分)将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为.
12.(3分)如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.
13.(3分)我县于2017年12月被评为“全国老年气排球之乡”,这也是我省、我市首次获得该项荣誉,为继续推广此项运动,我县体育局要组织一次气排比赛,赛制为单循环(每两队之间都赛一场),计划安排21场比赛,应邀请多少个球队参赛?若设邀请x个球队参赛,则所列方程为.
14.(3分)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.
15.(3分)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF∽△ACD,其中一定正确的是.(填序号)
三、解答题(本大题共7小题,共55分,解答应写出证明过程或演算步骤)
16.(6分)(1)解方程:2x2﹣4x﹣3=0;
(2)计算:4cos30°﹣3tan60°+2sin45°•cos45°.
17.(6分)如图是由边长为1的小正三角形组成的网格图,点O和△ABC的顶点都在正三角形的格点上,将△ABC绕点O逆时针旋转120°得到△A′B′C′.
(1)在网格中画出旋转后的△A′B′C′;
(2)求AB边旋转时扫过的面积.
18.(7分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
19.(7分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D
的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
20.(7分)如图,在矩形OABC中,OA=3,OC=2,点F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EF A的面积最大,最大面积是多少?
21.(10分)如图,△ABC是⊙O的内接三角形,∠BAC的角平分线AE交⊙O于点E,交BC于点D,过点E作直线l∥BC.
(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若在AE上取一点F使EF=BE,求证:BF是∠ABC的平分线;
(3)在(2)的条件下,若DE=3,BE=5,求AE的长.
22.(12分)如图,已知点A(2,0),以A为圆心作⊙A与y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.
(1)以直线l为对称轴的抛物线过点A,抛物线与x轴的另一个交点为点C,抛物线的顶点为点E,如果CO=2BE,求此抛物线的解析式;
(2)过点C作⊙A的切线CD,D为切点,求此切线长;
(3)点F是切线CD上的一个动点,当△BFC与△CAD相似时,求出CF的长.
山东省济宁市嘉祥县九年级(上)期末数学试卷
参考答案
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有
一项是符合题目要求的)
1.A;2.B;3.D;4.A;5.C;6.C;7.D;8.C;9.B;10.D;
二、填空题(本大题共5小题,每小题3分,共15分。
把答案填在题中横线上)
11.y═(x﹣2)2+3;12.;13.x(x﹣1)=21;14.4;15.①②③;三、解答题(本大题共7小题,共55分,解答应写出证明过程或演算步骤)
16.;17.;18.;19.;20.;21.;22.;。